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Abstract
We consider the use of eigenfunctions of polyharmonic operators, equipped with ho-

mogeneous Neumann boundary conditions, to approximate nonperiodic functions in com-
pact intervals. Such expansions feature a number of advantages in comparison with clas-
sical Fourier series, including uniform convergence and more rapid decay of expansion
coefficients.

Having derived an asymptotic formula for expansion coefficients, we describe a sys-
tematic means to find eigenfunctions and eigenvalues. Next we demonstrate uniform con-
vergence of the expansion and give estimates for the rate of convergence. This is followed
by the introduction and analysis of Filon-type quadrature techniques for rapid approx-
imation of expansion coefficients. Finally, we consider special quadrature methods for
eigenfunctions corresponding to a multiple zero eigenvalue.

1 Introduction
The practical expansion of smooth, nonperiodic functions on bounded domains in eigenfunc-
tions of the Laplace operator equipped with homogeneous Neumann boundary conditions has
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been the subject of a number of recent papers. This theme, commenced in (Iserles & Nørsett
2008) for functions defined on compact intervals, has been generalised to tensor product do-
mains (Iserles & Nørsett 2009) as well as the equilateral triangle (Huybrechs, Iserles & Nørsett
2010b). Such an approach entertains a number of advantages, of both theoretical and practical
nature, over classical Fourier expansions and polynomial-based approximations. To date, so-
called modified Fourier expansions have found applications in a number of areas, including
the spectral discretization of boundary value problems (Adcock 2009, Adcock 2010b) and
the computation of spectra of highly oscillatory integral operators (Brunner, Iserles & Nørsett
2009).

In this paper we pursue a different generalisation of this approach: namely, the expansion
of functions defined on compact intervals in eigenfunctions of certain higher order differential
operators. The purpose of this generalisation is to attain higher degrees of convergence whilst
retaining the benefits of modified Fourier expansions. In particular, as we demonstrate, ex-
pansion coefficients can be calculated to high accuracy using straightforward generalisations
of the quadratures developed in (Iserles & Nørsett 2008). In doing this, we exhibit a sharp
contrast with the Fast Fourier Transform (FFT). Rather than being specific to the approxima-
tion scheme (i.e. Fourier series or expansions in Chebyshev polynomials), the quadratures
utilised are applicable to a broad family of expansions.

It is not our intention to suggest that modified Fourier expansions, and their generalisation
that we develop in this paper, will outperform well established algorithms in all scenarios.
Clearly, an analytic, periodic function defined in a d-variate cube is best approximated by its
Fourier series. Moreover, in many circumstances it may be advantageous to use orthogonal
polynomials instead. Regardless, in light of the applications mentioned above, where modified
Fourier expansions have been found to convey a number of important advantages, we feel that
a study of this particular generalisation is warranted.

This paper thus marks an introductory foray towards the development of numerical meth-
ods based on polyharmonic expansions. A great deal of future effort, beyond the scope of one
paper, is required to design efficient, stable algorithms based on this approach. In Section 7
we discuss a number of such challenges in greater detail.

Before developing the ideas of polyharmonic–Neumann expansions further, it makes sense
to first explain briefly the main concepts of (Iserles & Nørsett 2008), including those that we
intend to generalise in this paper.

1.1 Modified Fourier expansions
Classical Fourier expansions on [−1, 1] use the basis

{cosπnx : n ∈ Z+} ∪ {sinπnx : n ∈ N}

and provide an incredibly powerful tool for the approximation of functions which are both
analytic and periodic of period 2. By using the FFT to evaluate the first m coefficients, the
truncated expansion can be constructed inO (m logm) operations. Moreover, the coefficients
decay exponentially fast and the error committed by the truncated expansion is exponentially
small in m. These features underlie the astonishing success of Fourier expansions in an ex-
ceedingly wide range of applications in science and engineering.

However, once periodicity is no longer present, Fourier expansions are far less attrac-
tive. In contrast to the periodic case, the nth expansion coefficient decays like O

(
n−1

)
and
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the expansion, truncated after m terms, commits an O
(
m−1

)
error in (−1, 1). Moreover,

uniform convergence is lacking and O (1) oscillations occur near the endpoints (the Gibbs
phenomenon).

To approximate such functions it was proposed in (Iserles & Nørsett 2008) to employ the
alternative basis G1 = P0⊕H1, where Pm is the set ofmth-degree algebraic polynomials and

H1 = {cosπnx : n ∈ N} ∪ {sinπ(n− 1
2 )x : n ∈ N}. (1.1)

It has been shown that G1 is an orthonormal basis of L2[−1, 1] (Iserles & Nørsett 2008).
However, in contrast to the Fourier basis, G1 is also orthogonal and dense in the Sobolev
space H1[−1, 1], meaning that the modified Fourier expansion

f(x) ∼ 1
2 f̂

C
0 +

∞∑
n=1

[f̂Cn cosπnx+ f̂Sn sinπ(n− 1
2 )x],

where

f̂Cn =

∫ 1

−1
f(x) cosπnxdx, f̂Sn =

∫ 1

−1
f(x) sinπ(n− 1

2 )xdx, (1.2)

converges uniformly on [−1, 1] for f ∈ H1[−1, 1] (Adcock 2009). If this expansion is trun-
cated after m terms, an error of O

(
m−1

)
is committed uniformly throughout [−1, 1], pro-

vided f is sufficiently smooth. Away from the endpoints, this figure is O
(
m−2

)
(Olver

2009).
The improvement offered by (1.1) over the Fourier basis is also seen in the decay of the

coefficients. Once f̂Cn and f̂Sn are expanded asymptotically in powers of n−1, we observe that
f̂Cn , f̂

S
n = O

(
n−2

)
as opposed toO

(
n−1

)
for the corresponding Fourier coefficients (Iserles

& Nørsett 2008). This asymptotic expansion also provides the starting point for the design
of numerical quadrature schemes to calculate the coefficients f̂Cn and f̂Sn . As n increases,
the functions cosπnx and sinπ(n− 1

2 )x become highly oscillatory. Hence, Filon-type tech-
niques (Iserles & Nørsett 2005) can be employed for the computation of the highly oscillatory
integrals (1.2). The few coefficients corresponding to small values of n, before asymptotic
behaviour sets in, can be approximated by particular nonstandard classical quadrature for-
mulæ (i.e. based on maximising polynomial order), involving both function values and certain
derivatives. This method allows for computation of the first m coefficients to high accuracy
in just O(m) operations—a full factor of logm faster than the FFT and without the require-
ment that m be highly composite. Unlike the FFT, this approach is also completely adaptive:
increasing m does not require recalculation of existing values.

The purpose of this paper is to demonstrate that these ideas can be successfully generalised
to a larger family of expansions. By a judicious choice of approximation basis, we introduce
expansions with coefficients that can be computed using the aforementioned techniques and
that decay at the increased rate of O

(
n−q−1

)
for any fixed q ∈ N. Correspondingly, the

convergence rate of the truncated expansion is O
(
m−q−1

)
away from the endpoints and

O (m−q) uniformly.
To achieve this objective, however, we first need to understand why G1 leads to an im-

provement over the standard Fourier basis.
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1.2 Birkhoff expansions
Central to the understanding of G1 is the observation that cosπnx and sinπ(n − 1

2 )x are
eigenfunctions of the Laplace operator − d2

dx2 equipped with homogeneous Neumann bound-
ary conditions. Supposing that u is such an eigenfunction, −u′′ = α2u, u′(±1) = 0 with
nonzero eigenvalue κ = α2, two integrations by parts and a substitution of the Neumann
boundary conditions gives∫ 1

−1
f(x)u(x)dx = − 1

α2

∫ 1

−1
f(x)u′′(x)dx = − 1

α2

[
f(x)u′(x)

1

−1 −
∫ 1

−1
f ′(x)u′(x)dx

]
=

1

α2

[
f ′(x)u(x)

1

−1 −
∫ 1

−1
f ′′(x)u(x)dx

]
. (1.3)

It follows from the standard spectral theory that all eigenvalues are real, non-negative and
α2
n = O

(
n2
)

for the nth eigenvalue (Pöschel & Trubowitz 1987). We deduce that f̂Cn , f̂
S
n =

O
(
n−2

)
, hence the aforementioned O

(
n−2

)
decay of the nth modified Fourier coefficient.

As evidenced by (1.3), Neumann boundary conditions are key to this observation: had we
employed Dirichlet boundary conditions, for example, onlyO

(
n−1

)
decay would occur. The

interpretation of the function sinπnx as a Laplace–Dirichlet eigenfunction precisely explains
the slow decay of the standard Fourier sine coefficient.

The expansion of a function in Laplace eigenfunctions is just one example of the much
larger field of Birkhoff expansions (Naimark 1968). The route to extending modified Fourier
expansions lies with first understanding this more general scenario. To this end, suppose that
L = (−1)q d2q

dx2q + · · · is a self-adjoint linear differential operator of order 2q with smooth
coefficients. (We could, in theory, drop the assumption of self-adjointness. However, since our
eventual goal is practical computations, for which, for example, real eigenvalues are desirable,
it makes sense to enforce this condition. Nothing is gained in terms of convergence or rate
of decay of expansion coefficients by considering the non self-adjoint case.) Suppose further
that U1(u), . . . , U2q(u), u ∈ C2q−1[−1, 1], are 2q linearly independent, linear functions of
the values u(±1), u′(±1), . . . , u(2q−1)(±1) giving rise to homogeneous boundary conditions
Ui(u) = 0, i = 1, . . . , 2q. Such forms can be augmented to form a dual basis U1, . . . , U4q of
the 4q-dimensional vector space{(

u(−1), u′(−1), . . . , u(2q−1)(−1), u(1), u′(1), . . . , u(2q−1)(1)
)

: u ∈ C2q−1[−1, 1]
}

for which the condition∫ 1

−1
Lu(x)v(x)dx =

4q∑
i=1

Ui(u)U4q+1−i(v) +

∫ 1

−1
u(x)Lv(x)dx (1.4)

holds for all u, v ∈ C2q[−1, 1].
Under mild assumptions, the spectrum ofL equipped with boundary conditionsU1, . . . U2q

is countable, with real eigenvalues 0 ≤ κ1 ≤ κ2 ≤ . . ., and normalised eigenfunctions
u1, u2, . . . (Naimark 1968). Hence we may expand a function f ∈ L2[−1, 1] as

f(x) ∼
∞∑
n=1

f̂nun(x), where f̂n =

∫ 1

−1
f(x)un(x)dx.
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Since we wish to develop practical approximation schemes based on such eigenfunctions, we
select the operator L and corresponding boundary conditions according to the following two
criteria: rapid decay of expansions coefficients and simplicity of eigenfunctions and eigen-
values. Considering the first criterion, we let u be an eigenfunction of L with eigenvalue
κ = α2q . Using (1.4) and applying the boundary conditions Ui(u) = 0, i = 1, . . . , 2q, gives∫ 1

−1
f(x)u(x)dx =

1

κ

∫ 1

−1
f(x)Lu(x)dx

=
1

κ

4q∑
i=1

Ui(u)U4q+1−i(f) +
1

κ

∫ 1

−1
Lf(x)u(x)dx

=
1

κ

4q∑
i=2q+1

Ui(u)U4q+1−i(f) +
1

κ

∫ 1

−1
Lf(x)u(x)dx.

It is known that u(i)(±1) = O
(
αi
)

and that the nth value αn = O (n) (Naimark 1968).
Hence ∫ 1

−1
f(x)u(x)dx = O

(
αr−2q

)
,

where r is the maximal order of derivative appearing in the forms U2q+1, . . . , U4q . We now
seek to minimise r over all possible boundary conditions. Since the forms U1, . . . , U4q are
linearly independent, simple arguments demonstrate that r = q − 1 is the minimal value. In
this case, the highest derivative in both Ui and Uq+i is of order q+ i− 1 for i = 1, . . . q (after
a possible reordering). Though numerous different boundary conditions have this property, it
makes sense to choose the simplest. These are the Neumann boundary conditions

Ui(u) = u(q+i−1)(−1), Uq+i(u) = u(q+i−1)(1), i = 1, . . . , q.

It follows that f̂n = O
(
n−q−1

)
.

Having prescribed ‘optimal’ boundary conditions, we now turn our attention to the oper-
ator L. Throughout this derivation, aside from the order q and imposition of self-adjointness,
L was arbitrary. Once again, given freedom to choose, we make the most simple choice. This
leads naturally to the polyharmonic operator (−1)q d2q

dx2q . For these reasons, the remainder
of this paper is devoted to the practical construction of expansions based on polyharmonic–
Neumann eigenfunctions:

(−1)qu(2q) = α2qu, u(i)(±1) = 0, i = q, q + 1, . . . , 2q − 1. (1.5)

We remark in passing that, though considerations of simplicity naturally lead us to (1.5), there
is also sound theoretical justification. As described in (Naimark 1968), both the eigenvalues
and eigenfunctions of a general operator L are well understood in the asymptotic regime
|α| → ∞. In fact, under some mild assumptions, both the eigenfunctions and eigenvalues of
a general 2qth order operator L are asymptotic to those of the polyharmonic operator with the
same boundary conditions. In other words, no advantage is gained from expansions based on
eigenfunctions of a more general operator.

Birkhoff expansions have a well developed theory. Much is known about their conver-
gence in various norms and the asymptotic behaviour of both the eigenvalues and eigen-
functions (Benzinger 1972, Naimark 1968). However, a number of omissions exist. The
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apparently obvious statement that Neumann boundary conditions yield uniformly convergent
expansions and the fastest possible rate of convergence seems to be lacking. Indeed, many
studies consider only the worst case scenario, including, for example, the Dirichlet boundary
conditions

u(i)(±1) = 0, i = 0, . . . , q − 1, (1.6)

which lack uniform convergence and give the slowest possible convergence rate. Moreover,
as we discuss later, polyharmonic–Neumann eigenvalues, eigenfunctions and corresponding
expansions exhibit asymptotic behaviour insufficiently described by such general theory.

The particular example of polyharmonic–Neumann eigenfunctions has been considered by
Mark Krein (Krein 1935), who analysed their properties and proved density in the L2[−1, 1]
norm. They have been introduced to approximation theory by Andrei Kolmogorov in his
theory of n-widths (Kolmogorov 1936). Their distinguished pedigree notwithstanding, to
the best of our knowledge no attempts have been made to devise practical approximation
schemes based on such eigenfunctions. There are two principal reasons for this omission:
namely, construction and computation of the eigenvalues and eigenfunctions, and numerical
evaluation of the coefficients f̂n. In this paper we demonstrate how both these issues can be
addressed in a systematic manner.

1.3 Plan of the paper
The key results and observations of this paper are as follows:

1. There exist countably many eigenvalues and eigenfunctions of (1.5). Aside from the
q-fold zero eigenvalue, all eigenvalues are positive and simple. If we denote the nth
positive eigenvalue by κn = α2q

n and the corresponding eigenfunction by un, then
Gq = Hq ⊕Kq , whereHq = {un : n ∈ N} and Kq is an orthogonal basis for Pq−1, is
orthogonal and dense in L2[−1, 1].

2. The basis Gq is dense and orthogonal in Hq[−1, 1] with respect to the inner product

(f, g)q =

∫ 1

−1

[
f(x)g(x) + f (q)(x)g(q)(x)

]
dx, f, g ∈ Hq[−1, 1]. (1.7)

3. Once a function f ∈ Hq+1[−1, 1] is expanded in the functions un, the nth expansion
coefficient f̂n decays like O

(
n−q−1

)
for n� 1.

4. The truncated expansion fm of a function f ∈ Hq[−1, 1] in polyharmonic–Neumann
eigenfunctions converges uniformly to f . Provided f ∈ Hq+2[−1, 1], the error f(x)−
fm(x) is O

(
m−q−1

)
in (−1, 1) and O (m−q) at the endpoints.

5. For each n, the value αn lies within an interval of exponentially small width and can
be computed extremely easily using Newton–Raphson iterations. The corresponding
eigenfunction un occurs in two cases, even and odd, and can be written as a sum of
products of trigonometric and hyperbolic functions with coefficients that can be easily
computed by solving an algebraic eigenproblem.

6. For large n, the functions un oscillate rapidly. Thus the task of computing the nth ex-
pansion coefficient f̂n can be tackled by highly oscillatory quadrature formulæ. Using
such techniques, any m coefficients can be computed in O (m) operations.
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The remainder of this paper is arranged as follows. In Section 2 we introduce the fundamentals
of polyharmonic–Neumann expansions. Section 3 is devoted to a close examination of the
case q = 2. In Section 4 we extend this to general q ≥ 1, and in Section 5 we provide
analysis of convergence of such expansions. Finally, in Section 6 we address the numerical
computation of the expansion coefficients.

2 Expansions in polyharmonic–Neumann eigenfunctions

Since (−1)q d2q

dx2q (equipped with Neumann boundary conditions) is a semipositive-definite
differential operator, we deduce that its eigenvalues are non-negative. As in (1.5) we write
κ = α2q . If α = 0 then necessarily u ∈ Pq−1. Hence 0 is a q-fold eigenvalue and the
relevant linear subspace of eigenfunctions is spanned by the Legendre polynomials Pk, k =
0, 1, . . . , q − 1, an orthogonal basis of Pq−1.

The remaining values α are positive. For such α and corresponding u, we have∫ 1

−1
f(x)u(x)dx =

(−1)q

α2q

∫ 1

−1
f(x)u(2q)(x)dx.

Integrating by parts q times and substituting the boundary conditions yields the identity∫ 1

−1
f(x)u(x)dx =

1

α2q

∫ 1

−1
f (q)(x)u(q)(x)dx, ∀f ∈ Hq[−1, 1]. (2.1)

Lemma 1 The eigenfunctions of (1.5) are orthogonal and dense in L2[−1, 1] with respect to
the usual Euclidean inner product.

Proof Although the lemma follows at once from standard spectral theory (Krein 1935, Lev-
itan & Sargsjan 1975), it is instructive to prove orthogonality from first principles, using
(2.1). According to spectral theory, positive eigenvalues are simple. We denote them by
κn = α2q

n and the corresponding nonzero eigenfunctions by un. It follows at once from
(2.1) that

∫ 1

−1 f(x)un(x)dx = 0 for f ∈ Pq−1, hence un is orthogonal to all eigenfunctions
corresponding to the zero eigenvalue. Moreover, letting f = um for m 6= n in (2.1) we have

α2q
n

∫ 1

−1
um(x)un(x)dx =

∫ 1

−1
u(q)m (x)u(q)n (x)dx.

However, by symmetry,

α2q
m

∫ 1

−1
um(x)un(x)dx =

∫ 1

−1
u(q)m (x)u(q)n (x)dx.

Since αm 6= αn, αm, αn > 0, orthogonality follows immediately. 2

We note in passing that it follows from this proof that∫ 1

−1
u(q)m (x)u(q)n (x)dx = 0, m 6= n.
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Before we get carried away, however, we observe that u(q)n is nothing else but the eigen-
function corresponding to the nth eigenvalue of the polyharmonic operator equipped with
Dirichlet boundary conditions (1.6). (The eigenvalues are the same as in the Neumann case,
except that the Dirichlet problem has no zero eigenvalues.) Therefore, orthogonality of qth
derivatives is another immediate consequence of standard spectral theory. We shall return to
this observation in Section 5.

Lemma 1 justifies the expansion of a function f ∈ L2[−1, 1] in the basis Gq = Pq−1⊕Hq .
We thus let

f̂on =

∫ 1

−1
f(x)Pn(x)dx, n = 0, . . . , q − 1,

f̂n =

∫ 1

−1
f(x)un(x)dx, n = 1, 2, . . . , (2.2)

where Pn is the nth degree Legendre polynomial. The expansion now takes the form

f(x) ∼
q−1∑
n=0

(n+ 1
2 )f̂onPn(x) +

∞∑
n=1

f̂n
σn
un(x), (2.3)

where σn =
∫ 1

−1 u
2
n(x)dx and we recall that

∫ 1

−1 P2
n(x)dx = (n + 1

2 )−1. Truncating this
infinite sum after m terms leads to the approximation fm given by

fm(x) =

q−1∑
n=0

(n+ 1
2 )f̂onPn(x) +

m∑
n=1

f̂n
σn
un(x). (2.4)

Standard arguments establish that fm is the best approximation to f in the L2[−1, 1] norm
from the set Gq,m = Pq−1⊕Hq,m, whereHq,m = {u1, . . . , um}. Convergence of fm to f in
this norm is thus an easy consequence of Lemma 1. A version of Parseval’s lemma (Körner
1988) is also readily obtained. If ‖g‖2 =

∫ 1

−1 g(x)2dx is the standard L2[−1, 1] norm, then

‖f‖2 =

q−1∑
n=0

(n+ 1
2 )|f̂on|2 +

∞∑
n=1

|f̂n|2

σn
. (2.5)

2.1 Asymptotic expansion of the coefficients f̂n
The rate of decay of the coefficients f̂n has important consequences for this paper: a faster
rate of decay means that fewer expansion terms are required to approximate a function f to
given precision. To determine this decay we first provide an asymptotic expansion of the
coefficients. Such expansion is not only a useful theoretical tool, but it also forms the basis of
the quadrature methods employed in Section 6 to evaluate coefficients numerically.

Our starting point is the identity (2.1). Integrating this expression by parts l times (noticing
that the boundary terms do not vanish) gives

f̂n =
1

α2q
n

l−1∑
k=0

(−1)kf (q+k)(x)u(q−1−k)n (x)
1

−1 +
(−1)l

α2q
n

∫ 1

−1
f (q+l)(x)u(q−l)n (x)dx (2.6)
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for each l = 0, 1, . . . , q. In particular, letting l = q we have

f̂n =
(−1)q

α2q
n

2q−1∑
k=q

(−1)k
[
f (k)(1)u(2q−k−1)n (1)− f (k)(−1)u(2q−k−1)n (−1)

]
+

(−1)q

α2q
n

∫ 1

−1
f (2q)(x)un(x)dx. (2.7)

The integral on the right is nothing more than the coefficient of f (2q) corresponding to un.
Therefore (2.7) can be iterated,

f̂n =
(−1)q

α2q
n

2q−1∑
k=q

(−1)k[f (k)(1)u(2q−k−1)n (1)− f (k)(−1)u(2q−k−1)n (−1)]

+
(−1)2q

α4q
n

2q−1∑
k=q

(−1)k[f (2q+k)(1)u(2q−k−1)n (1)− f (2q+k)(−1)u(2q−k−1)n (−1)]

+
(−1)2q

α4q
n

∫ 1

−1
f (4q)(x)un(x)dx

and so on.

Theorem 2 Given f ∈ C∞[−1, 1], it is true that

f̂n ∼
∞∑
r=0

(−1)(r+1)q

α
2(r+1)q
n

2q−1∑
k=q

(−1)k[f (2qr+k)(1)u(2q−k−1)n (1)− f (2qr+k)(−1)u(2q−k−1)n (−1)].

(2.8)

Proof Follows at once from (2.7) by repeated iteration. 2

We emphasise that (2.8) holds only in an asymptotic sense. It certainly does not converge
for fixed n. In fact, it is not even clear a priori that (2.8) is an asymptotic expansion in
inverse powers of n. To establish this, we require the observations that αn = O (n) and
u
(k)
n (x) = O

(
αkn
)

for n � 1 and all k ∈ N. Both results are standard (a proof in the more
general setting of Birkhoff expansions is given in (Naimark 1968)). It turns out, however, that
far more accurate expressions for αn and u(k)n (x) can be derived, as we discuss further in the
sequel.

Returning to f̂n, we are now able to deduce that

f̂n = O
(
n−q−1

)
, n� 1. (2.9)

We mention in passing that this estimate remains valid under lower regularity assumptions. In
fact, using (2.6) with l = 1, it follows that f̂n obeys (2.9) provided f ∈ Hq+1[−1, 1].

To connect (2.8) with the narrative of (Iserles & Nørsett 2008), we observe that for q = 1
we have αn = 1

2πn,

u2n−1(x) = sinπ(n− 1
2 )x, u2n(x) = cosπnx
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and

f̂2n−1 ∼ (−1)n−1
∞∑
r=0

(−1)r

[(n− 1
2 )π]2r+2

[f (2r+1)(1) + f (2r+1)(−1)],

f̂2n ∼ (−1)n
∞∑
r=0

(−1)r

(nπ)2r+2
[f (2r+1)(1)− f (2r+1)(−1)],

consistently with Theorem 2.

3 The case q = 2

The biharmonic–Neumann eigenvalue problem warrants further attention. It presents the first
setting ranging beyond the work of (Iserles & Nørsett 2008), and exhibits a number of distinct
features that remain in place for general q ≥ 2.

The general solution of u(4) = α4u is

u(x) = c1 cosαx+ c2 sinαx+ c3 coshαx+ c4 sinhαx.

Imposition of u′′(−1) = u′′(1) = 0 results in

c3 = c1
cosα

coshα
, c4 = c2

sinα

sinhα
.

We substitute these values of c3 and c4 into u(x) and impose the remaining boundary condi-
tion, u′′′(−1) = u′′′(1) = 0. Since, after straightforward algebra,

1

α3
[u′′′(1) + u′′′(−1)] = 2c2

sinα coshα− cosα sinhα

sinhα
,

1

α3
[u′′′(1)− u′′′(−1)] = 2c1

sinα coshα+ cosα sinhα

coshα
,

we deduce that for α > 0 we have two possibilities.

Case 1 Letting c2 = 0 and normalising c1 = 1/(
√

2 cosα), we have

u(x) =

√
2

2

(
cosαx

cosα
+

coshαx

coshα

)
, (3.1)

an even function, where α is a positive zero of the transcendental equation

ge(α) = tanα+ tanhα = 0. (3.2)

Case 2 Alternatively we let, c1 = 0 and normalise c2 = 1/(
√

2 sinα), whence

u(x) =

√
2

2

(
sinαx

sinα
+

sinhαx

sinhα

)
, (3.3)

an odd function, where α is a positive zero of

go(α) = tanα− tanhα = 0. (3.4)
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As in the case q = 1, the eigenfunctions split into even and odd cases respectively. However,
unlike Laplace–Neumann eigenvalues, their biharmonic–Neumann counterparts are not given
explicitly. Rather, they are solutions of the equations (3.2) and (3.4). Despite this, such values
can be computed to high accuracy with ease, as we now describe.

To locate zeros of (3.2) and (3.4), we commence with ge and observe that

g′e(α) = 2 + tan2 α− tanh2 α > 0, α > 0,

since | tanhα| < 1. Therefore ge increases monotonically. Moreover, for every n = 1, 2, . . .

ge((n− 1
4 )π) = −1 + tanh(n− 1

4 )π < 0, ge(nπ) = tanhnπ > 0

and ge has a simple pole at (n − 1
2 )π. We thus deduce that (3.2) has a unique simple zero in

each interval of the form I2n−1 = ((n− 1
4 )π, nπ) for all n = 1, 2, . . .. As a matter of fact we

can say considerably more: for any 0 < ε < π
4 we have

ge((n− 1
4 )π + ε) =

sin ε− cos ε

sin ε+ cos ε
+ tanh((n− 1

4 )π + ε)

>
sin ε− cos ε

sin ε+ cos ε
+ tanh((n− 1

4 )π).

The function h(x) = sin x−cos x
sin x+cos x satisfies

h(x) ≥ h(0) + (h(1)− h(0))x = −1 + 2
sin 1

sin 1 + cos 1
x, 0 ≤ x ≤ 1.

Since tanhx ≥ 1− 2e−2x for all x ≥ 0, we obtain

ge((n− 1
4 )π + ε) > 2

sin 1

sin 1 + cos 1
ε− 2e−2(n−

1
4 )π.

Therefore, letting ε = ce−2(n−
1
4 )π , where c = cos 1+sin 1

sin 1 , we deduce that, for all n, the unique
zero of (3.2) in I2n−1 can be confined to

Ĩ2n−1 =
(

(n− 1
4 )π, (n− 1

4 )π + ce−2(n−
1
4 )π
)
,

an interval of exponentially small width. Similarly, it is easy to verify that go is strictly
monotonically increasing, with a simple pole at (n− 1

2 )π and that

go(nπ) < 0 < go((n+ 1
4 )π)

for every n ≥ 1. We thus deduce that go has a single zero in each interval I2n = (nπ, (n +
1
4 )π) and is nonzero elsewhere. Proceeding as before, this zero can be restricted to

Ĩ2n =
(

(n+ 1
4 )π − ce−2(n+ 1

4 )π, (n+ 1
4 )π
)
,

with c as defined above.
To sum up, all parameters α can be confined to intervals which become exceedingly small

for n � 1: we let αn ∈ Ĩn, n = 1, 2, . . ., and denote the corresponding eigenfunction by
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Figure 3.1: The orthogonal functions un, n = 1, 2, 3, 4, for q = 2.

un. Note that solutions of (3.2) and (3.4) alternate and that, consistently with general theory,
αn = O(n).

Numerical computation of the values αn ∈ Ĩn is extremely easy. The exponential ten-
dency to the limiting values (n ± 1

4 )π means that the Newton–Raphson algorithm converges
exceedingly quickly in IEEE arithmetic even for small values of n: just a single iteration pro-
duces an error of 1.49 × 10−20 already for n = 4 (n = 3 misses the IEEE machine epsilon
by a whisker, giving an error of 7.95× 10−16).

We now turn our attention to the corresponding eigenfunctions un. Straightforward, but
lengthy, algebra verifies that the functions un, as given by (3.1) and (3.3), are already nor-
malised. Therefore, we may let σn = 1 in (2.3). Moreover,

un(−1) = (−1)n−1
√

2, un(1) =
√

2, n = 1, 2, . . . .

In Figure 3.1 we display the first four functions un. In conformity with our former observa-
tions, note that u2n−1s are even, while u2ns are odd. It is evident from the figure that each un
has precisely n simple zeros in (−1, 1) and that the zeros interlace. (In fact, each un appears
to have n + 1 zeros. Recall, however, that the functions un need to be complemented by
1 and x, the first two Legendre polynomials, with no zeros and a single zero, respectively.)
Simple arguments, along similar lines to those already given, demonstrate that these obser-
vations are valid for all n when q = 2. Such behaviour is characteristic of Sturm–Liouville
eigenfunctions (Levitan & Sargsjan 1975). Moreover, it is known to hold also for eigen-
functions corresponding to a wide variety of higher order differential operators, including the
polyharmonic operator under current consideration. This result is a by-product of the theory
of n-widths (Pinkus 1968, chpt. 3).

Several other features of polyharmonic eigenfunctions are highlighted by the case q = 2.
First, much like a classical plane wave, the zeros of the nth eigenfunction converge to a
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Figure 3.2: The magnitude of the coefficients f̂n for q = 2 and f(x) = ex. On the left we
display |f̂n| and on the right scaled values n3|f̂n|.

uniform distribution as n→∞. Second, away from the endpoints x = ±1, the eigenfunction
un behaves like a regular oscillator. In fact,

u2n−1(x) = (−1)n cos(n− 1
4 )πx+O

(
e(1−|x|)(n−

1
4 )π
)

u2n(x) = (−1)n sin(n+ 1
4 )πx+O

(
e(1−|x|)(n+

1
4 )π
)
.

We return to this observation in Section 5.

Having described the biharmonic–Neumann eigenvalues and eigenfunctions, we now scru-
tinize the approximation of a smooth function f by the truncated expansion fm, as given by
(2.4). In Figure 3.2 we display the absolute values of the first hundred coefficients f̂n. It
follows from Section 2.1 that f̂n = O

(
n−3

)
, and this is confirmed by the figure on the right,

which depicts n3|f̂n|. Note the very rapid onset of asymptotic behaviour.

Figure 3.3 depicts the pointwise error committed by the approximation fm to the function
f(x) = ex in the interval (− 9

10 ,
9
10 ) for m = 10, 20, 40, 80. Note that the error decreases

roughly by a factor of eight once the size of m is doubled, indicative ofO
(
m−3

)
decay. This

is verified in Figure 3.4, which plots the scaled error m3|f(x0)− fm(x0)| for x0 = 1
8 ,

1
4 .

It is instructive to compare this to known results. Classical Fourier expansions exhibit
O
(
m−1

)
pointwise error, and, as proved in (Olver 2009), this figure isO

(
m−2

)
in the q = 1

case. As we consider further in Section 5, approximation by polyharmonic eigenfunctions
increases this value to O

(
m−q−1

)
.

An important distinction between classical and modified Fourier expansions is that, for
f ∈ H1[−1, 1], the latter converge pointwise in all of [−1, 1], inclusive of the endpoints
(Adcock 2009). However, the convergence at ±1 is just O

(
m−1

)
, one power of m slower

than at interior points. Figure 3.4 demonstrates that polyharmonic expansions exhibit similar
behaviour. Uniform convergence occurs, but at a rate of O (m−q) as opposed to O

(
m−q−1

)
.

This conjecture is proved in Section 5.
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Figure 3.3: The pointwise error in approximating f(x) = ex by fm for m = 10, 20, 40 and
80, respectively.
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Figure 3.4: Scaled pointwise error in approximating f(x) = ex by fm for m = 1, 2, . . . , 100.
Left: m2|f(x0) − fm(x0)| for x0 = +1 (top) and x0 = −1 (bottom). Right: m3|f(x0) −
fm(x0)| for x0 = 1

4 and x0 = 1
8 .

4 Eigenfunction bases for general q ≥ 1

Though the spectral properties of linear differential operators in the unit interval have been
extensively studied, few attempts have been made to perform practical computations. Vital to
such endeavour is a systematic approach for the construction and evaluation of eigenfunctions
and eigenvalues. In this section we address this issue in the polyharmonic–Neumann setting.
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The case q = 1 has been considered in (Iserles & Nørsett 2008) and q = 2 in the previous
section. Presently we turn our attention to general q ≥ 1. In other words, we consider
functions u such that

(−1)qu(2q) = α2qu, −1 ≤ x ≤ 1, u(i)(±1) = 0, i = q, q + 1, . . . , 2q − 1. (4.1)

We restrict our attention to α 6= 0, since we have dealt with the case of the q-fold zero
eigenvalue in Section 2.

We commence by noting that the general solution of (−1)qu(2q) = α2qu is

u(x) =

2q−1∑
k=0

ckeαλkx, (4.2)

where λ0, . . . , λ2q−1 ∈ C are the solutions of λ2q = (−1)q , while c0, . . . , c2q−1 ∈ C are
arbitrary constants. The boundary conditions u(q+i)(±1) = 0, i = 0, . . . , q − 1, will be
incorporated once we have brought (4.2) into a more convenient form. To do so, we consider
two cases: even q ≥ 2 and odd q ≥ 1.

4.1 Even q ≥ 2

For even q the values λk are roots of unity, λk = exp
(
πik
q

)
, k = 0, 1, . . . , 2q − 1, and we

note that λq+k = −λk. Our goal is to write u in terms of real parameters. To do so, we first
observe that

1

2

(
eαλkx + e−αλkx

)
= cos

(
αx sin

πk

q

)
cosh

(
αx cos

πk

q

)
+ i sin

(
αx sin

πk

q

)
sinh

(
αx cos

πk

q

)
= φek(x) + iψek(x),

for k = 0, . . . , q − 1 and that

1

2

(
eαλkx − e−αλkx

)
= cos

(
αx sin

πk

q

)
sinh

(
αx cos

πk

q

)
+ i sin

(
αx sin

πk

q

)
cosh

(
αx cos

πk

q

)
= φok(x) + iψok(x).

Note that φeq−k = φek andψeq−k = −ψek for k = 1, 2, . . . , q2−1 and thatψe0 = ψeq
2

= 0. Similar
relations hold for φok and ψok, so we deduce that u can be written as u(x) = ue(x) + uo(x)
where

ue(x) =

q
2∑

k=0

βek cos

(
αx sin

πk

q

)
cosh

(
αx cos

πk

q

)

+

q
2−1∑
k=1

γek sin

(
αx sin

πk

q

)
sinh

(
αx cos

πk

q

)
, (4.3)
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and

uo(x) =

q
2−1∑
k=0

βok cos

(
αx sin

πk

q

)
sinh

(
αx cos

πk

q

)

+

q
2∑

k=1

γok sin

(
αx sin

πk

q

)
cosh

(
αx cos

πk

q

)
, (4.4)

and βek, γ
e
k, β

o
k, γ

o
k ∈ R are arbitrary constants. Note that we have exactly 2q coefficients,

matching the number of boundary conditions.
We observe that ue is an even function, whilst uo is odd. Note that the boundary conditions

u(q+i)(±1) = 0, i = 0, . . . , q − 1, can be rewritten as

u(q+i)(1)+(−1)q+iu(q+i)(−1) = u(q+i)(1)+(−1)q+i+1u(q+i)(−1) = 0, i = 0, . . . , q−1,

with the former being automatically satisfied by an odd function and the latter satisfied by
an even function. Therefore, polyharmonic–Neumann eigenfunctions are necessarily even or
odd functions given by (4.3) or (4.4) respectively, and we may consider each case separately.

Even u: In this case u is of the form (4.3) with coefficients βk, γk (dropping the e sub- and
superscripts). It is easy to confirm by induction that the derivatives of (4.3) have the explicit
form

α−2su(2s)(x)

=

q
2∑

k=0

[(
βk cos

2πks

q
+ γk sin

2πks

q

)
cos

(
αx sin

πk

q

)
cosh

(
αx cos

πk

q

)
+

(
−βk sin

2πks

q
+ γk cos

2πks

q

)
sin

(
αx sin

πk

q

)
sinh

(
αx cos

πk

q

)]
,

α−2s−1u(2s+1)(x)

=

q
2∑

k=0

[(
βk cos

πk(2s+ 1)

q
+ γk sin

πk(2s+ 1)

q

)
cos

(
αx sin

πk

q

)
sinh

(
αx cos

πk

q

)
+

(
−βk sin

πk(2s+ 1)

q
+ γk cos

πk(2s+ 1)

q

)
sin

(
αx sin

πk

q

)
cosh

(
αx cos

πk

q

)]
.

Letting x = 1 for the ith derivative, i = q, q + 1, . . . , 2q − 1, and equating to zero yields the
identity

Φq

[
β
γ

]
= 0, where β =


β0
β1
...
β q

2

 , γ =


γ1
γ2
...

γ q
2−1

 ,
and the q × q matrix Φq is formed consistently with the identities above. Thus, given that we
seek a nonzero eigenfunction, we obtain the transcendental algebraic equation

det Φq = 0 (4.5)
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for the coefficient α, whence
[
β
γ

]
is the eigenvector corresponding to the zero eigenvalue

of Φq . The first two cases are q = 2, resulting in

Φ2 =

[
coshα − cosα
sinhα sinα

]
⇒ sinα coshα+ cosα sinhα = 0

(the latter is identical to (3.2)) and q = 4, where

Φ4 =


coshα − cos α√

2
cosh α√

2
cosα sin α√

2
sinh α√

2

sinhα −
√

2
2

(
cos α√

2
sinh α√

2
−sin α√

2
cosh α√

2

)
− sinα −

(√
2

2 cos α√
2
sinh α√

2
+sin α√

2
cosh α√

2

)
coshα sin α√

2
sinh α√

2
− cosα − cos α√

2
cosh α√

2

sinhα
√

2
2

(
cos α√

2
sinh α√

2
+sin α√

2
cosh α√

2

)
sinα

√
2

2

(
sin α√

2
cosh α√

2
−cos α√

2
sinh α√

2

)


which yields the equation

sinhα[sinα(cosh
√

2α+ cos
√

2α) +
√
2
2 cosα(sinh

√
2α− sin

√
2α)]

− coshα[cosα(cosh
√

2α− cos
√

2α) +
√
2
2 sinα(sinh

√
2α− sin

√
2α)] = 0.

Odd u: The function u, given by (4.4), has derivatives satisfying

α−2su(2s)(x)

=

q
2∑

k=0

[(
βk cos

2πsk

q
+ γk sin

2πsk

q

)
cos

(
αx sin

πk

q

)
sinh

(
αx cos

πk

q

)
+

(
−βk sin

2πsk

q
+ γk cos

2πsk

q

)
sin

(
αx sin

πk

q

)
cosh

(
αx cos

πk

q

)]
,

α−2s−1u(2s+1)(x)

=

q
2∑

k=0

[(
βk cos

π(2s+ 1)k

q
+ γk sin

π(2s+ 1)k

q

)
cos

(
αx sin

πk

q

)
cosh

(
αx cos

πk

q

)
+

(
−βk sin

π(2s+ 1)k

q
+ γk cos

π(2s+ 1)k

q

)
sin

(
αx sin

πk

q

)
sinh

(
αx cos

πk

q

)]
.

Imposing the boundary conditions leads to

Ψq

[
β
γ

]
= 0, where β =


β0
β1
...

βq/2−1

 , γ =


γ1
γ2
...

γq/2

 ,
and hence to the transcendental equation

det Ψq = 0. (4.6)

In particular,

det Ψ2 = coshα sinα− sinhα cosα,

det Ψ4 = sinhα[sinα(cos
√

2α+ cosh
√

2α)−
√
2
2 cosα(sin

√
2α+ sinh

√
2α)]

− coshα[cosα(cos
√

2α− cosh
√

2α) +
√
2
2 sinα(sin

√
2α+ sinh

√
2α)].
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Note that det Ψ2 = 0 is identical to (3.4).

4.2 Odd q ≥ 1

The treatment of an odd q is identical. We express u in terms of real coefficients βk and γk,
whereby there are two cases, even and odd functions:

u(x) =

q−1
2∑

k=0

βk cos

(
αx sin

π(k + 1
2 )

q

)
cosh

(
αx cos

π(k + 1
2 )

q

)

+

q−3
2∑

k=0

γk sin

(
αx sin

π(k + 1
2 )

q

)
sinh

(
αx cos

π(k + 1
2 )

q

)
,

and

u(x) =

q−3
2∑

k=0

βk cos

(
αx sin

π(k + 1
2 )

q

)
sinh

(
αx cos

π(k + 1
2 )

q

)

+

q−1
2∑

k=0

γk sin

(
αx sin

π(k + 1
2 )

q

)
cosh

(
αx cos

π(k + 1
2 )

q

)
,

respectively. Proceeding as before, we form derivatives and impose Neumann boundary con-
ditions. In each case this results in a transcendental equation, setting a determinant of a matrix
to zero, whereby the coefficients β and γ are components of the eigenvector of the matrix in
question corresponding to a zero eigenvalue.

For q = 1 we obtain det Φ1 = Φ1 = − sinα and det Ψ1 = Ψ1 = cosα: no surprise here.
For q = 3 we have

Φ3 =

 − sin α
2 cosh

√
3α
2 sinα cos α2 sinh

√
3α
2

− 1
2 cos α2 cosh

√
3α
2 −

√
3

2 sin α
2 sinh

√
3α
2 cosα

√
3

2 cos α2 cosh
√

3α
2 −

1
2 sin α

2 sinh
√

3α
2

−
√

3
2 cos α2 sinh

√
3α
2 −

1
2 sin α

2 cosh
√

3α
2 − sinα 1

2 cos α2 sinh
√

3α
2 −

√
3

2 sin α
2 cosh

√
3α
2


det Φ3 =

√
3

4
(cosα cosh

√
3α− 2 + cos2 α),

and

Ψ3 =

 − sin α
2 sinh

√
3α
2 cos α2 cosh

√
3α
2 − cosα

− 1
2 cos α2 sinh

√
3α
2 −

√
3

2 sin α
2 cosh

√
3α
2

√
3

2 cos α2 sinh
√

3α
2 −

1
2 sin α

2 cosh
√

3α
2 sinα

−
√

3
2 cos α2 cosh

√
3α
2 −

1
2 sin α

2 sinh
√

3α
2

1
2 cos α2 cosh

√
3α
2 −

√
3

2 sin α
2 sinh

√
3α
2 cosα

 ,
det Ψ3 = −

√
3

4
sinα(cosh

√
3α− cosα).

Note that cosh
√

3α > cosα for α > 0. Therefore, the values α corresponding to odd
eigenfunctions satisfy the trivial equation sinα = 0.
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4.3 Construction of polyharmonic–Neumann eigenfunctions
In this section, we have proffered a systematic approach for constructing polyharmonic eigen-
functions as linear combinations of products of trigonometric and hyperbolic functions. The
functions depend on a parameter α, which is a solution of a transcendental equation. Once
α is known, the coefficients in the linear combination can be easily computed by solving an
algebraic eigenproblem. Regardless of the value of q ≥ 1, such functions and corresponding
transcendental equations always occur in two cases: even and odd. We remark in passing that
the estimate u(i)(x) = O

(
αi
)

is a direct consequence of this analysis, a result justifying the
statement of Section 2 that f̂n = O

(
n−q−1

)
.

All that remains is to scrutinise the roots of the transcendental equations (4.5) and (4.6)
and their computation. The asymptotic nature of these roots is well-known. A classical theory,
valid for a large class of linear differential operators and boundary conditions, gives

αn =
1

4
(2n+ q − 1)π +O

(
n−1

)
, n� 1 (4.7)

(Naimark 1968). However, there is compelling evidence from the cases q = 1, 2 that this re-
mainder term is exponentially small for polyharmonic–Neumann eigenvalues. In other words,
that

αn =
1

4
(2n+ q − 1)π +O

(
e−cqn

)
, n� 1, (4.8)

for some constant cq independent of n—a greatly improved estimate. To the best of our
knowledge (4.8) does not currently exist in literature. The overbearing reason for this appears
to be that such an estimate is not valid under even minor perturbations of the operator or
boundary conditions. As far as we can ascertain, only a polyharmonic operator with particu-
larly simple boundary conditions exhibits (4.8). We shall present a proof of this conjecture in
a future paper. We mention in passing that (4.8) is not just of interest in and of itself. As we
discuss briefly in Section 5, it is key to establishing accurate estimates for the error committed
by truncated polyharmonic–Neumann expansions.

Aside from theoretical significance, this exponentially small remainder term means that
computation of the values αn can be carried out with extreme ease using Newton–Raphson
iterations. Furthermore, for even moderate n we may use the approximation αn ≈ 1

4 (2n +
q − 1)π instead. This fact was observed for q = 2 in Section 3 and is presently demonstrated
in Table 1 for q = 4. In both cases, no more than 4 Newton–Raphson iterations are required to
calculate αn to machine epsilon, and for n ≥ 20 the approximation 1

4 (2n+ q − 1)π suffices.
To connect this discussion to the narrative of Section 1.2, we remark that by choosing

both the most simple operator and boundary conditions, we have greatly aided the task of
computing the values αn. If we were to choose an operator and boundary conditions for
which only (4.7) holds, then computation would be less simple.

Two further remarks regarding practical issues are worthy of mention. First, as q increases,
so does the computational cost of constructing and evaluating the eigenfunctions un. More-
over, it becomes extremely cumbersome to derive analytic expressions for the coefficients βk,
γk of such eigenfunctions. For q = 4 we resorted to a symbolic algebra package for this task.
Second, since the eigenfunctions involve increasing numbers of hyperbolic functions for large
q, there is increasing susceptibility to round-off error in calculations. As a result, it appears
inadvisable to use values of q much beyond q = 4. However, as we discuss in Section 7, the
true impact of the aforementioned issues is a topic for future investigation.
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n 1 2 3 4 5 10 15 20 25 30
en 2.35 4.63 4.42 5.44 6.97 11.6 16.8 21.5 26.5 31.4
an 4 3 3 2 2 1 1 0 0 0

Table 1: Numerical computation of the values αn for q = 4. The values en =
− log10

(
|αn − 1

4 (2n+ q − 1)π|/αn
)

measure the number of significant digits and an is the
number of Newton–Raphson iterations required to obtain machine epsilon.

5 Convergence of polyharmonic–Neumann expansions
Suppose that fm, as given by (2.4), is the truncated expansion of a function f ∈ L2[−1, 1] in
polyharmonic–Neumann eigenfunctions. In this section we address the convergence and rate
of convergence of fm to f .

We recall that convergence in the L2[−1, 1] norm is guaranteed by standard spectral theory
(see Lemma 1). The first result of this section is that much stronger convergence is also
automatically guaranteed. To establish this, we require the following lemma:

Lemma 3 The bilinear form (1.7) is an inner product on Hq[−1, 1] with associated norm
‖f‖q =

√
(f, f)q equivalent to the standard norm on Hq[−1, 1].

Proof This result follows immediately from the additive inequality

‖f (i)‖ ≤ c
(
‖f‖+ ‖f (q)‖

)
i = 0, . . . , q,

which holds for all f ∈ Hq[−1, 1] with constant c > 0 independent of f (Adams 1975).
2

Theorem 4 The set of polyharmonic–Neumann eigenfunctions is orthogonal and dense in
Hq[−1, 1] with respect to the inner product (·, ·)q . In particular, for f ∈ Hq[−1, 1], fm → f
in the Hq[−1, 1] norm.

Proof As noted in Section 2, the function u(q)n is nothing more than the nth polyharmonic–
Dirichlet eigenfunction. Orthogonality now follows immediately. To demonstrate density it
suffices to show that f (q)m → f (q) in the L2[−1, 1] norm. Assuming that un is normalised, let
u
(q)
n = cnvn where ‖vn‖ = 1. We first show that c2n = α2q

n . Indeed, using (2.1), we have

α2q
n = α2q

n

∫ 1

−1
un(x)un(x)dx =

∫ 1

−1
u(q)n (x)u(q)n (x)dx = c2n

∫ 1

−1
v2n(x)dx = c2n.

Now suppose that f ∈ Hq[−1, 1]. Applying (2.1) to f̂n gives

f̂n =
1

α2q
n

∫ 1

−1
f (q)(x)u(q)n (x)dx =

cn

α2q
n

∫ 1

−1
f (q)(x)v(q)n (x)dx.

Combining this with the previous result, we obtain

f (q)m (x) =

m∑
n=1

f̂nu
(q)
n (x) =

m∑
n=1

[∫ 1

−1
f (q)(x)vn(x)dx

]
vn(x).
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In other words, the function f (q)m is precisely themth truncated expansion of f (q) ∈ L2[−1, 1]
in polyharmonic–Dirichlet eigenfunctions. As in Lemma 1, the result now follows immedi-
ately from standard spectral theory. 2

We mention in passing that the following version of Parseval’s lemma for ‖·‖q is a straight-
forward consequence of this result:

‖f‖2q =

q−1∑
n=0

(n+ 1
2 )|f̂on|2 +

∞∑
n=1

(1 + α2q
n )
|f̂n|2

σn
, ∀f ∈ Hq[−1, 1]. (5.1)

Another immediate outcome of Theorem 4 is uniform convergence of the expansion fm and
its first q − 1 derivatives:

Corollary 1 Suppose that f ∈ Hq[−1, 1]. Then fm → f uniformly in [−1, 1]. Moreover
f
(i)
m → f (i) uniformly for i = 0, . . . , q − 1.

Proof In view of the continuous imbedding Hq[−1, 1] ↪→ Cq−1[−1, 1], we have f − fm ∈
Cq−1[−1, 1]. Furthermore, there is a constant c independent of f and m such that ‖f (i) −
f
(i)
m ‖∞ ≤ c‖f − fm‖q , i = 0, . . . , q − 1. The result now follows from Theorem 4. 2

Standard means of establishing convergence of Birkhoff expansions involve writing the
expansion as the convolution of the function f and a meromorphic kernel (Naimark 1968).
Similar ideas were pursued for the case q = 1 in (Iserles & Nørsett 2008). The (arguably
simpler) technique presented above was used in (Adcock 2010b) for q = 1.

With convergence in hand, we now turn our attention to the rate of convergence:

Corollary 2 Suppose that f ∈ Hq+1[−1, 1]. Then f(x) − fm(x) = O (m−q) uniformly in
x ∈ [−1, 1]. Moreover f (i)(x)− f (i)m (x) = O

(
mi−q) for i = 0, . . . , q − 1.

Proof For such a function, applications of (2.6) with l = 1 and the estimates αn = O (n),
‖u(i)n ‖∞ = O

(
αin
)

yield the bound

|f̂n| ≤ cn−q−1‖f‖q+1. (5.2)

Since uniform convergence is guaranteed by Corollary 1, we may write∣∣∣f (i)(x)− f (i)m (x)
∣∣∣ ≤ ∑

n>m

|f̂m|‖u(i)n ‖∞ ≤ c‖f‖q+1

∑
n>m

ni−q−1 ≤ c‖f‖q+1m
i−q,

as required. 2

As mentioned in previous sections, the pointwise convergence rate away from the end-
points x = ±1 is one power of m faster. A full proof of this result is beyond the scope of this
paper. The proof is contingent on the three following observations. First, the values αn satisfy
the asymptotic estimate (4.8). Second, the eigenfunctions un, appropriately normalised, are
described by

un(x) = cos
[
1
4 (2n+ q − 1)πx+ 1

2 (n+ q − 1)π
]

+O
(

e−cq(1−|x|)n
)
, (5.3)
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Figure 5.1: Error in approximating f(x) = ex by fm(x) for q = 1 (squares), q = 2 (circles)
and q = 3 (crosses). Left: scaled error mq‖f − fm‖∞ for m = 1, 2, . . . , 100. Right: scaled
error mq+ 1

2 ‖f − fm‖.

and, finally, un(1) = c′q(−1)n +O (e−cqn) for constants cq , c′q independent of n. With these
observations to hand, the result is established along the same lines as the proof given in (Olver
2009) for q = 1. Not only can the estimate f(x) − fm(x) = O

(
m−q−1

)
be demonstrated,

but a full asymptotic expansion of the error at any point x ∈ (−1, 1) can also be derived. A
future paper will give proofs of these conjectures and establish such estimates. Note that (5.3)
indicates that polyharmonic eigenfunctions are well approximated by trigonometric functions
inside the domain. This is a particular example of a general phenomenon for Birkhoff ex-
pansions known as equiconvergence (Minkin 1999). As with the values αn, however, (5.3)
improves upon known results.

Estimates for the rate of convergence in various other norms can also be provided:

Lemma 5 Suppose that f ∈ Hq+1[−1, 1]. Then, for i = 0, . . . , q, ‖f−fm‖i = O(mi−q− 1
2 ),

where ‖ · ‖i is the standard Hi[−1, 1] norm.
Proof Consider first the case i = 0. Due to the bound (5.2) and the identity (2.5), we have

‖f − fm‖2 =
∑
n>m

|f̂n|2 ≤ c‖f‖2q
∑
n>m

n−2(q+1) ≤ c‖f‖2qm−2q−1,

as required. Identical arguments, using (5.1) as opposed to (2.5), also demonstrate the corre-
sponding result for i = q. When i = 1, . . . , q − 1 we use the interpolation inequality

‖g‖i ≤ ci,q‖g‖1−
i
q ‖g‖

i
q
q , ∀g ∈ Hq[−1, 1],

(Adams 1975). Setting g = f − fm gives the full result. 2

In Figure 5.1 we verify the results of Corollary 2 and Lemma 5. Figure 5.2 demonstrates
the accuracy gained by increasing q. When q = 3 andm = 40, for example, the uniform error
is approximately 10−4, whereas when q = 1 this value is only 10−1.

6 Rapid computation of expansion coefficients
A major reason for the extraordinary success of classical Fourier expansions can be attributed
to the very fast and accurate means for the evaluation of their coefficients using the Fast
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Figure 5.2: Log error log10 |f(x)−fm(x)| against x for q = 1, 2, 3 (in descending order) and
f(x) = x2e2x with m = 20 (left) and m = 40 (right).

Fourier Transform. However, as has been described in (Iserles & Nørsett 2008), compelling
alternative means exist for the calculation of modified Fourier expansion coefficients to high
precision. Such methods are based on asymptotic expansions and related numerical quadra-
ture schemes for highly oscillatory integrals.

In the context of modified Fourier (q = 1) expansions, so-called Filon-type methods have
been introduced in (Iserles & Nørsett 2008), with generalisations to d-variate cubes and the
equilateral triangle pursued in (Iserles & Nørsett 2009) and (Huybrechs et al. 2010b) respec-
tively. The outcome is a numerical approach that requires very modest data—a relatively
small number of function and derivative evaluations of f—and just O(m) flops to evaluate
any m expansion coefficients. Unlike the FFT, such methods are adaptive: increasing m does
not require recalculation of any existing values. In this section we demonstrate that all this can
be generalised to polyharmonic eigenfunctions, regardless of q ≥ 1. Our point of departure is
the asymptotic expansion (2.8).

6.1 The asymptotic method
The first step in our design of an effective algorithm for the calculation of

f̂n =

∫ 1

−1
f(x)un(x)dx, n ∈ N,

consists of truncating (2.8). This results in the asymptotic method

Q̂[ρs,p,ρs,p]
n [f ] (6.1)

=

s−1∑
r=0

(−1)(r+1)q

α
2(r+1)q
n

2q−1∑
k=q

(−1)k[f (2qr+k)(1)u(2q−k−1)n (1)− f (2qr+k)(−1)u(2q−k−1)n (−1)]

+
(−1)(s+1)q

α
2(s+1)q
n

q+p−1∑
k=q

(−1)k[f (2qs+k)(1)u(2q−k−1)n (1)− f (2qs+k)(−1)u(2q−k−1)n (−1)],

where s ≥ 0, p ∈ {0, . . . , q − 1} (p 6= 0 when s = 0) and

ρs,p =

{
2qs− 1, p = 0,
(2s+ 1)q + p− 1, p = 1, . . . , q − 1,
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is the maximal order of derivative appearing in Q̂[ρs,p,ρs,p]
n [f ].

Theorem 6 It is true for every s ≥ 0 and p = 0, . . . , q − 1 that

Q̂[ρs,p,ρs,p]
n ∼ f̂n +O

(
n−(2s+1)q−p−1

)
, n� 1. (6.2)

Proof This result follows at once by direct comparison of (6.1) with the asymptotic expan-
sion (2.8), bearing in mind that αn = O(n) and ‖u(i)n ‖∞ = O

(
αin
)
. 2

Once an approximation to f̂n is O
(
n−N

)
for n � 1, we say that it is of an asymptotic

order N . Thus, the asymptotic method (6.1) is of asymptotic order (2s + 1)q + p + 1. Note
that asymptotic order refers to absolute error. Since f̂n = O

(
n−q−1

)
, the relative asymptotic

order of (6.1) is 2sq + p.
It is convenient to introduce the following formalism to express derivative information.

We thus let

Nm = {j ∈ N : j = 2qr + k ≤ m where r ≥ 0, q ≤ k ≤ 2q − 1}

andDm(x) = {f (j)(x) : j ∈Nm}. In view of this, we say that (6.1) employs the data set

D[ρs,p,ρs,p] = D̃q ∪Dρs,p(−1) ∪Dρs,p(1),

where D̃q = {f (i)(0) : i = 0, . . . , q}. It will be clear to the observant reader that D̃q is not,
actually, used at all in (6.1). The reason for its inclusion will be apparent in the sequel.

To illustrate (6.1), we consider q = 2. We have already noted in Section 3 that

u2n−1(±1) =
√

2, u2n(±1) = ±
√

2.

Moreover, differentiating un and using (3.2) and (3.4), it is easy to verify that

u′2n−1(±1) = ∓
√

2α2n−1 tanα2n−1, u′2n(±1) =

√
2α2n

tanα2n

(note that | tanαn| ≈ 1). Therefore, the first few asymptotic methods for q = 2 are

Q̂
[2,2]
2n−1[f ] =−

√
2 tanα2n−1

α3
2n−1

[f ′′(1) + f ′′(−1)],

Q̂
[2,2]
2n [f ] =

√
2 cotα2n

α3
2n

[f ′′(1)− f ′′(−1)],

Q̂
[3,3]
2n−1[f ] =Q̂

[2,2]
2n−1[f ]−

√
2

α4
2n−1

[f ′′′(1)− f ′′′(−1)],

Q̂
[3,3]
2n [f ] =Q̂

[2,2]
2n [f ]−

√
2

α4
2n

[f ′′′(1) + f ′′′(−1)],

Q̂
[6,6]
2n−1[f ] =Q̂

[3,3]
2n−1[f ]−

√
2 tanα2n−1

α7
2n−1

[f (6)(1) + f (6)(−1)],

Q̂
[6,6]
2n [f ] =Q̂

[3,3]
2n [f ] +

√
2 cotα2n

α7
2n

[f (6)(1)− f (6)(−1)],
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Figure 6.1: Scaled errors n4(Q̂
[2,2]
n − f̂n), n7(Q̂

[3,3]
n − f̂n) and n8(Q̂

[6,6]
n − f̂n) (left to right)

for f(x) = ex and q = 2.

Q̂[2,2]
n [f ] Q̂[3,3]

n [f ] Q̂[6,6]
n [f ]

n absolute relative absolute relative absolute relative
1 9.90−02 4.40−01 7.20−03 3.20−02 3.17−03 1.41−02
2 1.82−02 4.50−01 1.54−04 4.21−03 7.66−05 2.08−03
3 3.61−03 1.60−01 2.48−05 1.09−03 3.96−06 1.75−04
4 1.75−03 2.28−01 3.07−06 4.01−04 6.99−07 9.15−05

10 5.90−05 8.65−02 9.21−09 1.35−05 7.97−10 1.69−06
20 4.06−06 4.25−02 8.88−11 9.30−07 3.78−12 3.95−08
50 1.10−07 1.68−02 1.65−13 2.53−08 2.78−15 4.25−10

100 7.02−09 8.39−03 1.35−15 1.60−09 1.13−17 1.35−11

Table 2: Absolute and relative errors Q̂[i,i]
n [f ]− f̂n for f(x) = ex, q = 2 and i = 2, 3, 6.

and so on. An important observation is that, once D[i,i] has been determined, any m coeffi-
cients Q̂[i,i]

n [f ], n = 1, . . . ,m, can be computed in O(m) operations.

In Figure 6.1 we display the scaled errors nN (Q̂[i,i]
n [f ]− f̂n), where N is the asymptotic

order, for the three choices i = 2, 3, 6, q = 2 and f(x) = ex. It is clear that computations
conform with theory. Absolute and relative (non-scaled) errors for selected values of n are
presented in Table 2. Evidently, the error for small n is unacceptably large, but this is hardly
surprising since the asymptotic method (6.1) is, as its name implies, effective only for large
ns, when uns become highly oscillatory and asymptotic behaviour sets in. Moreover, Q̂[2,2]

n

clearly delivers poor relative error even for large n. This is not surprising either, since its
relative asymptotic order is just one.

6.2 Filon-type methods

The main idea of Filon-type methods is to replace f by an interpolating polynomial ψ inside
the integral. Thus, let −1 = c1 < c2 < · · · < cν = 1 be given nodes and m1,m2, . . . ,mν ∈
N their multiplicities. We interpolate (in a Hermite sense) ψ(i)(ck) = f (i)(ck) for i =
0, . . . ,mk − 1, k = 1, . . . , ν and let

Q̂n[f ] =

∫ 1

−1
ψ(x)un(x)dx, n = 1, 2, . . . (6.3)
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(Iserles & Nørsett 2005). Note that (6.3) can be always integrated exactly, because of the form
(4.2) of un. The asymptotic order of (6.3) is determined by min{m1,mν}: in other words, it
is influenced solely by function values and derivatives at the endpoints, consistently with the
asymptotic expansion. However, further information at the intermediate points c2, . . . , cν−1
typically decreases significantly the magnitude of the error (Iserles & Nørsett 2005).

Once we contemplate the information (in terms of function and derivative evaluations)
required for the formation of ψ, we are struck by an important observation. The asymptotic
expansion (2.8) requires only some derivatives at the endpoints: specifically, we require only
f (2qr+k)(±1) for r = 0, 1, . . . and k = q, . . . , 2q − 1. In particular, f (i)(±1) is not required
for i = 0, . . . , q − 1. It is clearly wasteful to evaluate and interpolate unnecessary values, not
just in evaluating derivatives that have no direct bearing on the solution but also in increasing
unduly the degree of ψ. Following the practice of (Iserles & Nørsett 2008), we use only
‘significant’ derivatives f (2qr+k)(ck) also at the intermediate points k = 2, . . . , ν − 1.

This practice leads to significant savings but is potentially dangerous. The Birkhoff–
Hermite interpolation problem, whereby a function is interpolated on a basis of lacunary
derivative information (i.e., with some derivatives ‘missing’), need not have a solution or the
solution need not be unique (Lorenz, Jetter & Riemenschneider 1983). We cannot take it for
granted that ψ exists for any configuration of cks and derivative information therein. Although
this will not be a problem in particular examples explicitly worked out in the current paper, it
is only fair to warn the reader.

Another potential problem is that this method requires exact derivative values. However,
as described in (Iserles & Nørsett 2008) for modified Fourier expansions, these can be re-
placed by finite differences provided the spacing is sufficiently fine. Since numerical results
with or without derivatives are practically indistinguishable, we shall continue to use exact
derivatives in this paper.

Returning to the problem at hand, we note that not every multiplicity makes sense in the
present context, since not every derivative features in asymptotic expansion. To this end, we
say that a natural number J is good if there exist s ≥ 0 and p ∈ {0, . . . , q − 1} such that
J = ρs,p and assume in the sequel that all multiplicities are good numbers.

We thus seek a polynomial ψ such that

ψ(j)(ck) = f (j)(ck) j ∈Nmk , k = 1, . . . , ν (6.4)

and set

Q̂m
n [f ] =

∫ 1

−1
ψ(x)un(x)dx, n ∈ N. (6.5)

Hence, the data set of the Filon-type method (6.5) is

Dm = D̃q ∪
ν⋃
k=1

Dmk(ck).

Recalling that the least index in Nm is the qth one, it is convenient to replace (6.4) by the
interpolation conditions

ϕ(j−q)(ck) = f (j)(ck) j ∈Nmk , k = 1, . . . , ν.
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In other words, ϕ = ψ(q) and trivial calculation yields

ψ(x) =

q−1∑
l=0

1

l!
f (l)(0)xl +

1

(q − 1)!

∫ x

0

(x− t)q−1ϕ(t)dt. (6.6)

We substitute (6.6) into (6.5) and note that, by Lemma 1, the uns are orthogonal to all poly-
nomials of degree ≤ q − 1. Therefore

Q̂m
n [f ] =

1

(q − 1)!

∫ 1

−1

∫ x

0

(x− t)q−1ϕ(t)dtun(x)dx, n ∈ N.

Theorem 7 Let m1 = mν = ρs,p (recall that all multiplicities are good numbers). The
asymptotic order of Q̂m

n is (2s+ 1)q + p+ 1.

Proof We substitute ψ − f into the asymptotic expansion and use Theorem 6 for the order
of the asymptotic method. 2

Proposition 8 It is true that

Q̂m
n [f ] =

1

α2q
n

∫ 1

−1
ϕ(x)u(q)n (x)dx, n ∈ N. (6.7)

Proof It follows from (2.1) that

Q̂m
n [f ] =

1

α2q
n (q − 1)!

∫ 1

−1

dq

dxq

[∫ x

0

(x− t)q−1ϕ(t)dt

]
u(q)n (x)dx.

Since
d

dx

∫ x

0

(x− t)jϕ(t)dt = j

∫ x

0

(x− t)j−1ϕ(t)dt, j ≥ 1,

we have dq

dxq

∫ x
0

(x− t)q−1ϕ(t)dt = (q − 1)!ϕ(x), which gives the result. 2

This proposition gives a convenient approach to form the approximation Q̂m
n [f ]. Writing

ϕ as a linear combination of derivative values

ϕ(x) =

ν∑
k=1

∑
j∈Nmk (ck)

ϕk,j(x)f (j)(ck),

where the ϕk,js are cardinal polynomials of Birkhoff–Hermite interpolation, it follows that

Q̂m
n [f ] =

ν∑
k=1

∑
j∈Nmk

bk,j(n)f (j)(ck), (6.8)

where

bk,j(n) =
1

α2q
n

∫ 1

−1
ϕk,j(x)u(q)n (x)dx, j ∈Nmk , k = 1, . . . , ν.
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Once the polynomials ϕk,j have been constructed, determination of Q̂m
n [f ] requires only

evaluation of the integrals bk,j(n). This is best achieved by using the asymptotic expansion
(2.8): since ϕk,j is a polynomial, this expansion terminates after a finite number of terms and
equals the value bk,j(n).

As an example, we let q = 2, ν = 4, c = [−1,−c, c, 1] and m = [2, 2, 2, 2], where
c ∈ (0, 1). Since for q = 2 we haveN2 = {2}, our data set is

{f(0), f ′(0), f ′′(0), f ′′(−1), f ′′(−c), f ′′(c), f ′′(1)}. (6.9)

Simple calculation confirms that the cardinal polynomials are

ϕ1,2(x) = − 1
2

(1− x)(c2 − x2)

1− c2
, ϕ2,2(x) = 1

2

(1− x2)(c− x)

c(1− c2)
,

ϕ3,2(x) = 1
2

(1− x2)(c+ x)

c(1− c2)
, ϕ4,2(x) = − 1

2

(1 + x)(c2 − x2)

1− c2
,

and thus

b1,2(2n− 1) = b4,2(2n− 1) = −
√

2 tanα2n−1

α3
2n−1

− 2
√

2

1− c2
1

α4
2n−1

,

b2,2(2n− 1) = b3,2(2n− 1) =
2
√

2

1− c2
1

α4
2n−1

;

b1,2(2n) = −b4,2(2n) = −
√

2 cotα2n

α3
2n

+

√
2(3− c2)

1− c2
1

α4
2n

,

b2,2(2n) = −b3,2(2n) = − 2
√

2

c(1− c2)

1

α4
2n

.

Comparing with Q̂[2,2]
n , we thus deduce that

Q̂[2,2,2,2]
2n−1 [f ] = Q̂[2,2]

2n−1[f ]− 1

α4
2n−1

2
√

2

1− c2
[f ′′(1)− f ′′(c)− f ′′(−c) + f ′′(−1)], (6.10)

Q̂[2,2,2,2]
2n [f ] = Q̂[2,2]

2n [f ]− 1

α4
2n

2
√

2

c(1− c2)
{ c(3−c

2)
2 [f ′′(1)− f ′′(−1)]− [f ′′(c)− f ′′(−c)]}.

As in the case of the asymptotic method, anym values Q̂[2,2,2,2]
n [f ] can be computed inO(m)

operations. Indeed, it is evident from (6.8) that this is the case for all Q̂m
n [f ].

6.3 Another take on Filon-type methods
The method (6.10), as well as numerous examples of such methods for q = 1 (Iserles &
Nørsett 2008, Iserles & Nørsett 2009), can be written in the form

Q̂m
2n−1[f ] = Q̂[ρp,s,ρp,s]

2n−1 [f ] +
G1(n)

αN2n−1

ν∑
k=1

∑
j∈Nmk

αk,jf
(j)(ck), (6.11)

Q̂m
2n[f ] = Q̂[ρp,s,ρp,s]

2n [f ] +
G2(n)

αN2n

ν∑
k=1

∑
j∈Nmk

βk,jf
(j)(ck),
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where m1 = mν = ρp,m and N = (2s + 1)q + p + 1, while G1 and G2 are given functions
(G1, G2 ≡ 1 in (6.10)) and αk,j , βk,j are constants. This can be reinterpreted in the following
manner: we are using derivative information to approximate the N th term in the asymptotic
expansion. This procedure minimises the magnitude of the error by replacing the leading term
in the truncated asymptotic expansion, a linear combination of derivatives, with an error in-
curred while approximating these derivatives. To connect this interpretation with the example
(6.10), we can easily verify that

2

1− c2
[h(1)− h(c)− h(−c) + h(−1)] ≈ h′(1)− h′(−1),

1

c(1− c2)
{c(3− c2)[h(1)− h(−1)]− 2[h(c)− h(−c)]} ≈ h′(1) + h′(−1),

is correct for every h ∈ P3 and h ∈ P4, respectively. (It is impossible to make it correct for
higher order polynomials, since this would have required c = 1.)

The form (6.11) has two crucial advantages. Firstly, it provides a transparent means to
compute any m approximated expansion coefficients in O(m) operations. Secondly, it is
considerably easier to derive than through an interpolation polynomial and its integration.
Note that we do not claim that every Filon-type method Q̂m

n can be expressed in the form
(6.11). All the cases we have considered fit this pattern and we believe that this is true in
general, but as things stand we cannot confirm this by a proof.

To illustrate how to form methods (6.11) directly and with ease, without constructing and
integrating interpolating polynomials, we consider m = [3, 3, 3, 3], hence asymptotic order
N = 7, ρs,p = 3 and

G1(n) = −
√

2 tanα2n−1, G2(n) =
√

2 cotα2n.

Letting h = f ′′, the task in hand is to approximate h(iv)(1) + h(iv)(−1) (for odd n) and
h(iv)(1)− h(iv)(−1) (for even n) by a linear combination of

h(−1), h′(−1), h(−c), h′(−c), h(c), h′(c), h(1), h′(1).

It is easy to find optimal linear combinations of this kind: specifically

h(iv)(1) + h(iv)(−1) =− 72(9− c2)

(1− c2)3
[h(1)− h(c)− h(−c) + h(−1)]

+
24(7− c2)

(1− c2)2
[h′(1)− h′(−1)] +

12(13− c2)

c(1− c2)2
[h′(c)− h′(−c)]

is correct for every h ∈ P7, while

h(iv)(1)− h(iv)(−1) =− 120(14− 7c2 + c4)

(1− c2)3
[h(1)− h(−1)]

− 60(5− 28c2 + 7c4)

c3(1− c2)3
[h(c)− h(−c)]

+
120(3− c2)

(1− c2)2
[h′(1) + h′(−1)] +

60(5− c2)

c2(1− c2)2
[h′(c) + h′(−c)]
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for all h ∈ P8. Therefore

Q̂[3,3,3,3]
2n−1 [f ] =Q̂[3,3]

2n−1[f ]

−
√

2 tanα2n−1

α7
2n−1

{
−72(9− c2)

(1− c2)3
[f ′′(1)− f ′′(c)− f ′′(−c) + f ′′(−1)]

+
24(7− c2)

(1− c2)2
[f ′′′(1)− f ′′′(−1)] +

12(13− c2)

c(1− c2)2
[f ′′′(c)− f ′′′(−c)]

}
,

Q̂[3,3,3,3]
2n [f ] =Q̂[3,3]

2n [f ]−
√

2 cotα2n

α7
2n

{
−120(14− 7c2 + c4)

(1− c2)3
[f ′′(1)− f ′′(−1)]

− 60(5− 28c2 + 7c4)

c3(1− c2)3
[f ′′(c)− f ′′(−c)] +

120(3− c2)

(1− c2)2
[f ′′′(1) + f ′′′(−1)]

+
60(5− c2)

c2(1− c2)2
[f ′′′(c) + f ′′′(−c)]

}
.

6.4 Exotic quadrature

Our formulæ for Q̂[2,2,2,2]
n and Q̂[3,3,3,3]

n feature a free parameter c ∈ (0, 1). The reason is
twofold. Firstly, this leads to less cluttered and more transparent notation. Secondly, we have
not yet formulated a good criterion for the choice of the node c.

Once we attempt to construct the expansion (2.3), we need to compute not just f̂n for n ≥
1 but also the nonoscillatory integrals f̂00 , . . . , f̂

o
q−1. In principle, we could have computed

them with, say, Gaussian quadrature: given that only q coefficients need be computed, the
O(m) operation count remains valid. However, since we desire optimal strategies with the
least computational cost, an integration scheme for these coefficients should reuse derivatives
that have been already used in forming our approximations to the f̂ns. Specifically, we let
each f̂on, n = 0, . . . , q − 1, be approximated by a linear combination of values from the data
setDm:∫ 1

−1
f(x)Pn(x)dx ≈ P̂m

n [f ] =

ν∑
k=1

∑
j∈Nmk

δk,j(n)f (j)(ck), n = 0, . . . , q − 1. (6.12)

We call (6.12) an exotic quadrature to underline its difference from more standard computa-
tional methods for nonoscillatory integrals. Note that a precursor of this idea has been named
in (Iserles & Nørsett 2008) as “underlying classical quadrature”, surely more of a mouthful
than “exotic”. Note further that (6.12) is a special case of Birkhoff quadrature (Bojanov &
Nikolov 1990).

Returning to the first example of the previous section, Q̂[2,2,2,2]
n , we seek an exotic quadra-

ture using the data set

D[2,2,2,2] = {f(0), f ′(0), f ′′(−1), f ′′(−c), f ′′(0), f ′′(c), f ′′(1)}.

Simple algebra confirms that the quadrature

P̂ [2,2,2,2]
0 [f ] =2f(0) + 1

420

2− 7c2

1− c2
[f ′′(1) + f ′′(−1)] + 1

84

1

c2(1− c2)
[f ′′(c) + f ′′(−c)]

− 1
210

5− 63c2

c2
f ′′(0)
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is of order 7 (i.e., correct for all f ∈ P7) for generic c and of order 9 for c =
√

210/30.
Likewise,

P̂ [2,2,2,2]
1 [f ] = 2

3f
′(0) + 1

420

3− 14c2

1− c2
[f ′′(1)− f ′′(−1)] + 11

420

1

c(1− c2)
[f ′′(c)− f ′′(−c)]

is in general of order 6, except that c =
√

187/33 results in order 8. Since we wish to
maximise the least order of P̂ [2,2,2,2]

k [f ], k = 0, 1, we thus choose c =
√

187/33 in both
Filon-type and exotic quadrature form = [2, 2, 2, 2].

Longer algebra produces exotic quadrature coefficients corresponding to the second ex-
ample Q̂[3,3,3,3]

n ,

P̂ [3,3,3,3]
0 [f ] =2f(0) + 1

13860

68− 404c2 + 935c4 − 396c6

(1− c2)3
[f ′′(1) + f ′′(−1)]

− 1
13860

25− 328c2 + 506c4

c4(1− c2)3
[f ′′(c) + f ′′(−c)]

+ 1
6930

25− 253c2 + 1914c4

c4
f ′′(0)

− 1
55440

27− 154c2 + 330c4

(1− c2)2
[f ′′′(1)− f ′′′(−1)]

+ 1
55440

50− 253c2

c3(1− c2)2
[f ′′′(c)− f ′′′(−c)],

P̂ [3,3,3,3]
1 [f ] = 2

3f
′(0) + 1

166320

1015− 6671c2 + 19558c4 − 7722c6

(1− c2)3
[f ′′(1)− f ′′(−1)]

− 1
166320

259− 6707c2 + 12628c4

c3(1− c2)3
[f ′′(c)− f ′′(−c)]

− 1
166320

115− 748c2 + 2178c4

(1− c2)2
[f ′′′(1) + f ′′′(−1)]

+ 1
166320

259− 1804c2

c2(1− c2)2
[f ′′′(c)− f ′′′(−c)],

of orders 11 and 10, respectively. No real value of c results in a higher order exotic quadra-
ture. Other things being equal, we opt for algebraically simple coefficients and let c = 1

2 in
Q̂[3,3,3,3]
n and P̂ [3,3,3,3]

n .
Figure 6.2 depicts scaled errors produced by the Filon-type methods Q̂[i,i,i,i]

n [f ] for i =
2, 3, 6 (note that the case i = 6 can be obtained in an identical manner to the i = 2, 3
cases explicitly derived earlier). Upon comparison with Figure 6.1, it follows immediately
that, despite the asymptotic order being the same, the use of additional data inside (−1, 1)
decreases the error by a significant factor. The same conclusion emerges from Table 3. In
particular, the improvement for small ns is tangible, although the errors in this regime are still
excessive for many uses. Of course, they can be decreased further by using larger ν.

Table 3 also presents the error committed by exotic quadrature when approximating the
expansion coefficients f̂o0 and f̂o1 . Clearly, the error is very small indeed! For this reason,
and in view of the shortfall of Filon-type methods for small values of n, it makes sense to use
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Figure 6.2: Scaled errors n4(Q̂
[2,2,2,2]
n − f̂n), n7(Q̂

[3,3,3,3]
n − f̂n) and n8(Q̂

[6,6,6,6]
n − f̂n) for

f(x) = ex and q = 2.

P̂ [2,2,2,2]
n [f ] P̂ [3,3,3,3]

n [f ] P̂ [6,6,6,6]
n [f ]

n absolute relative absolute relative absolute relative
0 2.11−06 8.96−07 1.21−10 5.15−11 2.60−15 1.11−15
1 2.48−07 3.37−07 3.49−09 4.74−09 9.60−15 1.31−14

Q̂[2,2,2,2]
n [f ] Q̂[3,3,3,3]

n [f ] Q̂[6,6,6,6]
n [f ]

n absolute relative absolute relative absolute relative
1 4.90−04 2.18−03 3.02−03 1.34−02 2.30−04 1.02−03
2 1.84−05 5.00−04 7.59−05 2.07−03 6.50−07 1.77−05
3 2.05−04 9.04−03 3.55−06 1.57−04 2.71−08 1.20−06
4 1.34−05 1.75−03 6.88−07 8.98−05 1.23−09 1.60−07

10 5.46−07 8.01−04 7.68−10 1.13−06 1.24−13 1.81−10
20 3.81−08 3.99−04 3.51−12 3.68−08 7.84−17 8.22−13
50 1.04−09 1.59−04 2.30−15 3.52−10 1.12−21 1.70−16

100 6.62−11 7.90−05 7.43−18 8.87−12 1.03−23 1.23−17

Table 3: Absolute and relative errors P̂ [i,i,i,i]
n [f ] − f̂on and Q̂[i,i,i,i]

n [f ] − f̂n for f(x) = ex,
q = 2 and i = 2, 3, 6.

exotic quadrature for not just the nonoscillatory coefficients, but also the first few integrals
f̂n. As demonstrated in Table 4, this approach works well for those values of n for which the
Filon-type method does not deliver sufficient accuracy.

P̂ [2,2,2,2]
n [f ] P̂ [3,3,3,3]

n [f ] P̂ [6,6,6,6]
n [f ]

n absolute relative absolute relative absolute relative
1 2.73−06 1.21−05 9.62−11 4.28−10 2.55−15 1.13−14
2 1.83−05 5.00−04 1.16−09 3.15−08 1.45−14 3.95−13
3 1.98−06 8.75−05 3.08−11 1.36−09 1.12−15 4.96−14
4 1.34−05 1.74−03 1.24−10 1.61−08 8.98−15 1.17−12

Table 4: Absolute and relative errors P̂ [i,i,i,i]
n [f ]− f̂nfor f(x) = ex, q = 2 and i = 2, 3, 6.
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7 Conclusions and challenges

This is the moment to take stock and briefly review what we have done in this paper and what
remains to be done.

Our point of departure being modified Fourier expansions, with coefficients that decay like
O
(
n−2

)
(Iserles & Nørsett 2008), we have generalised the framework to certain Birkhoff ex-

pansions. Practical considerations, combined with theoretical justification, mean that we have
considered expansions in eigenfunctions of polyharmonic operators with Neumann boundary
conditions. These bases exhibit faster rate of decay of expansion coefficients and faster con-
vergence of the truncated expansion. In particular, we have analysed in greater detail bases
with O

(
n−3

)
decay and O

(
m−2

)
uniform convergence rate.

Two central practical issues have been successfully addressed. First, we have presented
a systematic means to construct eigenfunctions explicitly. Such functions always separate
into two sets: they are either even or odd. They also depend on a parameter which can
be calculated extremely easily by numerically solving a scalar nonlinear algebraic equation.
Second, we have introduced a combination of classical and highly oscillatory quadratures to
evaluate expansion coefficients numerically. In doing so, we have demonstrated the broad
applicability of such quadratures to a wide variety of expansions, in contrast to the FFT.

The highly oscillatory quadratures employed, Filon-type methods, have been reinterpreted
as a combination of a truncated asymptotic expansion with a scaled approximation to deriva-
tives. This interpretation allows for a relatively painless practical derivation of such methods
in a manner which is of the right form to allow their implementation in linear time. However,
Filon-type methods cannot be utilised for non-oscillatory coefficients and do not produce suf-
ficient accuracy for small n. In this setting, we have successfully reused derivative information
in “exotic quadrature” algorithms to obtain high accuracy.

This paper introduces a new mathematical approach and new numerical techniques. The
treatment of neither mathematical nor computational aspects is comprehensive and many sub-
stantive problems remain. Indeed, bearing in mind the monumental intellectual effort that
went into the last two centuries of harmonic analysis, it would have been surprising had we
been able to answer similar questions in a considerably more demanding and complicated
framework in a single paper! As we now indicate, much further investigation is required to
produce efficient methods which are competitive against more mature algorithms. In view of
this, we wish to single out the following problems and challenges for future work:

1. Filon-type quadrature. The design of Filon-type quadrature in the form (6.11), exploit-
ing its interpretation as “asymptotic method plus scaled approximation to derivatives”
is fairly straightforward and can be performed, at least in principle, for any reasonable
number of nodes c1, c2, . . . , cν . This can deal with lower accuracy at low frequencies,
apparent in Tables 2 and 3. It is of interest, however, to obtain good, reliable and afford-
able error bounds and error estimates. In (Iserles & Nørsett 2004) we have considered
practical means of estimating the error in Filon-type quadrature. However, the tech-
niques therein are effective mainly for large frequencies, while our interest is also in
low frequencies, before the onset of asymptotic behaviour. We thus need an alternative
approach. An intriguing idea is to use the Peano Kernel Theorem (Powell 1981): this
is fairly standard for derivative approximations, but might present more of a challenge
for the asymptotic expansion part.
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A pertinent issue is the stability of Filon-type methods (6.11) for large ν. Approxima-
tion to derivatives is known as an ill-conditioned numerical problem—does this impact
on the conditioning of Filon-type methods? Does it lead to large coefficients and to loss
of accuracy? Clearly, we need to understand such issues better and obtain a wealth of
practical numerical experience with many νs and many functions f .

2. Exotic quadrature. Classical interpolatory quadrature is exceedingly well understood
(Davis & Rabinowitz 1984). In particular, optimal choice of quadrature nodes is easily
explained in terms of orthogonal polynomials. No such theory exists for exotic quadra-
ture except for fairly general statements on Birkhoff quadrature, which help little to
illuminate the issue at hand. In particular, we do not even know what is the attainable
order. In one case, m = [2, 2, 2, 2], we were able to optimize order by an appropriate
choice of internal nodes, but form = [3, 3, 3, 3] no choice of nodes in the interior of the
interval leads to better order. We believe that such a theory is within reach and future
work shall address this issue in greater detail.

Another challenge is to produce reliable and tight bounds on the error. This, we believe,
can also be accomplished with the Peano Kernel Theorem.

As demonstrated in this paper, for high accuracy we should use exotic quadrature for
the first few coefficients and Filon quadrature for the remainder. However, a criterion
for determining which method is appropriate has not yet been established. Addition-
ally, derivative-based quadratures are susceptible to round-off error if, for example, the
approximated function is itself oscillatory. In (Brunner et al. 2009), this issue was cir-
cumvented when q = 1 by using a variant of the FFT to compute those coefficients cor-
responding to small values of n. Since the zeroes of the nth polyharmonic–Neumann
eigenfunction φn are asymptotically uniformly distributed as n → ∞ (this follows di-
rectly from (5.3)), it may be possible to develop a similar approach for general q ≥ 1.
Alternatively, in (Dominguez, Graham & Smyshlyaev 2010) a ‘derivative-free’ Filon-
type scheme has been proposed, for which robust error bounds (explicit in both the
coefficient n and the number of quadrature nodes) are known.

3. Large q. As discussed in Section 4.3, numerical considerations become an important
issue for larger q. Beyond q = 4, the increased cost of forming the approximation
and the susceptibility to round-off error may present limitations to the scope of this
approach. However, much future work is required, incorporating those questions posed
above relating to the quadratures employed, to assess the impact of these issues on
polyharmonic expansions.

Insofar as the application of such approximations to the numerical solution of differen-
tial equations is concerned, this may not present such an issue. Eighth or higher order
problems are of little interest, whereas biharmonic or triharmonic problems are much
more frequently studied.

4. Properties of the eigenvalues and eigenfunctions. The asymptotic behaviour of eigen-
values and eigenfunctions of linear differential operators subject to regular boundary
conditions has been extensively studied (Naimark 1968). In Section 5, we stated several
improved results for the polyharmonic–Neumann setting. A future paper shall present
proofs of these results and several consequences, including a proof of the O

(
m−q−1

)
pointwise convergence rate away from the endpoints.
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5. Multivariate expansions. Multivariate modified Fourier expansions have been suc-
cessfully developed in the d-variate cube (Iserles & Nørsett 2009). The correspond-
ing generalisation of polyharmonic–Neumann expansions presents a number of chal-
lenges, both theoretical and numerical in character. Immediately the analogy with the
polyharmonic operator is lost: multivariate polyharmonic eigenfunctions cannot be ex-
pressed in terms of simple functions, and are thus unsuitable for practical approxima-
tion schemes. Instead, an appropriate multivariate basis consists of Cartesian products
of univariate polyharmonic eigenfunctions. These are precisely the eigenfunctions of
the subpolyharmonic operator (−1)q∂2qx1

+ . . .+(−1)q∂2qxd . We are currently compiling
a theory of such expansions, and will present this in detail in a future paper.

Modified Fourier expansions have also been introduced in the equilateral triangle (Huy-
brechs et al. 2010b). At this moment, it is unknown whether an appropriate generalisa-
tion of univariate polyharmonic expansions can be developed for this domain.

6. Convergence acceleration. The development of convergence acceleration strategies for
modified Fourier expansions, pursued in (Huybrechs, Iserles & Nørsett 2010a) and
(Adcock 2010a), has proved extremely beneficial in improving the performance of such
approximations when compared to more standard methods. We see no reason why
such techniques cannot be adapted to the polyharmonic setting, provided the relevant
theoretical and numerical details are properly addressed.

Fourier analysis and fast Fourier transform techniques have proved themselves extraordi-
narily successful in modern mathematics and its applications. It is neither the intention nor
the message of this paper to challenge this. Expansions in polyharmonic functions address
themselves to just a single application area of Fourier techniques: the expansion of nonperi-
odic functions and its potential uses, e.g. in the numerical solution of differential equations. It
is a tribute to the breadth and success of Fourier analysis that even this single application area
is so important and has so many ramifications.
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