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Overview

First talk (now): An introduction to compressed sensing.

• A (gentle) overview of the main principles of CS.

Second talk (later today): Compressed sensing and imaging.

Third talk (Monday): Compressed sensing and high-dimensional
approximation.

The second and third talks will address two areas of application of
compressed sensing. I will present more work of my own in these.
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Basic problem

We wish to recover an unknown object from measurements.

• E.g. a signal, image, function, manifold,...

Finite-dimensional, linear setup

The object x = (x1, . . . , xN )> is a vector. The measurements are linear:

y = Ax + e, (?)

where A ∈ Cm×N is a measurement matrix and e ∈ CN is noise.

Main issue: The number of measurements m� N, i.e. the system (?) is
highly underdetermined.
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Compressed sensing: the highlights

Under appropriate conditions on x and A we can recover x from y in a
stable and robust manner. Moreover, this can be done with efficient
numerical algorithms.

• Condition on x : low-dimensionality s � N.

• Condition on A: E.g. null space property, restricted isometry
property, incoherence,...

• Condition on m: It is possible to find matrices A such that only
m ≈ s log(N/s) measurements suffice.

• Algorithms: convex optimization (`1 minimization), greedy methods,
thresholding methods, message passing algorithms,...
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Compressed sensing: history

• Origins (≈ 2004): Candès, Romberg & Tao, Donoho

• Since then, the subject of thousands of papers, dozens of survey articles,

and one textbook (Foucart & Rauhut, Birkhauser, 2013).

• a.k.a. compressive sensing, compressed sampling, compressive sampling
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Applications

Magnetic Resonance Imaging (MRI)

MRI uses magnetic fields to excite hy-

drogen atoms in the body, which re-

sult (after modelling) in measurements

of the Fourier transform of the image.

The number of measurements acquired

is roughly proportional to the scan du-

ration. Longer scans are unpleasant for

patients, more prone to motion artifacts

and impossible for certain parts of the

body (e.g. those affected by breathing).

Hi

Image from the Wikipedia MRI page:
http://en.wikipedia.org/wiki/Magnetic_resonance_imaging
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Applications

Compressive Imaging

Photodiodes in digital cameras are in-

expensive an easily manufactured. For

other types of imaging, e.g. infrared, the

sensors are much more expensive and

therefore one is limited to much lower

resolutions with conventional imaging

strategies. Compressive imaging exploits

CS theory to recover images using only

one sensor (single-pixel imaging) com-

bined with a digital micromirror array.

Hi

Image from Rice University: http://dsp.rice.edu/cscamera
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Other applications

New applications are being investigated at a rapid rate. Some examples:

X-ray CT: Taking more measurements involves higher radiation doses.

Seismic Imaging: Sensors are placed on the surface of the earth to
measure seismic waves. Limitations due to cost and geography.

Uncertainty Quantification: Goal is to predict how a physical system is
affected by changes in parameters. Each measurement requires a
time-consuming numerical solution of a PDE.

Also: electron microscopy, fluorescence microscopy, radar,
analog-to-digital conversion,...
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Sparsity

To recover x ∈ CN from y = Ax + e ∈ Cm we require a low-dimensional
model for x :

Definition (Sparsity)

A vector x ∈ CN is s-sparse if it has
at most s nonzero entries.

Hi

200 400 600 800 1000

-2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Remark: We may know s, but we do not know the locations on the
nonzero entries.
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Compressibility

Vectors are rarely exactly sparse, but they are often well approximated by
sparse vectors.

Definition (Compressibility)

The best s-term approximation error is

σs(x) = min {‖z − x‖1 : z ∈ Σs} ,

where Σs is the set of s-sparse vectors. A vector x is compressible if
σs(x) is small.

• Note that σs(x) =
∑N

i=s+1 |x∗i |, where x∗ is a rearrangement of x in
nonincreasing order.

• That is, we approximate x by its largest s entries (hard thresholding).
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Is sparsity a good model?

Canonical sparsity, i.e. the image/signal itself is sparse, is realistic in
some applications, e.g. radar and astronomical imaging.

More typically, sparsity occurs in a transform domain:

• x ∈ CN is the vector of coefficients of the unknown object

w = Φx ∈ CN ,

with respect to some orthonormal basis Φ ∈ CN×N .

Examples:

• Fourier basis (sparse frequency estimation)

• DCT, wavelets, curvelets, shearlets (imaging)

• polynomials (high-dimensional approximation)

• ...
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Images are compressible in wavelets
This principle underlies many modern lossy compression formats, e.g.
JPEG-2000. Since x = Φ∗w is approximately sparse, one only needs to
store a small fraction of its entries.

Image w
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Beyond sparsity

Sparsity is only a model and may not be the best fit for all applications.

Some extensions:

1. Model/tree sparsity
• Baraniuk et al. (2010), Carin et al. (2009), Schniter et al. (2010),...
• Wavelet coefficients lie on connected trees

2. Block sparsity
• Eldar et al. (2010), Lu & Do (2008), Blumensath & Davies (2009),...
• Nonzero coefficients cluster in unknown blocks

3. Joint sparsity
• Duarte et al. (2009), Fornasier & Rauhut (2008),...
• Collections of vectors with common support sets.
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Recovery of sparse vectors

The following lemma points towards a recovery algorithm:

Lemma

Let A ∈ Cm×N and let x ∈ CN be s-sparse. The following two statements
are equivalent:

(i) x is the unique s-sparse solution of Az = y, where y = Ax.

(ii) x is the unique solution to

min
z∈CN

‖z‖0 subject to Az = y , (?)

where ‖z‖0 = |{j : zj 6= 0}|.

Unfortunately (?) is NP-hard to solve in general, and therefore
impractical for computations.
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Convex relaxation

To obtain a computationally tractable problem, we make a convex
relaxation. We replace

min
z∈CN

‖z‖0 subject to Az = y ,

by
min
z∈CN

‖z‖1 subject to Az = y , (?)

where ‖·‖1 is the l1-norm.

Many algorithms exist for solving the convex problem (?). E.g.

• homotopy methods, LARS, primal dual algorithms, pareto curve
methods, iteratively reweighted least squares, splitting methods (e.g.
split Bregman), ADMM,...
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Why l1 and why not l2?

Consider the case N = 2, m = 1 and s = 1. The possible solutions lie on
the line L(y) = x + ker(A).
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l1 solution tends to be sparse l2 solution tends not to be sparse
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The Restricted Isometry Property

One of the most popular ways to analyze the recovery performance of l1

minimization and other CS algorithms.

Definition

The restricted isometry constant δs of a matrix A ∈ Cm×N is the smallest
number such that

(1− δs)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δs)‖z‖2
2, ∀z ∈ Σs .

We say A satisfies the Restricted Isometry Property (RIP) of order s with
constant δs if δs ∈ (0, 1).

Alternatives:

• (Robust) Null Space Property

• Coherence (version 1) – however, suffers from a quadratic bottleneck

• Coherence (version 2) – see later
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Explanation

Suppose we knew the support set of x , i.e.

∆ = {j : xj 6= 0} ⊆ {1, . . . ,N}.

Let A∆ be the matrix formed by the columns of A with indices in ∆ and
consider the overdetermined m × s system:

A∆x = y .

Under the condition

δ∆ = ‖A∗∆A∆ − I∆‖2 ∈ (0, 1),

the matrix A∗∆A∆ is nonsingular and well-conditioned, and we can recover
x stably and robustly by

x = A†∆y .
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Explanation continued

The RIC δs , defined by

(1− δs)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δs)‖z‖2
2, ∀z ∈ Σs ,

is equivalent to
δs = max

∆⊆{1,...,N}
|∆|≤s

‖A∗∆A∆ − I∆‖2.

Hence the RIP ensures that the oracle method, based on knowing ∆,
works for any s-sparse vector x .
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Stable and robust recovery with the RIP

Theorem

Suppose that the matrix A ∈ Cm×N satisfies the RIP of order 2s with
constant

δ2s < 4/
√

41. (?)

Then for any x ∈ CN and y ∈ Cm with ‖Ax − y‖2 ≤ ε, any solution x̂ of

min
z∈CN

‖z‖1 subject to ‖Az − y‖2 ≤ ε,

satisfies

‖x − x̂‖2 ≤ C1
σs(x)√

s
+ C2ε.

Note: There are many variants of (?).

Remark: The RIP also ensures recovery for other algorithms for CS (e.g.
greedy or thresholding methods).
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Matrices that satisfy the RIP

Deterministic construction of RIP matrices with m scaling linearly with s
have proved elusive. This is perhaps understandable, since the condition

δs = max
∆⊆{1,...,N}
|∆|≤s

‖A∗∆A∆ − I∆‖2 ∈ (0, 1),

is inherently combinatorial.

• Moreover, future deterministic constructions, if at all possible, are
likely to be impractical (i.e. memory/CPU intensive).

The major breakthrough in CS was to consider random constructions.
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Random matrices satisying the RIP

Theorem (Candès & Tao, Mendelson et al., Baraniuk et al.)

Suppose that A ∈ Cm×N is a Gaussian or Bernoulli random matrix.
Then, with probability at least 1− ε, the matrix 1√

m
A satisfies the RIP

with constant δs ≤ δ, provided

m ≥ Cδ−2
(
s log(eN/s) + log(2ε−1)

)
.

• This result is fundamental. However, such matrices are largely
computationally infeasible.

Theorem (Rudelson & Vershynin, Rauhut, Andersson &
Strömberg)

Let A ∈ Cm×N be formed by drawing m rows of the Fourier matrix
F ∈ CN×N uniformly at random. Then, with probability at least 1− ε,
the matrix

√
N
m A satisfies the RIP with constant δs ≤ δ, provided

m ≥ Cδ−2s
(
log3(s) log(N) + log(ε−1)

)
.
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Random subsampling the Fourier matrix

An example with N = 1000 and s = 20:
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Phase transition behaviour is typical in CS.
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Problems with the RIP

1. The RIP is NP-hard to verify in general.

2. The RIP often leads to a more stringent measurement condition (e.g.
additional log factors).

Explanation: the RIP stipulates uniform recovery.

• One draw of the matrix (e.g. subsampled Fourier) is sufficient to
recover all s-sparse vectors, with high probability.

This may be too pessimistic in practice. Instead, we can consider the
substantially weaker notion of nonuniform recovery:

• One draw of the matrix is sufficient to recover a fixed s-sparse
vector, with high probability.
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Subsampled isometries

Setup:

• Let U = (uij ) ∈ CN×N be an isometry, e.g. the Fourier matrix.

• We form A ∈ Cm×N by drawing m rows of U uniformly at random.

Remark:

• This setup is less general than before.

• It can be generalized somewhat to include, for example, random
Gaussian matrices (see Candès & Plan).
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Incoherence

Definition
The coherence of U is

µ(U) = max
i,j
|uij |2 ∈ [N−1, 1].

U is incoherent if µ(U) ≤ c/N for some c ≥ 1 independent of N.

• E.g. For the Fourier matrix F = U, we have µ(U) = 1/N.

Main claim: If U is incoherent, then we can recover any s-sparse vector
from m ≈ s · log(ε−1) · log(N) rows of U chosen uniformly at random.

Remarks:

• Incoherence is much easier to check than the RIP.

• Fewer log factors.
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Intuition

Incoherence relates to a discrete uncertainty principle.

• If x is sparse, then Ux cannot be sparse.

• Specifically, ‖x‖0 + ‖Ux‖0 ≥ 2/
√
µ(U).

• See Donoho & Starck, Elad & Bruckstein,...
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Since the information about x is spread across the entries of Ux , random
sampling should be sufficient to guarantee recovery of x from y = Ax .
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Main theorem

Theorem (see Candès & Plan, BA & Hansen)

Let 0 < ε ≤ e−1 and suppose that

m ≥ C · s · N · µ(U) · log(ε−1) · log N.

Then with probability greater than 1− ε any minimizer x̂ of the problem

min
z∈CN

‖z‖1 subject to ‖Az − y‖2 ≤ δ
√

N/m,

satisfies
‖x − x̂‖l2 ≤ C1σs(x) + C2L

√
sδ,

where L = 1 +

√
log(ε−1)

log(4N
√

s)
.

If U is incoherent, i.e. µ(U) . 1/N, then we get m ≈ s · log(ε−1) · log(N).
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Ideas behind the proof

The proof is based on constructing a certain dual certificate:

Lemma

Let ∆ ⊆ {1, . . . ,N}, |∆| = s be the support of the largest s entries of x.
Suppose that A is such that

(i) ‖P∆A∗AP∆ − P∆‖2 ≤ α,

(ii) maxi /∈∆ {‖Aei‖2} ≤ β,

and that there exists a vector ρ = A∗ξ for some ξ ∈ Cm such that

(iii) ‖W (P∆ρ− sign(P∆x))‖2 ≤ γ,

(iv) ‖P⊥∆ρ‖∞ ≤ θ,

(v) ‖ξ‖2 ≤ λ
√
|∆|w ,

for 0 ≤ α, θ < 1 and β, γ, λ ≥ 0 satisfying
√

1+αβγ
(1−α)(1−θ) < 1. Then the

conclusions of the theorem hold with L = λ and appropriate C1 and C2.

Note: (i) and (ii) can be verified using the (matrix) Bernstein inequality.
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Constructing the dual certificate

The construction of the dual certificate ρ uses an iterative construction
known as the golfing scheme and due to D. Gross.

• First, one divides the rows of A into L bins, of sizes m1, . . . ,mL.

• Set ρ(0) = 0.

• For l = 1, . . . , L perform the iterative update

ρ(l) = m−1
l (A(l))∗A(l)

(
sign(P∆x)− P∆ρ

(l−1)
)

+ ρ(l−1),

provided
• ‖(P∆ −m−1

l P∆(A(l))∗A(l)P∆)v (l−1)‖2 ≤ al‖v (l−1)‖2,
• ‖m−1P⊥∆ (A(l))∗A(l)P∆v

(l−1)‖∞ ≤ bl‖v (l−1)‖2,

where v (l) = sign(P∆x)− P∆ρ
(l).

• The parameters m1, . . . ,mL, L, al , bl are carefully tuned to get the
correct recovery guarantee.
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Conclusions
1. Compressed sensing concerns the recovery of sparse vectors from
limited measurements.

2. Recovery can be achieved via `1 minimization, although other
techniques are possible.

3. The RIP provides a sufficient condition for recovery. However, it is
hard to verify and may be too stringent.

4. A more intuitive and easier-to-verify condition is provided incoherence.
This dictates that measurements must ‘spread out’ information.

Topics not covered:

• Other algorithms: greedy, thresholding methods, nonconvex
optimization, reweighted `1 minimization.

• Empirical recovery performance via phase transitions.

• Other notions of coherence.

• Redundant sparsifying transforms, e.g. TV minimization.
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Recovery from the Fourier transform

Applications: Magnetic Resonance Imaging (MRI), X-ray Computed
Tomography, Electron Microscopy, Seismic Imaging, Radio
interferometry,....

Mathematically, all these problems can be reduced (possibly via the
Fourier slice theorem) to the following:

Given {f̂ (ω) : ω ∈ Ω}, recover the image f .

Here Ω ⊆ R̂d is a finite set and f̂ is the Fourier transform (FT).

However, f is a function (not a vector) and f̂ is its continuous FT.
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Standard CS approach

We approximate f ≈ x on a discrete grid, and let

• F be the Fourier matrix,

• Φ be a discrete wavelet transform,

• and set U = F ∗Φ

However, this setup is a discretization of the continuous model:

continuous FT ≈ discrete FT ⇒ measurements mismatch

Issues:

1. If measurements are simulated via the DFT ⇒ inverse crime.
• In MRI, see Guerquin–Kern, Häberlin, Pruessmann & Unser (2012)

2. If measurements are simulated via the continuous FT. Minimization
problem has no sparse solution ⇒ poor reconstructions.
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Poor reconstructions with standard CS

Example: Electron microscopy, f (x , y) = e−x−y cos2( 17πx
2 ) cos2( 17πy

2 ),
6.15% Fourier measurements.

Original (zoomed) Fin. dim. CS, Err = 12.7% Inf. dim. CS, Err = 0.6%
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Infinite-dimensional setup

Consider two orthonormal bases of a Hilbert space H (e.g. L2(0, 1)d ):

• Sampling basis: {ψj}j∈N, e.g. the Fourier basis ψj (x) = exp(2πij · x).

• Sparsity basis: {φj}j∈N, e.g. a wavelet basis.

Let f ∈ H be the object to recover. Write

• xj = 〈f , φj〉 for the coefficients of f , i.e. f =
∑

j∈N xjφj ,

• yj = 〈f , ψj〉 for the measurements of f .

Define the infinite matrix U = {〈φj , ψi 〉}i,j∈N ∈ B(`2(N)) and note that

Ux = y .

As in finite dimensions, operator U is an isometry.

• BA & Hansen, Generalized sampling and infinite-dimensional compressed sensing, Found.

Comput. Math. (to appear), 2015.
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New concepts

To generalize CS to this Hilbert space setting, we need analogues of the
key concepts:

• Sparsity

• Uniform random subsampling

• Incoherence
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New concepts

Uniform random subsampling: It is meaningless to draw Ω ⊆ N, |Ω| = m
uniformly at random. It is also infeasible in practice due to bandwidth
limitations. Hence, we fix the sampling bandwidth N and let

Ω ⊆ {1, . . . ,N}, |Ω| = m,

be drawn uniformly at random.

Sparsity: Given finite sampling bandwidth, we cannot expect to recover
any s-sparse infinite vector x stably. Let M be the sparsity bandwidth,
and suppose that x is (s,M)-sparse:

| {j = 1, . . . ,M : xj 6= 0} | ≤ s, xj = 0, j > M.

Coherence: Define µ(U) = sup |uij |2 as before.
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The balancing property

Let PN : l2(N)→ l2(N) be the projection onto the first N elements, i.e.
PN x = {x1, . . . , xN , 0, 0, . . .}, x ∈ l2(N).

Key idea: Given a sparsity bandwidth M, we need to take the sampling
bandwidth N sufficiently large.

Definition (The balancing property)

N ∈ N and K ≥ 1 satisfy the strong balancing property with respect to
s,M ∈ N if

(i) ‖PM U∗PN UPM − PM‖l∞ ≤ 1
8

(
log2(4

√
sKM)

)−1/2
,

(ii) ‖P⊥M U∗PN UPM‖l∞ ≤ 1
8 .
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Explanation

As we have seen, isometries are highly desirable in CS.

• The infinite matrix U is an isometry.

• However, we cannot work with U since it is infinite.

• The balancing property ensures that the uneven section PN UPM , a
finite matrix, is close to an isometry.

• In particular,

lim
N→∞

‖PM U∗PN UPM − PM‖l∞ = lim
N→∞

‖P⊥M U∗PN UPM‖l∞ = 0.

Note: Typically we cannot take M = N, i.e. the finite section PN UPN .

Examples: For Fourier/wavelets, we need N = O (M). For
Fourier/polynomials, we need N = O

(
M2
)
.
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Infinite-dimensional CS theorem

Theorem (BA & Hansen)

Suppose that N ∈ N and K = N/m ≥ 1 satisfy the strong balancing
property with respect to s,M ∈ N and also, for some for 0 < ε ≤ e−1,

m & s · N · µ(U) · log(ε−1) · log(K M̃
√

s)

where M̃ = min{i ∈ N : maxk≥i ‖PN UP{i}‖ ≤ 1/(32K
√

s)}. If x̂ is any
minimizer of

inf
z∈l1(N)

‖z‖l1 subject to ‖PΩUz − y‖l2 ≤ δ
√

K ,

then
‖x − x̂‖l2 . σs,M (x) + L

√
sδ,

where σs,M (x) = min{‖x − z‖l1 : z ∈ Σs,M} and L = 1 +

√
log(ε−1)

log(4KM
√

s)
.

• BA & Hansen, Generalized sampling and infinite-dimensional compressed sensing, Found.

Comput. Math. (to appear), 2015.
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Remarks

Ideas of the proof:

• Relate the problem to that of constructing a dual certificate.

• Use a golfing-type scheme adapted to infinite dimensions.

• Main technical issues are handling the infinite-dimensionality of the
problem, i.e. estimating tails using the balancing property.

Remark:

• Finite-dimensional, incoherence-based CS becomes a direct corollary
of this result.

Open problem:

• How do we prove uniform recovery results in infinite dimensions.

• No known generalization of the RIP to this setting.
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