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Overview

Previously: An introduction to compressed sensing.

• A (gentle) overview of the main principles of CS.

Now: Focus on the use of CS in imaging problems.

• In particular, my own research into explaining/enhancing CS
performance in these applications.

Collaborators: Anders C. Hansen, Clarice Poon, Bogdan Roman.
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Applications of CS

An inexhaustive list:

• Magnetic Resonance Imaging (MRI)

• Compressive imaging (single-pixel camiera, lensless, infrared)

• X-ray CT

• Seismic tomography

• Uncertainty Quantification

• Electron microscopy

• Fluorescence microscopy

• Radio interferometry

• Radar

• Analog-to-digital conversion

• ...

Today’s focus is imaging applications (in red).
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Imaging applications of CS

Two broad categories:

Type I: Fixed sensing matrices/operators.

• Sensing matrix is dictated by the application.

• Typical examples: Fourier or Radon transforms.

• Applications: MRI, X-ray CT, seismic tomography, electron
microscopy, radio interferometry...

Type II: Designed sensing matrices.

• Sensor can be designed to optimize the reconstruction quality.

• Applications: compressive imaging, fluorescence microscopy,...
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This talk

Type I problems:

• Standard CS theory does not adequetly explain why CS actually
works in these applications.

• We introduce a new CS framework which does this.

• The key element of this framework is local structure.

Type II problems:

• We introduce a new approach for these problems.

• This approach uses the new framework to exploit inherent structure
through new sensing matrix design principles.
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Main principles

We consider the incoherence-based setup. Let U = (uij ) ∈ CN×N be an
isometry and x ∈ CN be the object to recover.

Sparsity:

• x has s significant entries, s � N.

• Equivalently, σs(x) = inf{‖x − z‖1 : z is s-sparse} is small.

Incoherence:

• The coherence µ(U) = max |uij |2 satisfies µ(U) ≤ c/N.

Uniform random subsampling:

• We select Ω ⊆ {1, . . . ,N}, |Ω| = m uniformly at random.

• The measurements of x are y = PΩUx + e, where PΩ selects rows of
U corresponding to Ω and ‖e‖2 ≤ δ is noise.
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Main theorem

Theorem (see Candès & Plan, BA & Hansen)

Let 0 < ε ≤ e−1 and suppose that

m ≥ C · s · N · µ(U) · log(ε−1) · log N.

Then with probability greater than 1− ε any minimizer x̂ of the problem

min
z∈CN

‖z‖1 subject to ‖PΩUz − y‖2 ≤ δ
√

N/m,

satisfies
‖x − x̂‖2 ≤ C1σs(x) + C2L

√
sδ,

where L = 1 +

√
log(ε−1)

log(4N
√

s)
.

If U is incoherent, i.e. µ(U) . 1/N, then m ≈ s · log(ε−1) · log(N).
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Type I problems

Typical setup: U = Ψ∗Φ, where

• Ψ ∈ CN×N is the Fourier matrix,

• Φ ∈ CN×N is a discrete wavelet transform.

Example: Recovery with N = 256× 256 and m/N = 12.5%.

Subsampling map Ω Original image
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High coherence

Explanation:

• µ(U) = O (1) in this case, for any N and any wavelet.

• Hence the recovery guarantee saturates to m ≈ N in this case.

This phenomenon has been known since the earliest work in CS for
applications such as MRI (see Lustig et al.).
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Asymptotic incoherence

Although global coherence is high, there is a local incoherence structure:

• Coarse scale wavelets: coherent with low frequencies,

• Coarse scale wavelets: incoherent with high frequencies,

• Fine scale wavelets: incoherent with any frequencies.

The absolute values of U
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How to subsample the Fourier/wavelets matrix

Variable density sampling

• More samples at low frequencies (high coherence regions).

• Fewer samples at high frequencies (low coherence regions).

Example: Recovery with N = 256× 256 and m/N = 12.5%.

Subsampling map Ω Original image

Conclusion: Local structure (coherence and sampling) matters.
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Related work

Variable density sampling:

• Lustig (2007), Lustig et al. (2007). Empirical observations, intuitive
explanation.

• Wang & Arce (2010), Puy, Vandergheynst & Wiaux (2011),...
Design of sampling strategies.

CS Theory (sparsity-based):

• Krahmer & Ward (2013), Boyer et al. (2012).
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Sparsity?

Question: Does global sparsity explain the good reconstruction seen here?

The flip test

1. Given x , compute its wavelet coefficients z = Φ∗x .

2. Permute the entries of z , giving z ′ .

3. Compute a new image x ′ = Φz ′ with the same sparsity.

4. Run the same CS reconstruction on x and x ′, giving x̂ and x̂ ′.

5. Reverse the permutation on x̂ ′ to get a new reconstruction x̌ of x .

Key point: Both z and z ′ have the same sparsity.

• BA, Hansen, Poon & Roman, Breaking the coherence barrier: asymptotic incoherence and

asymptotic sparsity in compressed sensing, arXiv:1302.0561 (2014).
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The flip test

MRI example: N = 256× 256 and m/N = 20%.

Subsampling map unflipped x̂ flipped x̌

Radio interferometry example: N = 512× 512 and m/N = 15%.

Subsampling map unflipped x̂ flipped x̌
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Asymptotic sparsity

The flip test shows that sparsity is not the correct model: the ordering
(local behaviour) of the coefficients matters.

Structured sparsity: Wavelet coefficients are asymptotically sparse.

1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

Left: image. Right: percentage of wavelet coefficients per scale > 10−3.

At finer scales, more coefficients are negligible than at coarser scales.
The flip test destroys this structure, although it preserves overall sparsity.
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Is this the correct model?

We perform a similar test, where the flipping is done within the scales.

Subsampling map unflipped x̂ flipped x̌

Conclusion: Sparsity within scales (i.e. a fixed number of nonzero per
scale) appears to be the right model.
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New concepts

Current global principles:

• Sparsity

• Incoherence

• Uniform random subsampling

New local principles:

• Sparsity in levels

• Local coherence in levels

• Multilevel random subsampling
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Partitioning U

We first partition U into rectangular blocks indexed by levels

N = (N1,N2, . . . ,Nr ), M = (M1,M2, . . . ,Mr ),

where Nr = Mr = n and N0 = M0 = 0.

U =


U11 U12 · · · U1r

U21 U22 · · · U2r

...
...

. . .
...

Ur1 Ur2 · · · Urr

 , Ukl ∈ C(Nk+1−Nk )×(Ml+1−Ml ).

Note: The levels M need not be wavelet scales.
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Sparsity in levels

Definition (Sparsity in levels)

A vector x is (s,M)-sparse in levels, where s = (s1, . . . , sr ), if

|{j ∈ {Mk−1 + 1, . . . ,Mk} : xj 6= 0}| = sk , k = 1, . . . , r .

• Models asymptotic sparsity of wavelet coefficients.

• Agrees with the flip test in levels.
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Local coherence in levels

Definition (Local coherence in levels)

The (k, l)th local coherence is µ(k , l) =
√
µ(Ukl ) maxt µ(Ukt).

• Allows for varying coherence across U.

• E.g. the Fourier/wavelets matrix has µ(k , l)→ 0 as k, l →∞.
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Multilevel random subsampling

Definition (Multilevel random subsampling)

Let m = (m1, . . . ,mr ) with mk ≤ Nk − Nk−1 and suppose that

Ωk ⊆ {Nk−1 + 1, . . . ,Nk}, |Ωk | = mk ,

is chosen uniformly at random. We call the set Ω = Ω1 ∪ · · · ∪ Ωr an
(N,m)-multilevel subsampling scheme.

• Models variable density sampling by allowing varying mk ’s.

• For Fourier/wavelets, we have mk/(Nk − Nk−1)→ 0.
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Interferences and relative sparsities

The matrix U is not block diagonal in general. Hence there may be
interferences between sparsity levels.

To handle this, we need:

Definition

Let x ∈ CN be (s,M)-sparse. Given N, we define the relative sparsity

Sk = Sk (s,M,N) = max
η∈Θ

∥∥∥∑Uklηl

∥∥∥2

,

where Θ = {η : ‖η‖l∞ ≤ 1, η is (s,M)-sparse}.
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Main result
Theorem (BA, Hansen, Poon & Roman)

Given N and m suppose that s and M are such that

mk & (Nk − Nk−1) ·

(
r∑

l=1

µ(k , l) · sl

)
· log(ε−1) · log(N),

and mk & m̂k · log(ε−1) · log(N), where m̂k satisfies

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µ(k , l) · Sk , l = 1, . . . , r .

If x̂ is a minimizer, then with probability at least 1− sε we have

‖x − x̂‖2 . σs,M(x) + L
√

sδ,

where s = s1 + . . .+ sr and L = 1 +

√
log( ε

−1)

log(4N
√

s)
.

• BA, Hansen, Poon & Roman, Breaking the coherence barrier: a new theory for compressed

sensing, arXiv:1302.0561 (2014). 28 / 45
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Application to the Fourier/wavelets problem

For the discrete Fourier/Haar wavelet problem, one can show that

µ(k , l) . 2−k 2−|k−l|/2,

and

Sk .
r∑

l=1

2−|k−l|/2sl ,

provided the sampling levels are correspond to dyadic frequency bands.
Hence the recovery guarantee reduces to

mk &

sk +
∑
l 6=k

2−|k−l|/2sl

 · log(ε−1) · log(N).

• BA, Hansen & Roman, A note on compressed sensing of structured sparse wavelet

coefficients from subsampled Fourier measurements, arXiv:1403.6541 (2014).
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Application to the Fourier/wavelets problem

The estimate

mk &

sk +
∑
l 6=k

2−|k−l|/2sl

 · log(ε−1) · log(N).

is optimal up to exponentially-decaying factors in |k − l |.

• Variable density sampling works because of asymptotic sparsity.

• As the sparsity increases, more subsampling is permitted in the
corresponding high-frequency bands.

• This estimate also agrees with the flip test.

Note: The estimate generalizes to arbitrary wavelets, with
√

2 replaced by
A > 1 depending on the smoothness and number of vanishing moments.

• BA, Hansen, Poon & Roman, Breaking the coherence barrier: a new theory for compressed

sensing, arXiv:1302.0561 (2014).
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Effect/benefits of this theory for type I problems

1. New framework explains why CS works in MRI, radio interferometry,
X-ray CT,...

2. New insight into the design of sampling trajectories.

• Nontrivial – must take into account physical limitations

• Necessarily image-dependent – no one size fits all

3. Changes understanding on the benefits of CS in such applications.

• Previous understanding: low(ish) resolution, scan time reduction

• New understanding: higher resolution, increasing image quality

• To quote Siemens (see Proc. Intl. Soc. Mag. Reson. Med., 2014):

...the full potential of the compressed sensing is unleashed only if

asymptotic sparsity and asymptotic incoherence is achieved.

• Roman, BA & Hansen, On asymptotic structure in compressed sensing, arXiv:1406.4178,

2014.
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Resolution dependence – low resolution

5% samples at 256× 256 resolution. Substantial subsampling is not
possible, regardless of the scheme:

Oracle, Err = 18% Multilevel, Err = 19% Power law, Err = 22%
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Resolution dependence – high resolution

At higher resolutions there is more asymptotic incoherence and sparsity.
Taking the same number of measurements, CS recovers the fine details.

5122 lowest frequency coefficients CS reconstruction
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Type II problems

Unlike type I problems, in type II problems we have substantial freedom
to design the sensing matrix Ψ.

Applications: compressive imaging (single-pixel, lensless), infrared
imaging, fluorescence microscopy,...

Hardware constraint: Typically Ψ ∈ {0, 1}N .

Sparsifying transform: We typically use a wavelet transform Φ as before.
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Conventional CS approach

Use a Bernoulli random matrix and `1 minimization.

Limitations:

1. Ψ is dense and unstructured, i.e. computationally infeasible.
• Solution: replace Ψ by fast transforms.
• E.g. subsampled DCT with column randomization or random

convolutions.

2. Only exploits the sparsity of the wavelet coefficients, and no further
structure. Recovery quality is limited.
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Enhancing reconstruction quality with structured recovery

Basic principle: wavelet coefficients lie on connected trees (persistence
across scales model (Mallat)).

Structured recovery: Modify the recovery algorithm (typically a
thresholding or greedy method) to enforce this type of structured
sparsity. Use standard (i.e. incoherent) measurements.

State-of-the-art approaches:

• Model-based CS (Baraniuk et al.)

• HGL (Cevher et al.)

• TurboAMP (Som & Schniter)

• Bayesian CS (Chen & Carin)
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New paradigm: structured sampling

Keep the standard recovery algorithm (`1 minimization) and modify the
measurements to promote asymptotic sparsity in scales.

Practical implementation:

• Walsh–Hadamard transform Ψ (binary)

• Multilevel random subsampling according to wavelet scales

• Roman, BA & Hansen, On asymptotic structure in compressed sensing, arXiv:1406.4178,

2014.
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Example (12.5% subsampling at 256× 256 resolution)

`1 min., Bern. modelCS, Bern. TurboAMP, Bern.

Err = 16.0% Err = 17.0% Err = 13.1%

Bayesian, Bern. `1 min, Had., db4 `1 min, Had., DT-CWT

Err = 12.6% Err = 9.5% Err = 8.6 %
39 / 45
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Other advantages

It is also easy to change the sparsifying transform:

Subsample mapSubsample map OriginalOriginal
Original
zoom
Original
zoom

Linear
inverse DFT
Linear
inverse DFT TVTV Daubechies 4Daubechies 4

CurveletsCurvelets ContourletsContourlets ShearletsShearlets
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Other advantages

Fast transforms combined with efficient `1 algorithms (we use SPGL1
throughout) mean we can do high resolution imaging.

Example: The Berlin cathedral with 15% sampling at various resolutions
using Daubechies-4 wavelets.
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Efficient compressive imaging

Resolution: 128× 128

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 26.4
Rel. Err. (%): 17.9

Time: 10.1s
42 / 45
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Efficient compressive imaging

Resolution: 256× 256

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 18.1
Rel. Err. (%): 14.7

Time: 18.6s
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Efficient compressive imaging

Resolution: 512× 512

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 4.9

Rel. Err. (%): 12.2
Time: 1m13s
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Efficient compressive imaging

Resolution: 1024× 1024

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 1.07
Rel. Err. (%): 10.4

Time: 3m45s
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Efficient compressive imaging

Resolution: 2048× 2048

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 0.17
Rel. Err. (%): 8.5

Time: 28m
42 / 45
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Efficient compressive imaging

Resolution: 4096× 4096

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 0.041
Rel. Err. (%): 6.6

Time: 1h37m
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Efficient compressive imaging

Resolution: 8192× 8192

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 0.0064

Rel. Err. (%): 3.5
Time: 8h30m
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Application to fluorescence microscopy

We may apply this approach to fluorescence microscopy. This has to two
key advantages:

• Better inherent performance, due to structured sparsity.
• Mitigation of the point spread effect, since more of the

measurements are taken at lower (Hadamard) frequencies.

Original image Current CS* New CS

∗ See Studer, Bobin, Chahid, Mousavi, Candès & Dahan (2012).

Image of zebrafish cells, courtesy of the Cambridge Advanced Imaging Centre (CAIC). Practical CS
fluorescence microscope under construction.
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Conclusions

• The standard CS principles are ill-suited to typical type I imaging
problems (e.g. MRI).

• In these applications, local behaviour plays a crucial role.

• A new CS framework based on sparsity in levels, local coherence in
levels and multilevel random subsampled was introduced. It
establishes the key role of local structure in CS for type I problems.

• This not only explains the success of CS in many applications, it also
provides new insights and techniques for maximizing its performance
in type II problems.
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