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Setup

Let

• D ⊆ Rd be a domain

• f : D → C be a (smooth) function

• T = {ti}mi=1 ⊆ D a set of points

• {φj}j∈N an orthonormal system of
functions (e.g. polynomials)

Problem: Recover f in the basis {φj}j∈N from the samples {f (ti )}mi=1.
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Motivations

Applications:

• Uncertainty Quantification (UQ)

• Scattered data approximation

• Numerical PDEs

• ....

Issues:

1. Amount of data is severely limited.

2. Dimension may be high (curse of dimensionality).

3. In some cases the data points T may be fixed and unstructured, in
others they can be chosen to get the best approximation.

4 / 48



Introduction Background Infinite-dimensional framework The role of the weights Recovery guarantees

Questions

Over the last decade, `1 minimization has been shown to be effective for
recovering sparse vectors from limited data (i.e. compressed sensing).

1. How does one properly use `1 minimization techniques for the function
approximation problem?

2. What can we say about the approximation error?

3. What are the advantages over standard techniques, e.g. least squares?
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This talk

(1) An overview of recent progress on using `1 minimization techniques
for function interpolation.

(2) A new infinite-dimensional framework for this problem.

(3) Discussion of the role weights play in the optimization.

(4) Approximation theory for `1 minimization in various settings.
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Polynomial approximation

Univariate orthogonal polynomials:

• Bounded domains, D = (−1, 1)
• Legendre, ν(t) ∝ 1,
• Chebyshev, ν(t) ∝ 1√

1−t2
,

• Jacobi, ν(t) ∝ (1− t)α(1 + t)β .

• Unbounded domains
• Laguerre, D = (0,∞), ν(t) ∝ e−t

• Hermite, D = (−∞,∞), ν(t) ∝ e−t2

.

Multivariate orthogonal polynomials:

• Extension via tensor products.

• Truncated spaces: tensor product (too large in high dimensions),
total degree, hyperbolic cross,...

Sampling: typically, points ti are chosen randomly from the measure ν(t).
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Polynomial approximation with `1 minimization

Rauhut & Ward (2011)

• One-dimensional Legendre polynomials with preconditioning trick.

• Compressed sensing recovery guarantees for sparse coefficients.

• Sampling points drawn randomly from the Chebyshev measure.

Yan, Guo & Xiu (2012)

• Generalize Rauhut & Ward to d-dimensions. Exponential growth in
recovery guarantee with dimension.

• Uniform sampling points: d-independent recovery guarantee for
large d . Holds whenever the total degree polynomial space is used,
and for d ≥ P.

See also:

• Doostan & Owhadi (2011), Mathelin & Gallivan (2012),...
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`1 minimization and sampling strategies

Hampton & Doostan (2014)

• Random sampling from continuous measures, based on analytical
estimates for coherence.

Xu & Zhou (2014)

• Deterministic sampling based on Weyl points.

• Quadratic bottleneck.

Tang & Iaccarino (2014)

• Legendre polynomials, random subsampling from deterministic
Gauss–Legendre nodes.

• Enhanced performance over Chebyshev sampling in some situations.

Guo, Narayan, Xiu & Zhou (2015)

• General polynomials, random subsampling from Gaussian nodes.
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Weighted `1 minimization

Yang & Karniadakis (2013)

• Sparsity enhancement via iteratively reweighted `1 minimization
(based on a general technique of Candès et al.).

Peng, Hampton & Doostan (2014)

• Weights chosen according to a priori estimates for expansion
coefficients.

• Moderate improvements over unweighted case.

Rauhut & Ward (2014)

• Compressed sensing recovery estimates for fixed weights.
• Based on weighted sparsity and a weighted version of the RIP.
• Weights remove exponentially-large dimension dependence in some

circumstances (caveat: weighted sparsity, not sparsity).

See also:

• Jo (2014), Rauhut & Schwab (2014), Bah & Ward (2015),...
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First issue: dealing with infinity

Let {φj}j∈N be an orthonormal system and write

f =
∑
j∈N

xjφj , xj = 〈f , φj〉,

where {xj}j∈N are the coefficients of f in the system {φj}j∈N. Even
though f may be highly compressible, its expansion is typically infinite.

As we shall see, most current approaches do not deal with infinite
expansions in a rigorous way.

Question 1
How do we deal with infinite expansions faithfully?
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Second issue: best and worst case guarantees

Good sampling: In some applications, we can sample in the right way to
ensure the best CS recovery guarantee.

• Typically, this is random sampling from an appropriate measure.

• But is this empirically optimal?

Bad sampling: But in other problems, the samples may be fixed and
unstructured.

• Does `1 minimization still work well here?

• How does it compare to classical techniques, i.e. least squares?

Question 2
Can we provide recovery guarantees for a variety of scenarios?
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Third issue: weighted `1 minimization

A number of works have suggested to consider weighted `1 minimization:

• Yang and Karniadakis (2013)

• Peng, Hampton & Doostan (2014)

• Rauhut & Ward (2014)

• Jo (2014)

• Rauhut & Schwab (2014)

• Bah & Ward (2015)

Question 3
What role do the weights play?

14 / 48



Introduction Background Infinite-dimensional framework The role of the weights Recovery guarantees

Third issue: weighted `1 minimization

A number of works have suggested to consider weighted `1 minimization:

• Yang and Karniadakis (2013)

• Peng, Hampton & Doostan (2014)

• Rauhut & Ward (2014)

• Jo (2014)

• Rauhut & Schwab (2014)

• Bah & Ward (2015)

Question 3
What role do the weights play?

14 / 48



Introduction Background Infinite-dimensional framework The role of the weights Recovery guarantees

Outline

Introduction

Background

Infinite-dimensional framework

The role of the weights

Recovery guarantees

15 / 48



Introduction Background Infinite-dimensional framework The role of the weights Recovery guarantees

Setup

Let

• T = {ti}mi=1 ⊆ D, m ∈ N be a set of m points in D,

• ν be a measure on D with
∫
D
dν = 1,

• {φj}j∈N be an orthonormal system in L2
ν(D) ∩ L∞(D) (typically,

tensor algebraic polynomials).

Suppose that

f =
∑
j∈N

xjφj , xj = 〈f , φj〉L2
ν
,

where {xj}j∈N are the coefficients of f in the system {φj}j∈N.
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The current state-of-the-art

Roughly speaking, all existing approaches use the following discretize first
technique.

Choose M ≥ m and solve the finite-dimensional problem

min
z∈CM

‖z‖1,w subject to ‖Az − y‖2 ≤ δ, (?)

for some δ ≥ 0, where ‖z‖1,w =
∑M

i=1 wi |zi |, {wi}Mi=1 are weights and

A = {φj(ti )}m,Mi=1,j=1 , y = {f (ti )}mi=1.

If x̂ ∈ CM is a minimizer, set f ≈ f̃ =
∑M

i=1 x̂iφi .
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The choice of δ

All current approaches pick δ so that the best approximation
∑M

i=1 xiφi
to f from span{φ1, . . . , φM} is feasible for (?).

In other words, we require

δ ≥

∥∥∥∥∥f −
M∑
i=1

xiφi

∥∥∥∥∥
L∞

=

∥∥∥∥∥∑
i>M

xiφi

∥∥∥∥∥
L∞

.

Equivalently, we treat the expansion tail as noise in the data.
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Problems

(1) This tail error is unknown in general.

(2) A good estimation is necessary in order to get good accuracy (Yang
& Karniadakis).

(3) Empirical estimation via cross validation (Yang & Karniadakis,
Doostan & Owhadi,...) is expensive and wasteful.

(4) Solutions of (?) do not interpolate the data.

(5) All existing theoretical recovery guarantees (Rauhut & Ward, Yan,
Guo & Xiu, Hampton & Doostan,...) assume the tail error is known.
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Computations in infinite dimensions

Principle

Formulate the problem in infinite dimensions first and then discretize.

Examples: Bayesian inverse problems, computational spectral theory,
numerical PDEs,...

Quoting A. Stuart: The list of problems where it is beneficial to defer
discretization to the very end of the algorithmic formulation is almost
endless. (Acta Numerica, 2010).

Most closely related to this talk:

• BA & Hansen, A generalized sampling theorem for stable reconstructions

in arbitrary bases, J. Fourier Anal. Appl. 18(4):685–716 (2012).

• BA & Hansen, Generalized sampling and infinite-dimensional compressed

sensing, Found. Comput. Math. (to appear) (2015).
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A new approach

We propose the infinite-dimensional `1 minimization

inf
z∈`1

w (N)
‖z‖1,w subject to Uz = y ,

where y = {f (ti )}mi=1, {wi}i∈N are weights and

U = {φj(ti )}m,∞i=1,j=1 ∈ Cm×∞,

is an infinitely fat matrix.

Advantages

• Solutions are interpolatory.

• No need to know the expansion tail.

• Agnostic to the ordering of the functions {φi}i∈N.

Note: a similar setup can also handle noisy data.
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Discretization

We cannot numerically solve the problem

inf
z∈`1

w (N)
‖z‖1,w subject to Uz = y . (1)

Discretization strategy: Introduce a parameter K ∈ N and solve the
finite-dimensional problem

min
z∈PK (`1

w (N))
‖z‖1,w subject to UPK z = y , (2)

where PK is defined by PK z = {z1, . . . , zK , 0, 0, . . .}.
• Note: UPK is equivalent to a fat m × K matrix.

Key Idea

Choose K suitably large, and independent of f , so that solutions of (2)
are close to solutions of (1).
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How to choose K

Let TK (x) be the additional error introduced by this discretization.

Theorem (BA)

Let x ∈ `1
w̃ (N), where w̃i ≥

√
iw 2

i , ∀i . Suppose that K is sufficiently
large so that σr = σr (PKU∗) > 0, where r = rank(U). Then

TK (x) ≤ ‖x − PKx‖1,w + 1/σr‖x − PKx‖1,w̃ .

The truncation condition σr ≈ 1 depends only on T and {φi}i∈N and is
independent of the function f to recover.

Examples: Let D = (−1, 1)d with tensor Jacobi polynomials or the
Fourier basis and equispaced data. Then K = O

(
m1+ε

)
, ε > 0, suffices.

Rule-of-thumb
Letting K ≈ 4m works fine in most settings.
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First experiment: deterministic samples in 1D

Example: deterministic equispaced samples and Chebyshev polynomials
with weights wi = iα.
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The error ‖f − f̃ ‖L∞ against m for different weights.
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Conclusions

(1) Unweighted `1 minimization (α = 0) may not work in general.

Claim

This is due to an aliasing phenomenon in `1 minimization. In general,
one needs the weights to satisfy

wi/‖φi‖L∞ →∞, i →∞.

(2) Once α > 0 there is no further gain from increasing α.

Remark: The use of weights has often been motivated by matching the
decay rate of polynomial coefficients.

• See Peng, Hampton & Doostan, Rauhut & Ward.
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Example: Fourier basis

Consider D = (−1, 1), ν(t) = 1/2 and the Fourier basis:

φj(t) = eijπt , j ∈ Z.

In this case, ‖φj‖L∞ = 1, so we consider unweighted `1 minimization:

inf
z∈`1(N)

‖z‖1 subject to Uz = y . (?)

Proposition (Aliasing phenomenon)

Suppose that there exists a P ∈ Z such that

tiP ∈ Z, i = 1, . . . ,m.

If x̂ is a solution of (?) then so is every shift of x̂ by a multiple of 2P.
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Aliased solutions are poor approximations
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Besides the first, none of these minimizers approximate f to any accuracy.
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Example: Fourier basis

Now consider the weighted problem

inf
z∈`1

w (N)
‖z‖1,w subject to Uz = y ,

with any monotonically growing weights wi →∞ as |i | → ∞. Aliased
solutions will generally no longer be minimizers, since they have larger
weighted norm.

Summary

Growing weights regularize the minimization problem by removing (bad)
aliased solutions.
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Experiment 2: random sampling in 1D and 2D

Example: random samples from Chebyshev (C) or Uniform (U) measures
with (tensor) Chebyshev (C) or Legendre (L) polynomials.
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Conclusion: Although convergence occurs in the unweighted case,
weights offer some moderate benefits.
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Worst-case scenario

Data points T = {ti}mi=1 are fixed, deterministic and unstructured.

Scattered data approximation: Quantify data in terms of the density

h = sup
t∈D

min
i=1,...,m

|t − ti |.

(also known as the fill distance).

Goal
We cannot expect to achieve the best s-term approximation rate in this
setting. Instead, we aim to show near-optimal linear approximation (first
s term) rates as h→ 0.
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Example result

Theorem (BA)

Let D = (−1, 1) and consider a Jacobi (e.g. Legendre, Chebyshev,
Gegenbauer) polynomial basis {φi}i∈N. Suppose that wi ∼ ciα, i →∞,
for α > 1. Then

‖x̂ − x‖ . ‖x − Psx‖1,w + TK (x),

where ‖x − Psx‖1,w is the linear approximation error, provided

h−1 & s2 log s.

This scaling is optimal, up to the log factor in s.
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Remarks

(1) Weighted `1 minimization achieves the optimal linear approximation
rate as h→ 0, up to a log factor.

• Optimality is due to Platte, Trefethen & Kuijlaars.

• In particular, it is guaranteed to never perform worse than classical
least-squares fitting.

• Note: this result extends to higher dimensions.

(2) The condition h−1 & s2 log s is independent of the weights used.

• Recall the earlier experiment.
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How well does `1 perform in bad scenarios?

200 400 600 800 1000

10
-5

0.001

0.1

200 400 600 800 1000

10
-6

10
-4

0.01

1

100

200 400 600 800 1000

10
-5

0.001

0.1

f (t) = 1
50/49−sin(πt) f (t) = sin(50t2) f (t) = 1

1+50t2

200 400 600 800 1000

10
-6

10
-4

0.01

1

200 400 600 800 1000

10
-5

10
-4

0.001

0.01

0.1

1

200 400 600 800 1000

10
-5

0.001

0.1

10

f (t) = cosh(100t2)
cosh(100) f (t) = |t|3 f (t) = sin(80t)

Black line is weighted `1 minimization. Dashed lines are least squares with

M = c
√

m and c = 0.5, 1.0, 1.5, 2, 2.5, 3.0. Blue line is oracle least squares

based on choosing the aspect ratio to minimize the error for a given m and f .

Random noise of magnitude 10−8 was added to the data.
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Ideal scenario

Data points: The points T = {t1, . . . , tm} will now be drawn randomly
from the orthogonality measure ν(t) of the functions {φi}i∈N.

Goal
Show near-optimal s-term approximation rates.
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However.....weighted sparsity

We solve a weighted `1 minimization problem, so it is more natural to
consider weighted cardinality:

|∆|w :=
∑
i∈∆

w 2
i ,

and the weighted s-term approximation error

σs,w (x) = min {‖x − P∆x‖1,w : |∆|w ≤ s}.

Note that s ∈ (0,∞) in the weighted setup.

• See Rauhut & Ward (2014).
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Weighted sparsity recovery guarantee

Theorem (BA)

Let w = {wi}i∈N be weights with wi ≥ ‖φi‖L∞ and ∆ ⊆ {1, . . . ,K}. Let
x ∈ `1

w (N) and suppose that t1, . . . , tm are drawn independently from ν.
If x̂ is any minimizer, then

‖x − x̂‖ . ‖x − P∆x‖1,w + TK (x),

with probability at least 1− ε, provided

m & |∆|w · log(ε−1) · log(2N
√
|∆|w ).

Earlier work: Rauhut & Ward (2014).

• Require knowledge of the tail bound δ.

• Provide uniform recovery guarantees (with additional log factors).
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Is this good enough?

Let wi = iα and suppose that f is such that

xj 6= 0, 1 ≤ j ≤ k , xj = 0, j > k.

This is reasonable for oscillatory functions, for example.

Question: How many samples m do we need to recover f exactly?

• According to the previous theorem, we set ∆ = {1, . . . , k}.
• Then we need m & |∆|w × log factors, i.e.

m & k2α+1 × log factors.

• This estimate deteriorates with increasing α.
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Example

Take f (t) = cos(45
√

2t + 1/3) and consider Chebyshev polynomials with
random samples drawn from the Chebyshev measure.
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Infinite expansions and weighted sparsity

Proposition

Let wi = iα and suppose that |xj | = j−α−β−1 for some β > 0. Then

σs,w (x) = O
(

s−
β

2α+1

)
as s →∞.

Thus the predicted convergence rate of the approximation in terms of s
(equivalently, m) deteriorates with increasing α.
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An improved recovery guarantee

Theorem (BA)

Let w = {wi}i∈N be weights, x ∈ `1
w (N) and ∆ ⊆ {1, . . . ,K} be such

that mini∈{1,...,K}\∆{wi} ≥ 1. Let t1, . . . , tm be drawn independently
from ν. Then

‖x − x̂‖ . ‖x − P∆x‖1,w + TK (x),

with probability at least 1− ε, provided

m &

(
|∆|u + max

i∈{1,...,K}\∆
{u2

i /w 2
i }max{|∆|w , 1}

)
· L,

where ui = ‖φi‖L∞ and L = log(ε−1) · log(2N
√

max{|∆|w , 1}).

Note: All constants in the . and & are independent of the weights wi .
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Consequences

Consider the main estimate:

m &

(
|∆|u + max

i∈{1,...,K}\∆
{u2

i /w 2
i }max{|∆|w , 1}

)
· L

Linear model: Let ∆ = {1, . . . , k}. Suppose that ui = O (iγ) and
wi = O (iα) for α > γ ≥ 0. Then

m & k2γ+1 × log factors.

• This is independent of the weights and optimal, up to log factors.

• It addresses both examples considered previously.
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Towards establishing the benefits of weights

The case wi = 1. We get the estimate

m &

(
|∆|u + max

1≤i≤K
{u2

i }|∆|
)
· L. (1)

The case wi = ui . We get the estimate

m & |∆|u · L. (2)

Note: In general, the estimate (2) is no worse than (1). Hence, it makes
sense to use weights with wi at least as large as ui .
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Examples: the benefits of weights wi = ui

Example 1: Consider Legendre polynomials with points drawn from the
uniform measure.

• If wi = 1 then m & 3min{p,d} · s · L, where s = |∆|, provided the
index set {1, . . . ,K} corresponds to a total degree space of degree p.

• If wi = ui then m & s2 · L provided ∆ is a lower set.

• Note that s2 is sharp.

Example 2: Consider Chebyshev polynomials with points drawn from the
Chebyshev measure. Then

• If wi = 1 then m & 2min{p,d} · s · L, provided the index set
{1, . . . ,K} corresponds to a total degree space of degree p.

• If wi = ui then m & s log(3)/ log(2) · L provided ∆ is a lower set.

BA thanks A. Chkifa, H. Tran, C. Webster & G. Zhang for the observations about lower sets.
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Towards establishing the benefits of weights

Related work:

• Peng, Hampton & Doostan, Yang & Karniadakis: Empirical
improvements for weights based on prior support information.

• Rauhut & Ward: Error is bounded in a stronger norm. However,
guarantee deteriorates with wi .

• Bah & Ward: Sample complexity of weighted minimization. But
consider weighted cardinality.
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Support estimation

Corollary (BA)

Let ui = 1. Assume x is s-sparse with support ∆. Let Γ ⊆ {1, . . . ,K}
and suppose that wi = σ < 1, i ∈ Γ, and wi = 1, i /∈ Γ. Then we require

m & (2(1− ρα) + (1 + γ)ρ) · s · L,

where
α = |∆ ∩ Γ|/|Γ|, |Γ|/|∆| = ρ.

• Recall that m & 2 · s · L in the unweighted case.

• Hence we see an improvement whenever α > 1
2 (1 + γ).

• That is, we estimate ≈ 50% of the support correctly, for small γ.

• Caveat: comparing sufficient conditions.

Related work:

• Friedlander et al., Yu & Baek (random Gaussian measurements).
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Thanks!

For more info, see the paper:

B. Adcock, Infinite-dimensional weighted `1 minimization and function
approximation from pointwise data, arXiv:1503.02352 (2015).

Also, coming later in the summer:

B. Adcock, Infinite-dimensional compressed sensing and function
interpolation, in preparation (2015).
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