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Abstract

Modified Fourier series have recently been introduced as an adjustment of classical Fourier series
for the approximation of nonperiodic functions defined on d-variate cubes. Such approximations
offer a number of advantages, including uniform convergence. However, like Fourier series, the rate
of convergence is typically slow.

In this paper we extend Eckhoff’s method to the convergence acceleration of multivariate modified
Fourier series. By suitable augmentation of the approximation basis we demonstrate how to increase
the convergence rate to an arbitrary algebraic order. Moreover, we illustrate how numerical stability
of the method can be improved by utilising appropriate auxiliary functions.

In the univariate setting it is known that Eckhoff’s method exhibits an auto-correction phe-
nomenon. We extend this result to the multivariate case. Finally, we demonstrate how a significant
reduction in the number of approximation coefficients can be achieved by using a hyperbolic cross
index set.

Introduction

The modified Fourier basis was introduced in [17, 18] as an adjustment of the Fourier basis for the
approximation of smooth, nonperiodic functions defined on €2, where Q is the d-variate cube (—1,1)%. In
the univariate case, the Fourier sine function is replaced by sin(n — %)mc, yielding the basis

{cosnrz,n € N} U {sin(n — $)mz,n € Ny}

The multivariate extension is obtained by Cartesian products. The advantage of this basis is that the
modified Fourier expansion of a sufficiently smooth function f converges uniformly on Q. In particular,
there is no Gibbs phenomenon near the boundary [1, 17, 28].

Unfortunately, the convergence rate of the modified Fourier approximation remains relatively slow.
If N is a truncation parameter, the uniform error is O (N *1) on Q and O (N *2) inside compact subsets
of Q [1, 17, 28]. Much like the Fourier case, this is due to ‘jumps’ in certain derivatives of the function at
the endpoints © = 1 (in the univariate case) [28]. In the multivariate setting, similar analogues hold,
although the jump conditions (otherwise referred to as derivative conditions) are more complicated to
express [1, 16].

For univariate Fourier expansions, provided the values of these jumps are known, there is a effective
tool to accelerate convergence: namely the polynomial subtraction device [20, 22]. This idea was first
considered by Krylov [21], and has been widely studied since then (see [5, 19, 23] and references therein).
Polynomial subtraction is readily adapted to modified Fourier series [17] and to the multivariate case
[16, 26, 24, 27].

However, such jump values are unknown in general. In typical applications only the (modified) Fourier
coefficients of a given function may be known, and, even if arbitrary pointwise values of the function can
be calculated, approximation via finite differences is not recommended for this purpose [23].

As noted in [10], the previous lack of robust methods for the approximation of jump values is the
central reason why the polynomial subtraction technique has not been more extensively utilised (see



also [23, p.101]). In this paper, to circumvent the aforementioned problem, we use Eckhoff’s method for
this task [8, 9, 10]. This approach is based on the well-known observation that the (modified) Fourier
coefficients themselves contain sufficient information to reconstruct the jump values (see [8] for further
references). Hence, such values can be approximated by suitably defined extrapolation techniques.

Eckhoft’s method was originally presented for the univariate, Fourier case. Analysis of the rate of
convergence was carried out in [4]. The extension to bivariate functions was developed, without analysis,
n [26, 24, 27]. The aim of this paper is to extend Eckhoff’s method to the modified Fourier expansion
of a function defined on the d-variate cube, and to provide analysis therein. The central result we prove
demonstrates that approximating the jumps in this manner (as opposed to using their exact values) does
not cause the convergence rate to deteriorate.

In fact, using approximate jump values offers at least one significant advantage. It was observed in
[25] and proved in the univariate, Fourier case in [29] that Eckhoff’s method exhibits an auto-correction
phenomenon inside the domain. In other words, the convergence rate of the approximation based on
approximate jump values is much faster in compact subsets of {2 than the approximation based on the
exact values. We provide an extension of this result to the multivariate, modified Fourier setting.

Polynomial subtraction and Eckhoff’s method both rely on the construction of a smooth function to
interpolate the jump values. In standard implementations [4, 10, 20, 22] such a function is constructed
from a certain set of polynomials (the possibility of using other functions was suggested in [10]). Though
this is the most convenient choice, it leads to poor numerical stability. In Section 1 we introduce a set
of trigonometric functions that improves numerical stability.

Standard multivariate approximations using Fourier series involve O (N d) terms. However, it tran-
spires that this figure can be significantly reduced to O (N (log N )d_l) by using a so-called hyperbolic
cross index set [3, 32]. The use of such an index set does not deteriorate the convergence rate, aside
from possibly a logarithmic factor [32] (for application of this index set to modified Fourier expansions
see [1, 16]). In the final part of this paper we demonstrate how to incorporate such an index set into
Eckhoff’s method. With the aid of numerical examples, we highlight the advantage of this combined
approach, namely that we are able to produce accurate approximations of multivariate functions using
relatively few terms.

There are numerous devices for convergence acceleration of (univariate) Fourier expansions, including
filters [31], Gegenbauer reconstruction [12, 13] and Fourier continuation methods [7], to name but a few.
Without doubt, certain methods are more suitable for different applications. However, there are a number
of advantages to Eckhoff’s approach that warrant detailing. First, as we demonstrate in this paper, the
combination of the multivariate version of this technique and hyperbolic cross index sets facilitates the
construction of accurate approximations comprising only a small number of terms. Second, Eckhoft’s
method can be incorporated into spectral approximations of boundary value problems (see [10] and
references therein for hyperbolic problems and [1, 2] for applications of modified Fourier expansions
to second order boundary value problems). Finally, Eckhoff’s technique is not restricted to Cartesian
product domains. In theory it can be developed on any domain for which suitable orthogonal expansions
are known. For example, the modified Fourier basis is known explicitly on the equilateral and right
isosceles triangles [15]. The construction of accurate representation of functions on such domains is
typically difficult, and Eckhoff’s method may provide an attractive alternative to existing polynomial-
based methods. This is an area for future investigation.

The remainder of this paper is organised as follows. In Section 1 we introduce and analyse the
univariate version of Eckhoff’s method for modified Fourier expansions. We then demonstrate how
superior numerical results can be obtained by using a particular subtraction basis. Section 2 is devoted
to the development and analysis of Eckhoff’s method for functions defined on d-variate cubes. In Section 3
we extend the result of [29] concerning the existence of an auto-correction phenomenon to the multivariate
version of Eckhoff’s method. Finally, in Section 4 we demonstrate, without analysis, how a significant
reduction in the number of approximation coefficients can be achieved. Numerical examples are provided.

The main results of this paper, namely the proof of convergence in the multivariate case, the existence
of the multivariate auto-correction phenomenon and the use of a particular subtraction basis to improve
numerical stability, can be readily adapted to the Fourier setting (with a little care, such results can also
be applied to general Fourier-like expansions). However, due to the faster convergence rate, we consider
modified Fourier approximations throughout.



1 The univariate version of Eckhoff’s method

1.1 Definitions and basic properties

Given a function f € L?(—1,1), where L?(—1,1) is the space of square integrable functions on (—1,1),
and truncation parameter N > 2 we define the truncated modified Fourier expansion of f by

N-1 1 N-1
Lz ; A1) o Ali o[
Fulfl@) = 5487+ Y- {70 cosnma+ fsin(n - Href =37 3" fHloll@), wel-1.1)
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is the n'® modified Fourier cosine (i = 0) or sine (i = 1) coefficient of f. As demonstrated in [17, 28]
this series converges uniformly to f on [—1, 1] under some mild regularity assumptions (see also Section
1.2). Indeed, the coefficients ﬂf] are O (n=2) for large n (in comparison to O (n~!) in the Fourier case).

Provided f € H?¥(—1,1), where H?*(—1,1) is the 2k*" classical Sobolev space (k € Ny), simple
integration by parts of the right hand side of (1.1) yields

k—1 : .
Sy (D
f=3 " AU[f] 4 2= fe0, i€ {0,1}, neNy, (1.2)
= () ()
where ,ug?] =n’n2, ug] =(n-— %)271'2 and
(1) Al [f] = FE @) + (-1 (1), ie{0,1}, reN. (1.3)

The values A[Ti ] [f] are the requisite jump values for modified Fourier expansions. We say that a function
f satisfies the first k derivative conditions if the first k such values vanish:

FEA) 4 (—1) e () =0, ie{0,1}, r=0,....k—1.

Equivalently, the first k odd derivatives of f vanish at the endpoints z = £1. In this case the coeflicients
fr[f] = O (n=?%72) and faster convergence of the approximation Fy|f] is observed (see Section 1.2).

1.2 Polynomial subtraction

If the first k£ such jump values are non-zero we seek to interpolate them with a function gi. Since the
function f — gy, satisfies the first k derivative conditions, the new approximation Fy[f — gx] +gi converges
at a faster rate to f. This is the principle of the polynomial subtraction process [20, 22].

To find a suitable function gi we first introduce (smooth) subtraction functions p([;], cee p%]_l, where

p[Ti] is even (respectively odd) if ¢ = 0 (i = 1), that satisfy the conditions

Al [p[;'J] — by ms=0,....k—1, ie{0,1}. (1.4)
We say that pg], ceey pgj]_l are Cardinal functions for the first k derivative conditions. With this in hand,
we define gj, as follows:
1 k-1
gr(@) =) > AN fp), we[-1,1]. (1.5)
i=0 r=0

Construction of appropriate Cardinal functions is commonly achieved by taking linear combinations of
standard (smooth) functions q([f], . ,q,[i 1- Such functions must be chosen so that the interpolation

problem

k—1
find {all:i€{0,1},r=0,....k=1}: > allall {qy]}:b[ﬂ, ief{0,1}, r=0,....k—1, (1.6)
s=0



has unique solution for all choices b’ € R. We call {qy] :5€{0,1},7=0,...,k— 1} a subtraction basis.

Usually the 7" Cardinal function py] is specified to be a polynomial of degree 2(r+1) —i [4, 10, 22],

in which case ¢! = 22(+D=i and we refer to {py]} as Cardinal polynomials. This explains the name
‘polynomial subtraction’. However, as we shall demonstrate, a significant advantage is gained by allowing
the more general form (an idea which was suggested in [10]).

For later use we mention the following subtraction basis of trigonometric functions:
% (z) = cos(r + i)nz, M (z) =sin(r 4+ V)rz, r=0,...,k—1. (1.1

It is readily demonstrated that the interpolation problem (1.6) has a unique solution in this case. The
functions qL] are dual to the modified Fourier basis functions in the sense that the derivative of ¢ﬁ is
proportional to qL 1]. This property was exploited in [1, 2] to analyse modified Fourier expansions. In
the sequel, we demonstrate a practical use of this dual basis in Eckhoff’s method. As we shall observe,
it offers a significant numerical advantage over subtraction bases consisting of polynomials.

If gy, is given by (1.5) we define

Fnplfl(@) = Fnlf — gil(@) + gr(2), @ € [-1,1], (1.8)

as the k" polynomial subtraction approximation of f (for convenience we interpret Fy o[f] as Fn[f])-
Suppose that ||-||oo is the uniform norm on some domain € and that || - ||, is the H?(2)-norm. Concerning
the error of this approximation, we quote, without proof, the following two lemmas, found in [28] and
[1] respectively:

Lemma 1.1. Suppose that k € N, f € H?***2(—1,1) and that Fy x[f] is given by (1.8) using exvact jump

values. Then || f9 —(Fn i [f]) Do is O (N97271) for g =0,...,2k. If, additionally, f € H***3(—1,1)

then convergence rate of (Fn x[f])@ to f(@ is O (N9=2=2) uniformly in compact subsets of (—1,1).
Note that the final condition in this lemma, namely that f € H2*3(—1,1), can be relaxed to the con-

dition that f € C?**2[—1,1] and f(®***2) has bounded variation [28]. Moreover, when k = 0 Lemma 1.1

also establishes the pointwise and uniform convergence rates of Fy[f] to f as set out in the Introduction.
Concerning the error in the standard Sobolev norms || - ||, we have:

Lemma 1.2. Suppose that f € H?***2(—1,1) and that Fn k[f] is as in Lemma 1.1. Then || f — Fn x[f]ll4
is O(Nq’zkfg) forq=0,...,2k+ 1.

1.3 Eckhoff’s method for approximation of jump values

[l

Observe that, due to the definition of the Cardinal functions p,', we may re-write (1.2) as

ZPT[Z]A O (=22, (1.9)

where, for ease of notation, we write pATL:] for the modified Fourier coefficient of py ) corresponding to ¢%].
Note that, by construction, the coefficient corresponding to ¢>£} ~is zero. Due to uniform convergence
of Fn[f] to f, we have

1 k

@)= =3 A (@) = Fnpl)@) + O (N2, we[-1,1],

1=0r
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Now suppose that the values A[Ti] [f] are approximated by values /_l[rﬂ [f] and that gy is constructed as in
(1.5) using these approximate values. Then, it follows from (1.8) and the above expression that

fo) ~ Falf iZ( 17— A () - Fnlpll) @) + 0 (N-21).

Now consider, for example, the uniform error. Since |[p}! — Fy[pf]| = O (N=27=1), to obtain an
O (N=2F=1) uniform error we require that

Alf) = Al + 0 (NQ(T"“)) . r=0,...k—1, ie{0,1). (1.10)



In other words, rather than using exact jump values, it suffices to use (sufficiently accurate) approxima-
tions instead. To achieve this prescribed accuracy we employ Eckhoff’s method [8, 9, 10], which we now
describe. ‘

Eckhoff’s method is based on (1.9). In essence we seek values Al [f] that approximately satisfy this
relation. To do so, suppose that N < m(0) < ... <m(k—1) <aN, m(r) € N are given values and that

a > 1 is constant. Then we define A[Ti] [f] as the solution of the 2k x 2k linear system

Zpsﬁﬂ(r A =0, r=0,. k=1, ie{01}. (1.11)

This linear system decouples into two k x k linear systems corresponding to ¢ = 0 and ¢ = 1, which can
be solved in parallel. Henceforth we write Vi for the k x k matrix with (r, s)'" entry ﬁsg(r). Note that
the choice of the values m(r) is essentially arbitrary. However, particular choices lead to better numerical
behaviour and the auto-correction phenomenon [29], as we shall see in the sequel.

Nonsingularity of the linear system (1.11) can be immediately guaranteed:

Theorem 1.3. For sufficiently large N the linear system (1.11) is nonsingular. In particular, if
pg],...,pgil are Cardinal polynomials or arise from the subtraction basis (1.7), then (1.11) is non-
singular for all N.

Proof. Suppose first that Po[i], e ,P,El (for clarity we use this notation) are Cardinal polynomials. Then,
since PSEn](T) = (—l)m(’”)”(ugm)’s*, Vil = DUV where DI is the diagonal matrix with entries
(—l)m(’”)(ug(r))*l and V1 is the Vandermonde matrix with entries (,ugfl](r))*s. Nonsingularity (for all
N) now follows immediately.

Suppose now that p([f], . ,pL] 1 are arbitrary Cardinal functions. Then, since p[ g PT[ d + (p[rﬂ — Prm)

we may write VI = Wl (VI —wll) where Wl is the matrix with (r, s)t" entry Psgn](T) To prove the
result, it now suffices to show that (W)=1 (VI — W) = o(1). Note that the s*® column of VI — Wi

[d]

— i .
has entries (ps — Ps)m . Since pg PSM obeys the first k£ derivative conditions, it can be shown that

(W= applied to thls vector, which is just the vector of Eckhoft’s approximation of the jump values
of p! — P! is 0(1) (see Theorem 1.4). Using this, we deduce the result.

Suppose now that the functions ¢\’ are given by (1.7). Then, due to (1.6), it suffices to prove
non-singularity of the matrices with (r, s)'" entries

_[0] 2(_1)m(r)+s+1(8+ %) [ 2(_1)m(r)+s+ls

QSm(r) - {m(r)2 _ (S + %)2} 71'7 qsm(r) - {(m(r) — %)2 _ 82}71"

After appropriate pre-multiplication by non-singular diagonal matrices, we obtain matrices with (r, s)"

entries
{m? = (s+ 527, {m(r) - )=}

respectively. These are Cauchy matrices: hence, nonsingularity follows 1mmediately. (|

With the values AL [f] given as the solution of (1.11) we refer to the resulting approximation Fn x[f] =
FnIf — gx] + gr as the k" Eckhoff approzimation of f.

The standard construction of Eckhoff’s approximation [4, 10] uses the Cardinal functions p[] and
values Al [f] given by (1.11). Indeed, this is the most simple form to consider for analysis. However, for
computational purposes, it is often more convenient to use the subtraction basis qy], without resorting
to Cardinal functions. In this case

1
Z [l](x)v MS [_151]5

=0 r

HMT

and the values AL [f] are specified by the linear system

k—

1
Gl AN =F L r=0, k=1, iefo1}. (1.12)
0

s=

The resulting approximation is identical to the Cardinal function formulation.



1.3.1 Convergence rate of Eckhoff’s approximation

Analysis of Eckhoff’s method in the univariate, Fourier setting was carried out in [4]. Using virtually
identical techniques, the following result can be established for the modified Fourier case:

Theorem 1.4. Suppose that m(r) = c(r)N 4+ O (1), where c¢(r) > 1 and that at most I < k of the ¢(r)

are equal. Suppose further that 2K > 1+ 1 and that f € H2*+K)(—1,1). Then the coefficients Al [f]
obtained by Eckhoff’s method satisfy (1.10).

This result was originally proved in [4] for the Cardinal basis comprised of polynomials. However, it
is easily extended to the general case. Using this result we deduce the following;:

Theorem 1.5. Suppose that [, K and f are as in Theorem 1.4, and that Fn g[f] utilises jump values
approzimated by Eckhoff’s method. Then ||f — Fnx[f]|lq is O(NI2=3) for q=0,...,2k+1.

Proof. Suppose that we write F§, .[f] and F x[f] for the approximations based on the exact jump values

Al [f] and their approximations Al [f] respectively. In view of Lemma 1.2 it suffices to consider the
difference F§ ;. [f] — Fn,k[f]. We have

k

1 -1
1Pkl = Pl fllla < D0 D AV = AP [l = P ], (1.13)
i=0 r=0

Now suppose that a smooth function h satisfies the first 7 derivative conditions. It can be shown that
[I1h — fN[h]Hq = O(N9727=3) for all ¢ € N. Substituting this result with h = pi into (1.13) and using
Theorem 1.4 immediately yields the result. [l

Theorem 1.6. Suppose that f and Fnx[f] are as in Theorem 1.5. Then || fQ — (Fni[f]) oo is
@) (Nq_%_l) forq=0,...,2k.

Proof. This follows immediately from Theorem 1.5 and the Sobolev inequality

Ihlloo < eV/IRllIRlL, VA € HY(=1,1),

where c is a positive constant independent of h. O

These results, in comparison with those of Section 1.2, demonstrate that Eckhoff’s method for ap-
proximating jump values does not deteriorate the convergence rate of the approximation. However, as
we describe in Section 3, for certain choices of the values m(r), Eckhoff’s approximation offers at least
one significant advantage in this respect.

Another consequence of these results is that, for certain choices of m(r), Eckhoff’s method requires
additional smoothness to obtain the same convergence rate as the approximation based on the exact
jump values. However, whenever the ¢(r) are distinct, the smoothness requirement is identical.

In [4] the authors also compare the size of the error constants in || f — F% . [f]llo and ||f — Fn k[f]]lo-
They demonstrate that approximating the jump values in this manner not only leads to the same con-
vergence rate, but also that the error constant is not increased unduly. For this reason, we address only
the asymptotic order of convergence throughout the remainder of this paper.

1.3.2 Choice of the values m(r)

The values m(r) > N can be chosen arbitrarily, provided they are distinct and satisfy m(r) = ¢(r)N +
O (1). Numerous choices are possible, such as

m(r)=N+r, r=0,...,k—1. (1.14)

In this case c¢(r) = 1 for all 7, so that the function f being approximated must have H***1(—1,1) or
H3%+2(—1,1)-regularity (depending on whether k is odd or even) to ensure convergence. Other choices
that require only H2*+2(—1, 1)-regularity are also possible, such as

m(r)=(r+1)N, r=0,....,k—1, (1.15)
or, given some arbitrary value w = 2,3,...,

m(r)=w'N, r=0,....,k—1. (1.16)
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Figure 1: Log error log, ||f(1) — Fnk[f]|lc against N = 1,...,100 for Eckhoff’s approximation using three
different bases: Cardinal polynomial basis (thinnest line), Chebyshev polynomial basis (thicker line) and the
dual basis (1.7) (thickest line). Here f(z) = cosh6xz (top), f(z) = 5e°® sm(1-x?) (bottom) and m(r) = N +r,
r=0,...,k—1. Numerical results obtained in standard precision, using the LinearSolve routine in Mathematica.

One immediate disadvantage of these choices is they do not lead to a full auto-correction phenomenon
(see Section 3). Further, the values ﬁ[f], n=0,...,N=1,n=m(r),r=0,...,k—1, required to form the
approximation are not contiguous for (1.15) and (1.16), in contrast to (1.14). Finally, as we demonstrate
in the forthcoming section, such values also lead to inferior numerical stability in comparison to (1.14).

1.3.3 Practical solution

The matrix V1 is ill-conditioned. In fact, since V1 is of the form DAV where V1 is a Vandermonde
matrix, the condition number is O (N 241 3) for any choice of the Values m(r), where [ is the number
of equal values ¢(r). This can be proved using well-known bounds for the norm of the inverse of a
Vandermonde matrix [11]. Nonetheless, reasonably accurate numerical results are often obtained using
the Bjork—Pereyra algorithm [6]. In this manner, the values Al [f] can be found in O (k?) operations.
However, increased numerical stability is obtained by replacing the Cardinal basis {p,[f]} with an

appropriately chosen subtraction basis {q@}. The linear system to solve, namely (1.12), is often much
more mildly conditioned (though asymptotically the same order), leading to better numerical results.

A significant improvement is offered by choosing qy] as the (2(r + 1) — 4)™ Chebyshev polynomial.
This is a fairly standard approach, and the underlying matrix of the linear system is a generalised
Vandermonde matrix [14]. However, this can be further improved upon by using the basis of dual
functions (1.7). In Figure 1 we give numerical results for this basis and the Chebyshev and Cardinal
polynomial bases applied to several functions. We observe that the approximation based on (1.7) offers
the smallest error. Moreover, unlike the Cardinal polynomial basis, the error remains bounded. Note
that the functions used here exhibit two features, large derivatives and high oscillation, which make their
approximation prone to numerical errors. However, simply by replacing the subtraction basis we are able
to obtain vastly superior approximations.

Regardless of the particular problem, the functions (1.7) offer a vast improvement in terms of the
condition number of the linear system. As mentioned, the condition number scales like N2#*1=3 inde-
pendently of the subtraction functions used. However, a vast reduction in the constant occurs when
using (1.7). For k = 10 and values (1.14), the L> condition number constant is roughly 3 x 10716 for the
linear system based on (1.7). In comparison, for the Chebyshev and Cardinal polynomial bases, these
figures are 1 x 1072 and 3 x 103 respectively, the latter being roughly 10*° times larger. This effect
is perhaps not surprising: the underlying matrix of the linear system (1.12) is a Cauchy matrix (see
Theorem 1.3). Typically such matrices, though ill-conditioned themselves, are less poorly conditioned
than Vandermonde matrices [14]. Note that such a linear system can also be solved in O (k2) operations.

In all numerical results thus far, we have used the values (1.14). Seemingly, the condition number of
the linear system (1.11) can be vastly improved from O (N3*~D) to O (N2(k=1) by using the values



N 25 50 100 150 200
m(r) = N +r | 1.215 x 10°F | 1.808 x 10°" | 7.398 x 10% | 2.784 x 107 | 5.335 x 10™
m(r) = (r + DN | 8.6838 x 100 | 2.147 x 10°° | 5.552 x 107 | 8.185 x 10™ | 1.451 x 1077
m(r) =2'N | 2.933 x 107 [ 7.206 x 1077 | 1.861 x 107 | 2.742 x 10°° | 4.859 x 10°°

Table 1: L condition number of the linear system (1.12) using the functions (1.7) with & = 10 and values m(r)
given by (1.14)—(1.16). All values to 4 significant figures.

(1.15) or (1.16) instead. However, though true in theory, in practice the constant is so overbearingly
large that it nullifies this effect. In Table 1 we give figures for the condition number of this linear system
using the values (1.14)—(1.16). We observe that N exceeds 200 before the values (1.15) begin to offer an
advantage (for the values (1.16) the scenario is much worse). However, since k£ = 10 in this example, any
reasonable function will be well-resolved by Eckhoff’s approximation for a much smaller value of N.

We mention in passing that, regardless of the subtraction functions employed, numerical results
can often be further improved by solving over-determined least squares problems. This approach is
fairly standard [4, 10]. For practical purposes, the least squares systems are solved by singular value
decompositions, which can be found to high accuracy for Cauchy matrices [14].

This completes the study of the univariate version of Eckhoff’s method. The remainder of this paper
will focus on the development and analysis of the multivariate extension. It is not within the scope of
this paper to address the issue of numerical stability in this context. In the Conclusion we mention a
number of outstanding challenges herein, which require future investigation.

2 Eckhoff’s method for multivariate expansions

In this section, we extend Eckhoff’s method to functions defined on the d-variate cube = [—1,1]¢. To
do so, it is first necessary to introduce multivariate modified Fourier expansions and the multivariate
polynomial subtraction technique. The reader is referred to [1, 18] and [16] for further details.

2.1 Multivariate modified Fourier expansions
Suppose that f € L2(2). The N*® truncated modified Fourier series of f can be written in the following
succinct form: o -
Yoo M@, w= (e, ) €Q
ie{0,1}d neln

Here i = (i1,...,%4), n = (n1,...,nq) and pL (x) = %}](:cl) . ¢£§;] (z4). In C N9 is some finite index
set. Throughout this section we assume that Iy is the full index set

(2.1)

In={neN":0<ny,...,na <N —1}. (2.2)

Note that |Iy| = O (N d). In Section 4, we consider a different choice of index set, which greatly reduces
this complexity without unduly affecting the convergence rate.
The bivariate case will serve as our primary example. In this setting (2.1) is

[00+ nlzjl{
Xy

no=0
N—-1
f[OO
ni,n2

=1

00]
n10

Fnlfl(x1,22) =

COSNTTL1 + f a0 sm(nl — %)mbl}

2[0,0]
Ong

COSNaMTy + f(g(_);g sin(ng — %)ﬂ'l‘g}

N)I)—l

£[0,1] . 1
+ COSNTT] COS N2 T2 + fr7, COSNITTY SiN(Ng — 5)TT2

ni,n2

+ fnl1 912 sin(ny — §)7x cos nomas + fnl1 1,12 sin(ny — §)71 sin(ng — l)ﬂ'l‘g}



2.1.1 Expansion of multivariate modified Fourier coefficients

The multivariate coefficients f}) = Jo f( gbn (z)dz, i € {0,1}%, n € N, are O (n=2) for large n (pro-

vided f is sufficiently smooth), where n=2 = (n; ...ng)~2. In fact, for all n € N, || < () ... ng) "2 =
n~2, where m = max{m, 1} for m € N. Here, and for the remamder of this paper, we use the symbol
A < B to mean that there exists a constant ¢ independent of N such that A < ¢B.

Vital to the construction and analysis of the multivariate version of Eckhoff’s method is the expansion
of the coefficients fr[f }. Such coefficients admit an expansion similar to that of the univariate coefficients
given in (1.2). For this we need some additional notation. Suppose that [d] is the set of ordered tuples
of length at most d with entries in {1,...,d}. We define [d]* = [d] U {0}. For ¢ € [d] we write |t| for the
length (number of elements) in ¢, so that ¢t = (t1,...,¢,) and 1 < t; < ... <t} < d. We also write
t € [d] for the ordered tuple of length d — |t| of elements not in ¢. For j € {1,...,d} we say that j € ¢ if

j=t forsomel=1,...,[t[. Given z = (z1,...,24) we also define z; = (z4,,...,¢,).

For a multi-index o = (a1, ...,aq) € N%, we define |a| = Z?:l @, |aleo = maxj=1,. qo;  and the
differentiation operator D% = 9g}...9g¢. If a = (r,7,...,7), r € N, we also write D". If ¢t € [d] and
r € N we set D} = 07, ...8;‘ E

t

Givenj=1,...,d,r;=0,...,k —1and i; € {0,1} we define Byjj][f] by

(—1)TJB£Z]][‘](‘](I1, .. .,I’jfl,Ij+17 ‘e ,xd) :aﬁ:jJFlf(:El, . .,Ij,l, 1,$j+1, .. .,Id)

3
+ (—1)ij+18§:f+1f(x1, e Ti—1, =L, . ,LL‘d).

For t € [d*, 1o = (rey,....70,) € N and iy = (iy,,...iy,) € {0,1}1" we define BIY/[f] as the

composition
BIA[f](xz) = B4 [Bﬁi:;] [ y [BLZ:;] [ f]} § H :

with the understanding that Bl [f] = f when t = (). Note that the operators B£i7][f], Jj € t, commute
with each other and with dlﬁerentiation in the variable z7. Finally, given ¢ € [d]*, 7, € NIYl, i € {0,1}¢
and ng = (ng,,...,ng, ) € NIl we define A[th]nt[f] € R by

AL 1 = 0P T () / BIDZ f] () obe) () . (2.3)
J¢t

Note that the final integral is just the modified Fourier coefficient of the function Byf} [D2* f](x7) corre-
sponding to indices iz and nz. For this reason, we have the bound

AL S T2 =72 wmpe N, e {0,1)" (24)
J¢t

Note that A[Tit]m{ [f] also depends on k. However, to simplify notation we will not make this dependence

explicit. We may now derive an expansion for fr[f] After k integrations by parts in each variable (see
also [1]), we obtain

T]Jrl

fll="3" Z Al 1] ‘"”*'“'H(u[”) : (2.5)

teld]* |rt]co=0 jEt

As we establish in the sequel, the values Awnt[ f], t € [d], are the appropriate generalisation of the

univariate ‘jumps’ A[Ti ] [f] given in (1.3). The task of approximating these values to sufficient accuracy is
the content of the remainder of this paper.

Suppose that pg], e ,p%]_l are the Cardinal functions introduced in Section 1.2. Given t € [d],

iy € {0,1}* and r; € {0,...,k — 1}*l we define p[Tif](;vt) = HJetp[fj](:vj). With this in hand, we may
rewrite (2.5) as

= Z Al PR+ 0 (n=272) (2.6)

teld]* [1¢]co=0



Provided the functions py ] are Cardinal polynomials the final term of (2.6) vanishes. To simplify matters
we assume this to be the case throughout the remainder of this paper, unless specified otherwise.

Continuing with the bivariate case as our primary example, we observe that (2.6) reduces to

flinil = Z Alial[pp [l pelia] 4 Z Alvialpp=tnd | Z Al pplial L glinizl (7]

T1,72= 0 = 0 T2= 0

when d = 2.
We have not yet established smoothness conditions for the expansion (2.5)—(2.6) to be valid. This
requires introduction of the following spaces:

2.1.2 Sobolev spaces of dominating mixed smoothness

As described in greater detail in [1], modified Fourier expansions are best studied in so-called Sobolev
spaces of dominating mized smoothness [30, 32]. Given ¢ € N, we define the ¢** such space by
HZ, (@) = {f:Df € L2(Q), Va € N": || < g},
with norm || |7 ... = >2ja) <4 IDVFI-
The importance of such spaces in the study of modified Fourier expansions is immediately emphasised
by the observation that Fx|[f] converges uniformly to f on Q provided f € H. (Q) [1]. Returning to

mix

the topic of the previous section, it is readily seen that (2.5)—(2.6) are valid for functions f € H2* (Q).

mix

Though we shall use such spaces throughout, we shall not discuss their properties in greater detail.
We refer to [30, 32] for further reading, and to [1] for use of such spaces in the study of multivariate
modified Fourier expansions.

2.2 Multivariate polynomial subtraction

As described in [16], to accelerate convergence, it suffices to interpolate the exact Neumann data of the
function f on the boundary. In other words, given k € N, we seek a function g such that

2t gr|, =02 Vi=1,....d, r=0,...,k—1,

x;j==+1"
or, in the notation of the previous section,
Blil[g] = BIH[f], i;€{0,1}, rj=0,....k—1, j=1,....d. (2.7)

As in the univariate case, we say that the function f — g satisfies the first k£ derivative conditions, and,
as we shall observe, this guarantees faster convergence of the approximation Fy x[f] = Fn[f — 9] + gk-
Once more we refer to F x[f] as the k" polynomial subtraction approximation of f.

A suitable function gy, is given by the following lemma:

Lemma 2.1. Suppose that f € H?*(Q) and that

Y Y Y o). s @9

te[d] i, €{0,1}1tl |r¢|ee=0
Then gi, satisfies (2.7).

Proof. It suffices to prove that gy satisfies (2.7) with j = 1, ¢; = 0 and r; = s. We split the terms of
(2.8) corresponding to different ¢ € [d] into the three following cases: (i) ¢ = (1), (ii) t = (1,u), where
u € [d], 1 ¢ wu,and (iil) t = u, where 1 ¢ w.

Consider case (i). The contribution of the corresponding term to B[ ][gk]

1

Z Z BB [ ][ f . ,xd)pyll](acl) (z,...,xq) = BO[f](2a, ..., za),

11 0T1 0

10



where the second equality follows directly from the properties of the Cardinal functions p[ 1 Tt now

suffices to prove that the contributions corresponding to cases (ii) and (iii) cancel. For case (ii) the
contribution is

1

k—1
S Y YT s B ee)]

iy, €40,1}1ul ry|oo=01%1=071=0

= > Z 1) BL ] (a0 pli) (),

i, €{0,1}ul |7y | 00=0

where (0,iy) = (0,4u,, ..+, iu,,) and (s,74) = (8,7us,---,Tu;, ). It is readily seen that this is precisely
the negative of the contribution of case (iii). O

Concerning the error of polynomial subtraction, we have the following result, proved in [1]:

Theorem 2.2. Suppose that f € H***+2(Q) and that Fn [f] is the k" polynomial subtraction approz-
imation to f. Then ||f — Fnrlflllq is O(NT™ 2k=3Y) for ¢ = 0,...,2k + 1 and |D*(f — FN el fDloo
is O(N‘O‘|°°_%_l) for |aleo < 2k. If, additionally, f € H2k+3(Q) then D f(x) — D*Fn k[f](z) is

@ (N'O“m_%_Q) uniformly in compact subsets of ).

As in the univariate case, we interpret Fyo[f] as just Fn[f]. When k£ = 0, this theorem also
establishes the rate of convergence of the multivariate modified Fourier expansion Fy|f].
For d = 2, the function gj, is given by

1 k-1 1
z) = Z Z P () BE ] (2) + Z Z B2 [f](21)pli2) (22)
i1:0’r‘1:0 12 07‘2 0
1

k—1
> X B [BE] pi )t o).

il ,iz =0 T1,72 =0

We remark in passing that the phrase ‘polynomial subtraction’ is a misnomer: the function gy, is no longer
a polynomial for d > 2. Herein lies the main problem with this device. Computation of the function gy,
as given by (2.8), requires knowledge of the exact derivatives of the function f over (d — 1)-dimensional
subsets of the boundary.

One approach to alleviate this problem, which we now introduce since it will be used in the sequel, is
to approximate these lower dimensional functions using polynomial subtraction (an approach mentioned
briefly, but not analysed, in [16]). To do so requires knowledge of functions over (d — 2)-dimensional
subsets of the boundary. However, we may repeat the same process, replacing exact functions by poly-
nomial subtraction approximations, until we obtain an approximation that uses only derivative values
over the 0-dimensional subsets of the boundary consisting of the vertices (£1,+1,...,+1) and modified
Fourier coefficients of higher dimensional derivative functions.

To differentiate between the two approaches, we refer to the approximation based on (2.8) as exact
polynomial subtraction and the approximation obtained by the above process as approrimate polynomial
subtraction. We write gf, F¥, ,[f] and g, F5 ,[f] respectively. Note that for d = 1 both approximations
coincide.

In the d = 2 case we merely replace the univariate functions B,[jf] [f] and Byj] [f] by their £*" polynomial
subtraction approximation. This yields the new function g;} given by

i Z pZl (1) FN .k [B[“] } x9) + i Z FN.k {B[w ]} (z )p[m](:zrz)

'Ll 07‘1 0 'Lz 07‘2 0
! .
S S s e el

i1,i2=07r71,r2=0

For d > 3 we define the new approximation inductively. If F7, -] has been obtained for d — 1, we define
the d-variate approximate polynomial subtraction function gj by

Y YT o, [E] eoplden, zen (29)

teld] iz €{0,1}1t! [r¢]oc=0
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For the approximate polynomial subtraction function (2.9) to be a potential alternative to its exact
counterpart (2.8), it is necessary to demonstrate that the convergence rate is not deteriorated. We have:

miz

tion approzimation of f. Then ||f — Fg . [flllq is O(NI—2F= 3) for g = 0,...,2k + 1 and |D*(f —
FRplfDlle is O (Nf%’l) for |a|oo < 2k. If, additionally, f € H2*+3(Q) then Do‘f(x) = DFR k[ f1(z)
is O (N‘O‘|°°_2k_2) uniformly in compact subsets of €.

Lemma 2.3. Suppose that f € H2**2(Q) and that F klf] is the k™ approzimate polynomial subtrac-

Proof. By Theorem 2.2 it suffices to consider the difference Fy5, ,[f] — Fx x[f]. We use induction on d.
For d = 1 there is nothing to prove. Now suppose that the result holds for d — 1. We have
Frlfl@) = Fplf)(@) = gi(x) — gi(x) = Fn [gk — gi] ().
—— [4] — 1] .
Since fl%vk[h]n = Fx. k[h] = bl for all i € {0,1}4, n € Iy and arbitrary function h, it follows that
Fnlgs — git) = 0. Hence

% alf)@) = Filf @) = g (@) — g3 (@)
Y Y Y D LB f] ) = Fhe g [BEA) (o) ol ae).

teld] i, €{0,1}t! |r¢]0o=0

If f € H2*+2(Q) then it can be shown that BE[f] € H2:+2(—1,1)1% [1]. Since |¢| > 1, we may use the
induction hypothesis on each such term to obtain the result. (|

In its present form (2.9) the approximate subtraction function is not fit for practical purposes. Instead
we seek a version of gj that is not inductively defined. This is provided by the following lemma:

Lemma 2.4. The approzimate polynomial subtraction function g is given by

k—1
= > > > Z A 1P () gl (), (2.10)

1€{0,1}2 te[d] [7¢| 00 =0 [n7|co=0

where the terms A”,nt [f] are given by (2.3).

To prove this lemma we need the following notation. Given ¢ € [d] we write [¢] for the set of tuples
u € |d] with w C ¢ (in other words, if j € u then j € t for j = 1,...,d). We write [t]* = [¢{] U {0} and
@ € [t]* for the tuple of elements in ¢ but not in w. Further, given ¢, u € [d]* we write t Uu € [d]* for the

ordered tuple of elements j = 1,...,d in t or in u, t N for the tuple of elements in both ¢ and u and
t\u for the tuple of elements in ¢ but not in w.

Proof of Lemma 2.4. We prove this result by induction on d. For d = 1, since g} = g; and A[Ti] [f] =
Bl [f], there is nothing to prove. Now assume that the result holds for d — 1. Then, by definition

Z Z Z |t\+1]_—a [BT[}tr][f]} (CUE)p[Ti;](«Tt)- (2.11)

teld] i, €{0,1}1*l |r¢|o=0

Since Byf] [f] is a function of at most (d — 1) variables, we may use the induction hypothesis to derive

[¢]

an expression for Fy [B [ f]} (z7). To do so, we require several observations. First, we note that

Al [BE]] = (R TT (k) / Bl [DZ B[ f]] ¢lie)(@a) dea,  vue [7).

JET

Since 4 = t\u = T Uu and the operators Byj] and By:] commute with each other and with differentiation
in the independent variables, this gives

A, [B9151] = (14 T+ [ B! (03] ohe) o) o = AL 1)

JET

12



Our next observation is as follows: if & is a function of at most (d—1) variables, and gf is the approximate
polynomial subtraction function for A, then

Ab-gle= Y Y AN, e

1€{0,1}9-1 |n|oc=0

where Al [h [h] is the value Art nz|P] given by (2.3) with ¢ = (). This follows immediately from the induction
hypothesis and equations (2.5) and (2.10).

Returning to Bk‘} [f] and using these observations, we obtain

Fiow B @) = > > Al

i7€{0,1}1#l [ng|oe=0

oy Z Z A Rl ()8l ().

i7€{0,1}1¥ u€[t] |7u|0o=0 |na]eo=0

Substituting this into (2.11) gives

k-1 N-1
- > el SO e

ic{0,1}4 te[d] 7400 =0 |115] 00 =0

k—1
YOS Y A ke <xwu>¢£iz1<“>}' (212

UE[E] [T40u] 00 =0 [na |00 =0

To complete the proof, it suffices to show that, for any v € [d], the coefficient of A[Til,nﬂ [f]p[rzj’}( v)Pn [io ](a:v)
in (2.12) is precisely 1. The first term of (2.12) gives a contribution of (—1)I?/*1. For the second, the

terms that give contributions satisfy ¢ Uw = v. Since ¢,u # () and there are ( |1l)| ) possible choices of
such u with |u| = [, the contribution of the second term is

lv|-1

e () e () = 3 (W) oy mim e

=1

Summing together this and the previous contributions now yields the result. [l

The result of this lemma not only gives an explicit way to compute the k" approximate polynomial
subtraction function, it also demonstrates that the values A”,nt [f] are the requisite multivariate ‘jumps’
that need to be approximated. This indicates the appropriate generalisation of Eckhoff’s method, which
we consider in the next section.

We mention in passing that, although the approximate polynomial subtraction process achieves a
significant improvement over exact polynomial subtraction, it still requires explicit knowledge of these
values. In general such values are unknown. Since there are

de( >k:3Nd3 Hk+N)? -k} =0 (KN, k<N,
values in total, the need for a method of approximation becomes more vital as d increases.

2.3 The multivariate version of Eckhoff’s method

We now extend Eckhoff’s method to the multivariate setting. The bivariate version of this method was
originally developed, without analysis, in [26, 24, 27]. In this section, we first establish an extension for
general d, and then provide pertinent analysis.

As indicated by the form of the approximate polynomial subtraction function g¢ it suffices to approx-

imate the values [Tlt]ng [f] by values /_l[rzjnf[ f]- To this end, we define the subtraction function

k—1
= > > > Z AW P52 glie) (), (2.13)

1€{0,1}2 t€[d] |7¢|0o =0 |ng| 0o =0

13



70y,
60

5 T
40
30
20
10

10 20 30 40 50

30
25
20
15
10

Figure 2: (left) Index set M5 with N = 25 and m(r) = N + 2r. (right) Index set Mo with N = 50 and
m(r) = N + 2r.

and the approximation Fy k[f] = Fn[f — gk] + gx- In the univariate setting it follows from (1.11) that
the function gy satisfies the condition

Gl = fl - =m(0),...,m(k—1), ie{0,1}. (2.14)
For the d-variate extension we enforce a similar condition. Suppose that we define the finite index set

M, € N4 by
My, = U {n:(nl,...,nd)ENd:nj:m(rj), rj=0,...,k—1,j €t |ngloc <N} (2.15)

We now impose the condition

Gl = fil . vn e My, ie{0,1}% (2.16)

For d = 1 (2.16) reduces to (2.14). For d = 2 we obtain the following system of equations

~ [i]

_ 7l — ; 2
gkm(rl) m(rz) _fm(rl),m(rg)7 1,72 _07"'7k_17 (S {051} )

g}ﬁﬁ(nm - ﬁj(n)m, r=0,....k=1, ny=0,...,N—1, ie{0,1}2
9762]177”(,02) = fj}jym(m), ni=0,....,N—1, rs=0,....k—1, ie{0,1}% (2.17)

Figure 2 shows a typical form of the index set M} for d = 2. Note that, as in the univariate case, the
system of equations (2.16) completely decouples for different values of i € {0, 1}

For both practical and analytical purposes, we need to expand the left hand side of (2.16). Given
w € [d], sy €{0,...,k—1}* and ng € {0,...,N — 1}/%l the corresponding term in gy, is

AL P8 ol (aa) = AR 1A T 6 ) [T o
JEu j¢u

This term gives a non-zero contribution to the left hand side of (2.16) precisely when ¢ C u, where ¢ € [d]
is the tuple corresponding to n € M. Hence

k—1
=> > Al.n]l»s,! -y I J}sz{Z S Al ]Hp::,[;‘;:]} (218)

wE[d] |$u]oo=0 JjEuU [st|co=0 JET LCU |54\ t]co=0 jEU\t
tCu

Here 7; is the index used in the definition (2.15) of My and V! is the matrix introduced in Section 1.3.
For d = 2, we may expand the system of equations (2.17) using (2.18) to give, for each i € {0,1}¢,

k—1
7 7 _i _ 7l —

Z V”l?-ll‘/t"[2?52 [51]752 [f] - fm(rl),m(rg)’ T, T2 = O’ Tt k— 1’

52:0
Z Vrflll{A[szl no ZA[SZE So psz;;]} :f»,[-i](rl)7n27 8] :Oa"'7k_17 ’I’LQZO,...,N—l,
s1=0 s2=0

2 [ 1 [i1] _ 7l — —

ZVT;QQ{ALQ - ZAL})SQ Porn } = ey M =0, N=1, =0, k—1.
82_0 51_0
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In this case, it is obvious how to solve these equations. We first obtain flﬂn [f] from the first equation,
then use this to find flﬂm [f] and A[fjnl [f] explicitly. The same can be done in d > 3 dimensions.

Starting with the equation corresponding to t = (1,2,...,d), we find fl[ft] [f]. Using this, we solve the d
equations corresponding to |t| = d — 1, then those corresponding to |t| = d — 2, and so on. Continuing in
this manner, we obtain all the coefficients fl[ft]n :[f]. Though straightforward in theory, the construction of
Eckhofl’s approximation is likely to become increasingly cumbersome to implement for large d. However,
it is certainly practical for d = 2,3 as we demonstrate in the sequel by numerical example.

Observe that, to find the coefficients ,Ztifjnt[ f], we have to solve linear systems involving the matrix
VIl One immediate benefit of Eckhoff’s approach is that the coefficients can be found by solving
essentially one-dimensional linear systems. Since we need to solve many such systems, it is easiest to
find (V[1)~! first. This can be achieved using methods outlined in Section 1.3.3. Note that existence
and uniqueness of a solution to these linear systems is completely determined by the non-singularity of
the matrix V[ (see Theorem 1.3).

In the univariate case, the complexity of forming Eckhoff’s approximation is O (max{kz, kN }) In
the multivariate setting, it is readily seen that this figure is O (max{k?**, kYN}). Typically k < N so
this reduces to k?N?. In comparison, forming the approximation Fy|f] involves O (N d) operations, so
the increase in complexity is relatively mild for moderate values of k. Nonetheless, the value N¢ grows
exponentially with d. In Section 4 we demonstrate how this figure can be reduced significantly without
affecting the convergence rate of Fy x[f] unduly.

2.4 Analysis of Eckhoff’s method

To commence our analysis of the multivariate version of Eckhoff’s method, we require the following two
lemmas, the first of which is a generalisation of Theorem 1.4:

Lemma 2.5. Suppose that h € Hi(zf-’_K) (Q), where 2K > 1+ 1 and [ is the number of equal values ¢(r),
and that t € [d]. Suppose further that
[i;]
B, [h]
[i;]
B [h]

r;=0,....,k—1, i;€{0,1}, jet,

207
:O, rj:(),...,aj—l, ijE{O,l}, j%t,

where oz € NIt and that the values ﬁr[if],m re €{0,...,k — 1}, nz e NIl are defined by

k—1
Z H VT[JZZlJ gs[lrt,]nz = ﬁgzi]v

|st|oa=0JEL
where nj =m(r;), r; =0,...,k —1 when j € t and n; € N otherwise. Then we have
i 2 —klt]) 5 —205—2
gr[it]ng < N2(rel =kl |)nf =2
where ﬁgmrz = ngt ﬁ;2aj_2.
Proof. For each j € t we may expand A a total of (k+ K) times with respect to n; using the univariate

expansion (1.2). We now apply (Vr[;flj)’l to the result and use Theorem 1.4. O

Somewhat counter-intuitively, we first perform our analysis of Eckhoff’s method for a function f that
satisfies the first k derivative conditions, i.e

Blil[f]=0, i;€{0,1}, r;=0,....k—1, j=1,...,d. (2.19)

Tj
To do so, we require the following two lemmas:

Lemma 2.6. Suppose that t € [d], r; € {0,....,k — 1} nz € {0,...,N — 1}/l and

k—1
e =3 > (Al - ) IT i (2.20)
W€l [ruelo=0 jeult

15



Then

Z [Tvileld == > Z AL L, e My, i€ (0,1} (2.21)

Ist|oo=0 7€t u€[d]” |su]oo=0
tZu

Proof. Consider the right hand side of (2.16). Using the expansion (2.6) gives

=Y 5 ALl e YOS ALnmk. nein e

wE[d] |$u]oo=0 weld]* |$uloo=0
tCu tZu
Equating this with (2.18) and rearranging gives the result. O

Lemma 2.7. Suppose that f € 5 I (Q) satisfies the first k derivative conditions (2.19) and that
Eii]yn{[f] is given by (2.20). Then |57[}t]7n{[f 1| < N2(|”|°°7k)__21C Z,

Proof. Since f obeys the first k£ derivative conditions, ij,ng [f] =0 when t # (. Hence

Z H‘/T[Jljsj Si nt _A'[ri] [f]a n e Mk7 ) S {0, 1}d

|st|oo=0JEL

Since f, i — 0 [f] in this case, an application of Lemma 2.5 now yields the result. O

Due to Theorem 2.3, to estimate the convergence rate of the multivariate Eckhoff approximation
Fn,k[f]; it suffices to consider the difference 75 , [f] — Fn k[f], where F [f] is the approximate poly-
nomial subtraction approximation introduced in Section 2.2. For this we need the following lemma,
which demonstrates the importance of the quantity (2.20):

Lemma 2.8. We have

~vlf1(@) = Fnk[f](x)
Y Y Y Y e o ) [T {p) ) = Fall @)} (2:22)

i€{0,1}4 t€[d] |7¢| 00 =0 [nf|cc=0 jEt

Proof. We may write
Fialf1(@) = Faplfl(2) = hi(e) — F[he] (), (2.23)

where hy, is the smooth function

Sy Yy Y (AL L = AL 11) 2 )l ).

i€{0,1}2 te[d] |7¢|oo=0 |ng|oc=0

To prove the result, it suffices to demonstrate that the right hand sides of (2.22) and (2.23) have equal
modified Fourier coefficients for all indices i € {0,1}¢ and n € N9. Tt is readily shown that both have
vanishing coefficients whenever n € I, so we consider the case n ¢ Iy. In this setting, there is some
u € [d] such that n; > N whenever j € v and n; = 0,..., N — 1 otherwise. By identical arguments to
those used to obtain (2.18), it can be shown that the coefficient the right hand side of (2.23), namely

[ .

kn » 18
—d] k—1 ) .
P = D Pront € LF). (2.24)
I"‘ulooZO

We now consider the corresponding coefficient of (2.22). For each ¢ € [d], due to the function ¢£§§], we
must have that u C t, otherwise, the corresponding term vanishes. However, due to the product, we
must also have that ¢ C u for a non-zero contribution. Hence, ¢ = u and the modified Fourier coefficient
of (2.22) reduces to (2.24), completing the proof. O
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We are now able to provide an error estimate for a function f that obeys the first k& derivative
conditions:

Lemma 2.9. Suppose that f € H2FHE) (Q) obeys the first k derivative conditions (2.19), where 2K >

I+ 1 and  is the number of equal c(r), and that Fn i[f] is the multivariate Eckhoff approximation of f.
Then [|D(f = Fu ol fNllec is O (N121="2271) for |ajo < 2k and ||(f = Fulf])lq is O(NI2673) for
g=0,....2%+1.

Proof. It suffices to consider the difference fﬁ, wlf] — Fn x[f]. Using Lemma 2.8, the bound derived in
Lemma 2.6 and the fact that H(p[r fN[ ])(‘1)|| = O (N7271) r € Ny, q € Ny, we deduce that

1D (FRklf] = FN kel Dlloc

P> S Y et ool

. . (aj)
B I H (vl = FnIpli)]) H
16{0 1}d teld |r,|oo—0|n,\m—0 et

<Z kz:l Z _a,—2k 2 \2(Ireloo—k HNO‘J'—%‘—{

te[d] |7¢|oo=0 |nf|oo=0 JEL

oo

2%—2 _ __
o < 172, Hence

Since |a|o < 2k, we have i} < ng;

D (FRplf] = Fralflloo $ 32 N2l mtNladdm2irel 220 g ylal=21,
teld]

which gives the result for the uniform error. The result for the H?(€2) norm is proved in an identical
manner. |

With this in hand we are able to deduce the main result of this section:

Theorem 2.10. Suppose that f € Hm,erK) (Q), where 2K > 1+ 1 and 1 is the number of equal ¢(r), and

that F 1| f] is the multivariate Eckhoff approzimation of f. Then | D®(f—Fn k[f])]|oc is O (NIlee=2k=1)
for |0|oe < 2k and ||f — Fnilflllq is O(NT25-3) for ¢ =0,...,2k +1.

Proof. We proceed by induction on d. Since the d = 1 result has been proved, we assume that the result
holds for d—1. Suppose that gy, is the exact polynomial subtraction function (2.8) so that f — gy, satisfies
the first k derivative conditions. Writing f = (f — g5;) + g and using linearity of Fy -] we deduce from
Lemma 2.9 that it suffices to consider the error g§ — Fn i[95]-

The function gf is a finite sum of functions h(x) of the form hq(z;)ha(xz), t € [d], |t| < d, where

hi € H2(-k+K)( 1, D) and hy € Hm(,],erK)( 1, 1)‘5‘. Using linearity once more, we deduce that it suffices

mix

to prove the result for h. In the usual manner, we consider the difference F3 ;[h] — Fn x[h], where
FN, x17] is the approximate polynomial subtraction approximation of h. A simple argument verifies that

~klh] = FN M FN klhel,  Fnklh] = Fnk[ha]Fn klhe).
Noting that albl — CLQbQ = (CLl - ag)bl + ag (bl - bg) we write
Fiorlh] = Fnklh] = (Fio plha] — Fuglha]) Figlhe] + Fuwlha] (Fi plha] — Farlha]) -

By induction

| D (Ffe plha] = Farlha])|| S Nlde=2671 D% Fy wha]ll o S 1,
1D (FR lhel = Fuvalhal) [l § N0 {[DFR ylhell S 1.
Hence
D (F% 4 [h] = Fuilh )H < Nlatlo=2k=1 | Nlasleo=2k-1 < plaloc—2k-1
as required. The result for the H?(€2) norm can be proved in an identical manner. O

As in the univariate setting, we arrive at the same conclusion: approximating jump values with
Eckhoff’s method does not deteriorate the convergence rate. However, additional smoothness is once more
required for the multivariate version of Eckhoff’s method over approximation by polynomial subtraction,
unless the values ¢(r), r = 0,...,k — 1, are distinct. Nonetheless, as we now consider, there is an
advantage to choosing equal values ¢(r): namely, a much faster convergence rate inside the domain Q.

17



3 The auto-correction phenomenon

As demonstrated in Lemmas 1.1 and 2.3, the polynomial subtraction approximation has a convergence
rate one power of NV faster inside the domain than on the boundary. It turns out that, for the particular
choice of the values m(r) = N +r, Eckhofl’s approximation possesses the much faster convergence rate of
O (N~3%=2) away from the boundary—a full O (N*) faster than the corresponding approximation based
on exact jump values. This auto-correction phenomenon was observed numerically in [25] and proved in
the univariate, Fourier case in [29]. The aim of this section is to extend this result to the multivariate
modified Fourier setting.

In previous sections, we observed that Eckhoff’s approximation decouples into terms corresponding
to each particular value of i. The analysis of each such term can be handled separately, and, since
the analysis is virtually identical, it suffices to consider only one particular value. For the remainder
of this section, we assume that f only has non-zero modified Fourier coefficients when ¢ = (0,0,...,0).
Accordingly, we drop the [i] superscript.

Since uniform convergence of Eckhoff’s approximation on  is guaranteed by Theorem 2.10, we write

f(:E) _‘FN,k[f](x) = Z vn¢n Z Z Z Un¢n T e Q, (31)

n¢In [d]nj >N |nglee=0
JjEt

where v(z) = f(z) — gr(x) and gy, is given by (2.13). Following the same method of proof as in [29], we
seek to expand the right hand side of (3.1) using the so-called Abel transformation. Given a sequence
am € R, m € N, we define the operator A, ,,, r,n € N, by

AO,n[awn] = Qn, A7‘-1-1,71[0/771] = Ar,n[anL] + Ar,n-l—l[am]a TN e N.

It is easily seen that
T
r
Apnlam] =Y ( s ) anys, Tm €N, (3.2)
s=0
Now suppose that a,, € R, m € N?. We write AT n, J =1,..,d, for the above operator acting on the j
entry of n. Further, given ¢ € [d], r € NI!l and n € NIl we define AL, by the composition

by

Af«,n[ m] = Aitl ney [Aiizv"fz [ A”m M) [am]H '

It follows from (3.2) that

e E e B ) e 09

st =0 st‘ ‘—0

where (n + s;m) has j*® entry n; + s; if j € t and m; otherwise.

Before using this transform, we need some additional notation. Given z,y € R? we write .y =
T1y1 + ... Ty, and, if y = (¢, ¢,...,c) has equal entries, just z.c. Moreover, given u € [t]*, r,, € Nl
and k € N we define (r,; k) € NI/l by the condition that the j*" entry of (r,; k), which we write (r.;k);,
takes value r; if 7 € u and k otherwise.

Lemma 3.1. Suppose that g € H. (), t € [d] and that = € Q. Then, for k € N and ny € NIl we have

> Gntn, (21) =

n; ZN
jet

{ Z Z ur;Eu I)H 1+e—z7rwj —(rusk);—1 Z A(ru t1), nu;N)[gm]eiﬂ'nu.;Eu}7

E[t]* [ruloo=0 Jjet n; >N
jET

where (ng; N) € NI has j*™ entry n; if 7 € 4 and N otherwise and mg = nj.
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Proof. We proceed by induction on [t|. Suppose first that |t| = 1 and, without loss of generality, that
d = 1. The verification of the lemma in this case is very standard (see also [29]). We have

Z gneinﬂ'm _ Z (Al,n[gm] gn+1 einTT Z Ay n m pinme _ o —imw Z gneinﬂm _'_gNei(N—l)ﬂ'm.

n>N n>N n>N n>N

Rearranging gives

i(N 1)7r;E 1

Z gnelnﬂ—m = 1+e ZTF:E + 1+e - Z Aln m] ””rmu
n>N n>N

which provides the result for £ = 0. Iterating this process yields the result for general k.
Now let ¢ € [d] be of length [t| > 2. Write t = (t1,...4),) and 7 = (t2,.. .4, ). We have

Z gn¢nf T¢) Z ¢7lr1 $t1 Z gn(bm—(xT)

n;j >N neg, >N nj >N
JEt JET

By the induction hypothesis we obtain

Z gn¢np (xt) — Re Z ei"flﬂ'wtl{ Z Ty, . (N—1) Z H 1 +e—zwmj —(ruk);—1

n; >N ngy 2N u€[r]* [7uloc=0 €t
JjEt
X Z Al ik41),(na; N) [gm]eimu.zu}
’ﬂjZN
JEU
k
= Re Z eiﬂ'zuv(Nfl) Z H(l_'_efiﬂ'zj)f(ru;k)jfl
uE[T]* [Tw]co=0JET
X e 5 A ik (59
anN neg; >N
JjEu
Using the result for |¢t| = 1 yields
k
—1 At ~
> AL iy e lia] = 3 T A )T TAL AT ) (i ]
neg, >N Tt =0
—1 —k—1 At ~
+ Z (1+€ 7,7T$t1 Akl-‘rl ne,y [AZTu;k+1),(nﬁ;N)[gm]j| . (35)
neg, >N

If we substitute (3.5) into (3.4) we obtain the result. Note that if v € [t]* then either v € [r]* or
v = (t1,u) for some u € [7]*. The two terms of (3.5) correspond respectively to these scenarios. O

The crux of the auto-correction phenomenon is the following trivial observation:

Lemma 3.2. Suppose that v = f — gi, where gy is given by (2.13), and that the values m(r) = N +r,
r=0,....k—=1. Then A}, [0m] =0 for all |ri|c <k—1, |ni|oc <N, |mioe <N andt € [d].

Proof. By construction 9, = 0 for |n|eo < N 4+ k — 1. We now use (3.3) to obtain the result. O

We may now re-write (3.1) as

f(x) = Fralfl@) = Z e (20)6n, (27), (3.6)

te[d] [ngloo=0

where h,,,(z;) is obtained from the expansion derived in Lemma 3.1:

hnt «It { Z Z zﬂ'mu.(N—l) H(1+e—i7rmj>—(ru;k)j—l Z Aléru;k+1)7(nu;N)[ﬁm]eiﬂ-nu.mu}'

* |7y ]oo=0 JEt n;>N
Jjeu
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Consider the term of h,,; corresponding to u = ¢ separately. This is

k
eimct.(Nfl) Z H(l_,’_efiwmj)fryflﬁf_h [Am]a

[7¢|0e =0 JEL

where we write Al v instead of the full expression Af (N,..,n)- Using Lemma 3.2, all terms of this
expression where |r|s < k are zero. Hence, we define

Hyp () = ™0 W=D N TT(1 4 e ™9) 7 AL (i), (3.7)
|7t|oo=k JET

where m; = ng, and

Z Z zrrzu.(Nfl) H(l_i_efiwmj)f(ru;k)fl Z AEﬁﬁk-{-l),(n@N)[ﬁm]eiﬂnﬁmﬁ7 (38)

UE[]™ |ru]oco=0 jet n; >N
uFt JEU

so that the function h,, may be expressed as hy,(z¢) = Re { Gy, (z¢) + Hy, (x¢)}. To derive an estimate
for the error f(z) — Fni[f](xz) we first need bounds for the functions G,, and H,,. We derive such
bounds in the sequel. First, however, it is useful to consider the case d = 1 to demonstrate elements of
the multivariate proof. This is given in a similar form in [29].

3.1 Thecased=1

For d = 1, using (3.1) and the characterisation given in Lemma 3.1 with ¢ = (1), we may write

f@) = Fralfl(@) = Y tda()

n>N
R k ei(Nfl)wm A 1 A
= Re A, N F Al leinme L
;) (1 4 e—imz)r+1 7N[ ] (1+e- Zﬂ'z)k+1 n>zN k+1, [ ]

In light of Lemma 3.2, A, n[0p] =0 for r =0,...,k — 1, so this reduces to

ei(N rx
f(@) = Fnlfl(x) = Re {WAIC N [Om] + W Z AVES] n[@m]em”}
n>N
=Re{H(z) + G(z)}, (3.9)

where G(z) and H(z) are the univariate forms of G,; and H,,. Note that for d = 1 there is only one
t € [d], namely t = (1), and trivially ¢ = (.

We now seek bounds for G and H. To do so, we require the following lemma, which is given in a
similar form in [29]:

Lemma 3.3. Suppose that ps, s = 0,...,k — 1 are the univariate Cardinal polynomials for the first k
derivative conditions. Then

o @sH+r+D)I(=1)"
BrinlPsm] = Pon (2s + 1)In"

+(9(n‘25—T—3), VreN, s=0,....,k—1, n— oc.

Proof. By construction, py,, = (—1)™(mn)~2(5%1), Using (3.2) we obtain

() ()" () Y
Bralfin] =2 < l ) ((n+ m)2GTD ~ ()20 ; < l ) L+ L6

=0

_(;&%i(—l)l(;>{i(%)fo( 25+;)+1 )4—(9(71’“1)}

p=0
2 +p+1 e
_pmzn (S P >l0<—1)l(§)zp+o(n2 .

T
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It is readily seen that
T
=0,...,7r—1
St (1)r={ gy 27
prd ! :
Substituting this into the previous expression now gives the result. [l
We now consider the coefficients o,,. Using the asymptotic expansion (1.2) and the form of the
univariate function g, we obtain

k—1 k+K—-1

@HZZ(AT[f]_AT[f])Zs;’n_F Z AT prn+o( k+K+1))
r=0 —
provided f € HQ(kJrKH)( 1,1). In particular
., _ k+K—1
As,n[{)m] = Z (Ar[f] - Ar[f]) s,n prm Z A s " prm] +0 ( 2(/€+K+1)) .
r=0

By Theorem 1.4 and Lemma 3.3 we have

k—1
|As,n[f)m]| /S Z N2(r7k)7—172r7572 + ﬁ72k7572 + ﬁ72(k+K+1)'
r=0

In particular, provided 2K > k + 1, we obtain |Ag n[0m]] < N73%72 and [Agy1.0[0m]| S N73%"1n=2,
Recalling the definitions of G and H given in (3.9), this yields

G(@)| SN2 [H(x)| SN2 we(-11),
provided f € H3(k+1)(—1, 1). From this we immediately obtain the univariate result:

Theorem 3.4. Suppose that Fn i|f] is the univariate Eckhoff approzimation of f € H3*+D(Q) using
the values m(r) = N +r, r =0,...,k — 1. Then f(z) — Fnil[fl(z) is O (N~3*72) uniformly for x in

compact subsets of (1.

3.2 Bounds for G,, and H,,

We commence with the following preliminary result:

Lemma 3.5. Suppose that t € [d], ry € NIt 2K > k+ 1 and that the function h € Hi(zf-‘_KHl(Q),
satisfies the first k derivative conditions. Then

. o or o op o2
’An,nt[hn] <n 2k 2Hnj Ti _ 2k 2nt T
jEt
Proof. Tt suffices to consider ¢t = (1,...,d) and use induction on d. Consider d = 1 and a univariate

function h. Since h obeys the first k derivative conditions, we have

k+K—1

—2(k+K)—
> A (H]5s,, + O (204801,

Hence, using Lemma 3.3, we obtain

k+K-1
Bl € 3 LA o] + 72O ror=2hm2 20—
s=k

This gives the result for d = 1. Now assume that the result holds for all functions of at most (d — 1)

variables. Then, if h is function of d variables and ¢ = (1,...,d), we have
k+K—1
rr,nf Z Z rt,nt Su,nﬁ[h]psunu] —I—O( —2(k+K)— 1)
w€[d] |$u|oo=k
k+K—1
Z Z Aru . su,nu[ ]] Au [psun } +0O (n72(k+K)*1) )
w€[d] |$u|oo=k
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Using Lemma 3.3, we deduce that
o L e ) ST ’Aij,nj[ﬁs?nj] SR (3.10)
JEuU
Furthermore A, ., [h] is the modified Fourier coefficient of a function of the variables x5 that satisfies

the first k derivative conditions. Since |@| < d, we may use the induction hypothesis and (3.10) to give

k+K-1
‘Ar " h ’ *—T‘u—2k? 27—7“u—2su—2+7—2(k+K) 1 <77L_T'7_2k 27
51t E §
u€[d] |$uloc=k

as required. O

With this in hand, we may estimate the functions G,,; and H,;. We have:

Lemma 3.6. Suppose that f € Hi(,fﬂ)(Q) Then the function Hy,, defined by (3.7) satisfies |Hy, (z¢)| S
Nfgk’zﬁ{_2 uniformly for x; in compact subsets of (—1,1)!".

Proof. We first observe that, for n € N? such that n; > N whenever j € t and n; = 0,...,N — 1
otherwise, 0, satisfies

Z gsr,nt pstnt‘f' Z Z ASu,nu psunv (311)

|8t ]00=0 VE[d]* |Sv]0o=0

tZv

We now substitute the two terms of (3.11) into the definition of H,; given in (3.7) and consider them
separately. For the first term we have

Ait,N [E”St,’ﬂ{[f]ﬁs\tnt} = gst;nf[f]Ait,N [p/s\rnt:l = 587:771;[][]1_[&1]-,]\7[158\;”].]'

jet
Using Lemma 2.6 and (3.10) we obtain the bound

|Arh [8St,ng[f]5-5\tnt” 5 N2(‘St|307k) HN725]'77"]'7277LE—2 S N72k7\rt\72|t\ﬁg—2'
JjEt

Since |r¢| > |r¢|oo = k and [t| > 1, we obtain the required bound for the first term.
Now consider the second term of (3.11) substituted into (3.7). For v € [d]* with ¢t € v either (i)
vNt#Qor (i) vNt=0. Consider case (i) first. We have

ALy Ao Ao, = A0 sy [T A0Y [P, ]

Since A, n,[f] = hn., where h is a function of x5 that obeys the first & derivative conditions, we may
apply Lemma 3.5 to give

_ o 2y =222
‘Af‘t,N [Asy,na[f]psynv” S H N 2s;—r;—2 H N 2k—r;—2 v\tS \t— ntu2vk 2

jEtNV jEt\v
—|re|=2[tNv|—2(k+1)(|t\v]|) = —2 —3k—2-—2
< NIl 2 () 2 < 322,

Here the final inequality follows since, by assumption, |t N v|,|¢t\v] > 1. Now consider case (ii). Since
tNv =0, we have

Ait, [A5v7n17 [f]p/s\an = AL,N [Asv7n17 [f]]ﬁs\unv
Using Lemma 3.5 and (3.10) we obtain

}Ait,N [Asv,na [f]p/s\vnv” 5 HN—rj—2k—2 H ﬁ;2k72 Hﬁ;28j72 S N_‘Ttlx_2k_2ﬁg2 5 N_3k_277bg2.

JEt jévUt JEV
This completes the proof. O

We now derive a bound for G,:
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Lemma 3.7. Suppose that f € Hme)(Q). Then the function G, defined by (3.8) satisfies |Gy, (x¢)] <
N—3k=2p- =2 uniformly for x, in compact subsets of (—1,1)!".

Proof. Since z; € (—1,1)" it suffices to bound

k
Z Z Z }Al(eru;kJrl),(nﬁ;N) [ﬁm] ) (312)

UE[E]" |ruloo=0n;>N
uFt JEU

by the N’Bk*Qﬁf_Q. To do so, we substitute the two terms of (3.11) into (3.12) and consider them
separately. For the first term we have

Z Sy Y | Al mas) [Esranel 1550,

UE[]" [ru]oo=0m;>N |5¢|0c=0
uFt Jjeu

(3.13)

Since u C t, we observe that

A1(67"u;k+1),(nﬁ;N) [gst,n{[f]ﬁs\tnt = Shnt H A N[psgn H Ak+1 N S]n ]
jEu jet\u
Using Lemmas 2.6 and (3.10) we deduce that
= Stloo—k) 5 — —2sj—r;j—2-—255—k—
‘AETH;]CJ{‘l),(’ﬂa?N) [pstntgst,n{[f]] ‘ S N2(| | k)n{ 2 H N 28577 2”112 3_
JEU

Substituting this into (3.13) we obtain

ZZZZ

€] [Tuloo=01;2N |5t][0o=0

’I"u k+1),(na;N) [p/s\tntgshni[fn

u;ét JET
E E E E N2(|Sr|oo H N_2Sj—rj—2ﬁg2ﬁ525ﬁ_k}_3
E[] |Tuloo=071;2>N |s¢|0c=0 jEu
u;ét JET
k k—1
5 ﬁg2 Z Z Z N2(|st\oo—k) H N—285—r5—2 H N—2si—k—2
WE[]™ |Tu]oo=0 |5t |cc=0 JjEU jEt\u
uFt

A

k
2 — 2k — | | — 2| — (k+2) (|| — ||} —3k—2-—2
Y YN S

WE[]™ |ru]oo=0
uFt

as required. Here the last inequality follows by noting that |¢| — |u| > 1.
We now consider the second term of (3.11) substituted into (3.12):

> Z ) Z > ‘A (ruih1).(maiN) [Aso o [f1Psn, ]’ (3.14)

VE[d]™ [Sy]oo=0uE[t]" |Tu]co=0n; 2N
th uF#t JEUQ

As in the proof of Lemma 3.6, we split this into two cases: either (i) v Nt # 0 or (ii) v Nt = 0. Suppose
that we consider case (i). Since v Nt # () we obtain

AéTu?k'i‘l);(na?N) [Asv,ng [f]p/s\vnv} = Ai(f‘z}mv;k'i'l)("ﬁmv;]v) [ﬁs\unv} A)E?fmmk-l‘l)x(”ama?]v) [Asvvnﬁ [f]] '
We have ) 3
tNv —~ —25-—7‘-—2—7251“11,716 3 _—4Syu\t—
‘A@m;kﬂ),(nw;m [Psvnv]‘ < JI w2 oyt

JEUNY

Furthermore

tNo —2k—r; —2——37{} 3-—2k— 2
‘A(Tuﬁﬁ§k+1)v(nﬁﬁﬁ§N) [ Sv; n” ’ l [ N T TNang e
JjEUNY
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Combining these two estimates yields

t —~ —2s;—r;j—2 —2k—r;—2-—2S3nv—k—3_-—-3k—3-—2
’Am;m),(naw) [Aswa[f]psﬂnﬂ’5 | il [ e 7 L
JjEuUNV JjEUND

Hence

k—1 k
Z Z Z Z Alpits 1), (nasnN) [Asens D50, ]

Isvloo:O UE[t]* I"‘ulooZO anN
uFt

jEU

k—1 k
S Z Z Z H N—285—r5—2 H N2k =2 H N—2si—k—2 H N73k72ﬁf—2

[$0]00=0 ue[tl]e* |7 |00 =0 jEUNV jEUNT jETN jEUNT

u

5 Z N—2(k+l)|uﬂ'D\N—(k+2)\ﬁﬁv|N—(3k+2)\ﬁﬁﬁ|ﬁg2'

u€(t]”

uFt

We claim that this term is < N~3=2n72. We have two possibilities: either N v # ) or aNv = (). If
4N ¥ # () then the result follows immediately. Now suppose that 4 N = (). In this case, it follows that
uNv# 0 and Nov # Q. Hence we also obtain the result. This completes case (i).

Next consider case (ii). Since v Nt = () we have

A€Tu§k+l)7(nﬁ§N) [AS’-”nf’ [f]lg:’nu} = Aérum"‘l)v(nﬁﬂv) [Asv’n{’ [f]]p/s\vnv

In the standard manner we obtain

t —~ —2k—r;—2-—3k—3-—2k—2_-—25,—2
A(7"u;k+1),(nﬁ;N) ['Asu-ﬂa [f]psunv} 5 H N "3 Ng nqj\t ny, ?
JEU

5 N72(k+1)\u|7|ru|m7—153k737—1{—2'

Hence, in this case

k—1 k
SO Y Y Ak M, )| S TIN5 20,2 € N0 202,

[$v|co=0u€E[t]* |rulec=0n;>N jeu
uFt JET
where the final inequality follows since || > 1. This completes the proof. ]

3.3 Analysis of the auto-correction phenomenon and numerical results

We may now prove the key result of this section:

Theorem 3.8. Suppose that Fn x[f] is the multivariate Eckhoff approzimation of f € Hi,(,erl)(Q) using

the values m(r) = N +r, r =0,...,k — 1. Then f(z) — Fnil[fl(z) is O (N~3*72) uniformly for x in

compact subsets of .

Proof. Substituting the bounds derived in Lemmas 3.6 and 3.7 into the expansion (3.6) immediately
yields the result. [l

Though the analysis in this section was carried out for the approximation based on Cardinal polyno-
mials, it is a simple exercise to extend it to the general subtraction bases described in Section 1. Hence,
we have established the existence of an auto-correction phenomenon for arbitrary dimension d and ar-
bitrary subtraction basis. Note that for the auto-correction phenomenon we require f € H,3n(il,f+1)(Q),
rather than just f € H3*1(Q) or f € H3:72(Q) for uniform convergence (see Theorem 2.10). This extra
smoothness condition is also present for polynomial subtraction: here H2*+3(Q)-regularity is required to
obtain an O (N~2*=2) error away from the boundary, rather than just H?*2(Q)-regularity for uniform
convergence [1]. In [29] the author demonstrates that slightly different smoothness assumptions can be
imposed, depending on whether £ is even or odd. For simplicity, we do not make this distinction.

For general values m(r) it can be shown using identical methods that an auto-correction phenomenon

is present provided the first [ < k values are chosen so that m(r) = N 4+, r =0,...,0 — 1. In this case,
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Figure 3: Graphs of |f(z) — Fni[f](z)| for —1 <z <1 (left), —0.75 < z < 0.75 (middle) and —0.5 < 2 < 0.5
(right), where N = 50, k = 2 and f(z) = 2% sin 5z + cos 6.

(21, 22) N =10 N =20 N =30 N = 40 N =50
(1,1) | 4958 x 105 | 1.307 x 1010 | 3.799 x 10 12 | 3.022 x 10" 3 | 4.202 x 10"
1) | 6341x10°° | 1.372x 10 10 | 3.723 x 10~ 2 | 2.861 x 10 | 3.898 x 10~ 12
1189 x 1012 | 4203 x 10~ 1° | 2.039 x 10 ™ | 4.673 x 10~ 19 | 1.485 x 10~ 20
) | 9542 x 10 1 | 1.885 x 10 1® | 9473 x 10 19 | 2.037 x 10 20 | 1.002 x 10 2!

Table 2: Pointwise error |f(x1,2z2) — Fn,k[f](x1,z2)| for various values of (z1,22) and N, where k = 4 and
flz1,22) = (e3‘"”1 + 974”1) (sin 5x2 + %) Results to 4 significant figures.

the convergence rate away from the boundary is O (N_2k_l_2). In particular, if m(0) = N, as is the
case with the choices (1.15) and (1.16), then the convergence rate is O (N_2k_3).

The auto-correction phenomenon is also exhibited by the error f — Fu x[f] measured in the L2(£)
norm, where €’ is some set compactly contained in 2. This has been studied in the univariate, Fourier
case in [29]. The extension to the multivariate, modified Fourier setting is straightforward.

In Figure 3, we demonstrate the univariate auto-correction phenomenon. For the particular choice of
function and parameters, the error at the endpoints is roughly 1078, whereas in the interval [—0.5,0.5]
this figure is 1072, In Table 2, we present numerical results for the auto-correction phenomenon in
the bivariate setting (here and henceforth, calculations are performed with additional precision, where
necessary). Once more, we observe that the error inside the domain is much smaller than on the boundary.

4 Hyperbolic cross index sets and Eckhoff’s method

Thus far the approximation Fu [f] has been based on the full index set (2.2). Though arguably the most
natural index set to consider, it turns out that the truncated expansion Fy[f] includes a large number of
terms that have an insignificant contribution to the overall sum. In view of this, an alternative approach
to define Iy is to include only those terms in Fy[f] that are greater in absolute value than some tolerance
e. This is the idea of hyperbolic cross index sets [3, 32]. In many applications, modified Fourier series
included, such an approach leads to a greatly reduced index set of size |Iy| = O (N (log N )d_l), and
thereby effects a significant saving in computational effort. Moreover, the approximation Fy[f] converges
to f at a rate comparable to that of the corresponding approximation based on the full index set (2.2).
In this section, we consider the use of such a set in Eckhoff’s method.

4.1 A hyperbolic cross for modified Fourier coefficients

To develop a hyperbolic cross index set for modified Fourier coefficients, we need an estimate for | fr[f ) |.
This is provided by the bound |f{| < (A1 ...74)"2. If we set € = N2, then the term £ is included in
Fn|f] only if 711 ...71q < N. This leads to a hyperbolic cross index set:

In={neN:n...ng < N}. (4.1)

This set, in conjunction with modified Fourier series, has been investigated in [1, 16]. It is elementary
to show that [Ix]| = O (N(log N)*~!); a vast reduction over the full index set (2.2), for which this value
is O (N d). Furthermore, we have the following result, proved in [1]:
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1072 107*] 107 | 1078 | 10719 | 10712 | 10~
1| 121 | 1521 | 31329 — — — —
89 513 | 3053 | 17461 | 97241 — —
2 49 121 561 1849 | 10201 | 60025 —
49 105 297 841 2269 | 6269 | 17501
3 81 121 169 441 1225 | 3969 | 13689
81 117 193 353 697 1333 | 2773
4] 81 121 169 289 529 1089 | 2401
81 121 165 257 397 593 1005
5| 121 121 169 289 361 625 1089
121 121 169 273 329 493 789

Table 3: Number of terms in the full (top value) and hyperbolic cross (bottom value) index set versions of
Eckhoff’s approximation applied to the function f(z,y) = e** (cos 3y + sin 2y) required to obtain an accuracy of
Ilf — Fnelfllloo <1072 for j = 1,2,...,7 (the dash indicates where more than 100,000 terms are required to
obtain the prescribed tolerance).

Theorem 4.1. Suppose that f € H2*+2(—1,1)% and that F§ ,.[f] is the exact polynomial subtraction

miz

approzimation of f based on the hyperbolic cross index set (41) Then

d—1
2

If = Frexldllo = 0 (N2 E10g N)'5" ) 1If = Fialflla = O (N©24) g =1 2k + 1,

and |D*(f — F5 1 lfDllec = O (NIele=2k"1(1og N)*71) for |alo < 2k. If, additionally, f € HZF3()
then D f(z) — DYFR, ,[f](z) is O (Nlalee=2k=2(10g N)*=1) uniformly in compact subsets of Q.

In view of Theorem 2.2, we conclude that replacing the full index set (2.2) by (4.1) does not affect
the convergence rate of the approximation, aside from possibly a logarithmic factor (note that setting
k = 0 in the above theorem establishes the convergence rate of Fy[f] to f). This, combined with the
significant reduction in number of expansion terms, makes hyperbolic cross index sets greatly beneficial.

4.2 The hyperbolic cross version of Eckhoff’s method

Given n € N? we define |n|o = 71 ...7n4 so that the hyperbolic cross index set (4.1) includes only those
n with |n|o < N. To adapt the multivariate version of Eckhoff’s method to utilise the hyperbolic cross,
we first replace the function g defined in (2.13) by

k-1 N-1
ge(@) = > > > > AL @) el (), (4.2)

i€{0,1}4 te[d] |r¢|co=0 |ng|0=0
with unknowns A[Tit]m{ [f] that enforce the conditions gAkL:} = fr[f], n € My, where M, is the index set

M, = U {n:(nl,...,nd)ENd:nj:m(rj), rj=0,....k—1,j€t, [nglo < N}.
te(d]

Note that the only difference in the definitions of g and My, is the replacement of |nglso by |nglo. We
now define the approximation Fy g[f] in the standard manner: namely, Fn r[f] = Fn|[f — gk] + gk, where
Fn[f — gx] is based on the index set (4.1).

For d = 2, there is no difference between the functions (2.13) and (4.2). The only difference between
the two resulting approximations arises from the index set used in Fy|[|]. However, for d > 3, the
functions (2.13) and (4.2) are distinct, leading to further savings in the number of approximation terms.

It is readily seen that the operational cost of forming the hyperbolic cross version of Eckhoff’s approx-
imation is O (max{k?!, kYN (log N)4~1}). For k < N this represents a significant reduction over the
full index set version, where the corresponding figure is O (max{k?™, k’N¢}) (see Section 2.3). Further-
more, no specific techniques are required: as in the previous setting, we repeatedly solve one-dimensional
linear systems involving the matrix V4.

In Table 3, we demonstrate the improvement offered by this approximation. By means of example, we
observe that, when k = 3, to obtain an error of less than 10~ requires around 14, 000 terms for the full
index set version of Eckhoff approximation, but only around 2,800 for its hyperbolic cross counterpart.
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Figure 4: Log error log,, ||f — Fnk[f]|loc against number of approximation terms for the full (thin line) and
hyperbolic cross (thick line) versions of Eckhoff’s method applied to (4.3).

For d = 3 the improvement offered is more substantial. In Figure 4 we compare the error of the full and
hyperbolic cross versions of Eckhoff’s method applied to the function

f(@1,22,23) = (27 cos b5y + 22 sin5 — o= cos5) (cosh 223 — cosh 1sinh 1)

X (23sin2x3 4 3 cos2 — 1 sin2). (4.3)

For k = 3, using roughly 5,000 terms, the hyperbolic cross version offers an error roughly 10* times
smaller than the full version. For k = 4, the hyperbolic cross approximation obtains an error of 10~1°
using only 1,500 terms. The full index set approximation will not reach this value until the number of
terms exceeds 6, 000.

Figure 4 also demonstrates the advantage offered by the method developed in this paper, namely
the hyperbolic cross version of Eckhoff’s method, over the original modified Fourier approximation. For
example, to obtain an accuracy of 107!° with k = 4 requires roughly 1,500 terms, whereas to do the
same with the modified Fourier approximation Fy[f] requires in excess of 10'? terms.

The analysis of the hyperbolic cross version of Eckhoff’s approximation is beyond the scope of this
paper. Numerical results indicate that the uniform convergence rate is O (N —2k=l(log N )d_l), but this
remains a conjecture. Unfortunately, numerical results also demonstrate that there is no auto-correction
phenomenon for this approximation. Away from the boundary, the approximation converges at the same
rate as exact polynomial subtraction. In other words, the error is O (N~2*72(log N)4~1).

Conclusions and future work

The aim of this paper was to examine the convergence acceleration of modified Fourier expansions. To
achieve this goal we have generalised Eckhoff’s method to the multivariate case, and proved that this
approach yields not only faster uniform convergence but also an auto-correction phenomenon inside the
domain. We have then demonstrated how a significant reduction in the number of approximation co-
efficients can be achieved by using a hyperbolic cross index set. The so-called hyperbolic cross version
of Eckhoff’s method gives accurate approximations comprising a relatively small number of terms. Fi-
nally, in the univariate setting, we have established how numerical stability can be increased by using a
particular subtraction basis.

There are a number of areas for future investigation. First, as mentioned in the Introduction, Eckhoff’s
method can be extended to non-Cartesian product domains, provided suitable orthogonal expansions are
known. Due to their applications in spectral elements, the equilateral and right isosceles triangles are
two important examples that warrant future consideration.

In [1, 2] the author considers the application of modified Fourier series to the spectral approximation
of second order boundary value problems. The method possesses a number of advantages, including mild
conditioning of the discretization matrix and the availability of an optimal, diagonal preconditioner.
However, the convergence rate is only cubic in the truncation parameter. Accelerating convergence is a
subject of current investigation, including the incorporation of the methods developed in this paper into
such approximations.

Finally, there are several open problems relating to both the theory and implementation of the
multivariate form of Eckhoff approximation. First, as mentioned, the analysis of the hyperbolic cross
version of Eckhoff’s method has not yet been carried out. We intend to address this in a future paper.
Second, though we have demonstrated numerically the advantage offered by the subtraction basis (1.7),
we are yet to explain this effect theoretically. On a related topic, since more solves of linear systems
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involving the (ill-conditioned) matrix VIl are required in higher dimensions, the method is increasingly
susceptible to round-off error. While we have used additional precision in the multivariate numerical
examples presented herein as compensation, a complete resolution of this issue is outside the scope of
this paper. Future work, most likely along the lines of incorporating (appropriately optimised) least
squares procedures, is necessary to address this problem.
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