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Recovery problems

In many applications, we want to recover an object from a collection of
measurements. If the sampling process is linear, then we may write this as

y = Ux ,

where

• x = (x1, x2, . . . , xN)> ∈ CN is the unknown object,

• y = (y1, y2, . . . , yN)> ∈ CN is the vector of measurements,

• U ∈ CN×N is the measurement matrix.

If U is invertible then we can recover x as U−1y .

• For the remainder of the talk, U will be an isometry.
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Compressed sensing

Typically, we do not have access to all the measurements

y = {y1, y2, . . . , yN}.

Instead, we only have a small subset

{yj , j ∈ Ω},

where Ω ⊆ {1, 2, . . . ,N}, |Ω| = m� N.

Problem: Recover x from the highly underdetermined linear system

PΩUx = PΩy .

Moreover, do this using efficient numerical algorithms.

Notation: write PΩ ∈ CN×N for the diagonal matrix with jth entry 1 if
j ∈ Ω and 0 otherwise.
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Compressed sensing

Under appropriate conditions on x , U and Ω, we can recover x from PΩy .
Moreover, this can be achieved by efficient numerical algorithms.

Compressed Sensing (CS)

• Origins: Candès, Romberg & Tao (2006), Donoho (2006).

• Since then, the subject of thousands of papers, dozens of survey articles,

and one textbook (Foucart & Rauhut, Birkhauser, 2013).

• Applications: medical imaging, seismology, analog-to-digital conversion,

microscopy, radar, sonar, communications,...

• Important philosophical shift in how we view the task of

reconstruction/inference.

Key principles: sparsity, incoherence, uniform random subsampling
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The condition on x : Sparsity

Definition

A vector x = (x1, . . . , xN)> is s-sparse if |{j : xj 6= 0}| ≤ s.

• Typically s � N.
• The locations of the nonzero entries are unknown.

Often, x = W ∗z are the coefficients of the image z in some orthogonal
sparsifying transformation W = [w1| · · · |wN ], e.g. wavelets.
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The condition on U : Incoherence

Definition

The (mutual) coherence of an isometry U = (uij) ∈ CN×N is

µ(U) = max |uij |2 ∈ [N−1, 1].

The matrix U is incoherent if µ(U) = O
(
N−1

)
.

Intuition: if x is sparse, then y = Ux cannot be sparse.

• Discrete uncertainty principle (Donoho & Starck, Elad & Bruckstein,...)
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The condition on Ω: Uniform randomness

The index index set Ω ⊆ {1, . . . ,N}, |Ω| = m should be taken uniformly
at random.

Informal explanation:

• The sparse signal x has 2s information content:

s locations + s coefficient values.

• Incoherence means this information is distributed uniformly amongst
the measurements y1, y2, . . . , yN .

• Hence, any m = O (s) ‘representative’ measurements should contain
sufficient information to recover x .
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Reconstruction algorithm

The system
PΩUz = PΩy ,

has infinitely many solutions. We seek the one which coincides with the
sparse vector x .

Most typically, one solves the convex optimization problem

min
z∈CN

‖z‖l1 subject to PΩUz = PΩy ,

where ‖z‖l1 = |z1|+ |z2|+ . . .+ |zN | is the l1-norm.

• Geometry of l1 balls in high dimensions (Donoho & Tanner). The l1-norm

promotes sparsity.

• Other approaches: greedy methods (e.g. OMP, CoSaMP), thresholding

methods (e.g. IHT, HTP), message passing algorithms,....
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A compressed sensing theorem

Theorem (Candès & Plan (2011))

Let x be s-sparse and suppose that ε > 0. Let Ω ⊆ {1, . . . ,N}, |Ω| = m
be chosen uniformly at random, where

m ≥ C · s · N · µ(U) · (1 + log(ε−1)) · log N,

for some universal constant C. Then with probability greater than 1− ε
the problem

min
z∈CN

‖z‖l1 subject to PΩUz = PΩy ,

has a unique solution and this solution coincides with x.

⇒ If U is incoherent, i.e. µ(U) = O
(
N−1

)
, then

m ≈ s log N � N.

NB. No Restricted Isometry Property (RIP).
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Compressed sensing in inverse problems

Examples: Magnetic Resonance Imaging (MRI), X-ray Computed
Tomography, Electron Microscopy, Seismology, Radio interferometry,....

CS has been applied in/considered for all these problems.

• For MRI, see Lustig, Donoho & Pauli (2007), Lustig et al. (2008)

Let f be the image to recover. Mathematically, all these problems can be
reduced (possibly via the Fourier slice theorem) to the following:

Given {f̂ (ω) : ω ∈ Ω}, recover f .

Here Ω ⊆ R̂d is a finite set of frequencies, and f̂ denotes the Fourier
transform.

13 / 48



Compressed sensing The need for a new theory A new framework Getting more from less Conclusions

Compressed sensing in inverse problems

Examples: Magnetic Resonance Imaging (MRI), X-ray Computed
Tomography, Electron Microscopy, Seismology, Radio interferometry,....

CS has been applied in/considered for all these problems.

• For MRI, see Lustig, Donoho & Pauli (2007), Lustig et al. (2008)

Let f be the image to recover. Mathematically, all these problems can be
reduced (possibly via the Fourier slice theorem) to the following:

Given {f̂ (ω) : ω ∈ Ω}, recover f .

Here Ω ⊆ R̂d is a finite set of frequencies, and f̂ denotes the Fourier
transform.

13 / 48



Compressed sensing The need for a new theory A new framework Getting more from less Conclusions

Standard compressed sensing setup

We form the measurement matrix

U = FW ,

where F ∈ CN×N is the discrete Fourier transform, W ∈ CN×N is an
appropriate sparsifying transform (e.g. wavelets), and solve

min
z∈CN

‖z‖l1 subject to ‖PΩUz − y‖l2 ≤ δ,

where y = {f̂ (ω) : ω ∈ Ω}+ η is the vector of noisy measurements with
‖η‖l2 ≤ δ.
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Warning

This setup is a discretization of the continuous model:

continuous FT ≈ discrete FT ⇒ samples mismatch

Similar to basis mismatch phenomenon

• Chi, Scharf, Pezeshki & Calderbank (2011), Herman & Strohmer (2010)

This mismatch has two primary effects:

1. If measurements are simulated via the DFT ⇒ inverse crimes
• Guerquin–Kern, Lejeune, Pruessman, Unser (2012)

2. Minimization problem has no sparse solution ⇒ poor reconstructions

Example: Recovery of the 2nd Haar

wavelet with N = 256 and m = 128.
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How to avoid this: infinite-dimensional CS

To avoid these issues, one can formulate the reconstruction problem in
the continuous domain first and then discretize.

Infinite-dimensional compressed sensing (BA & Hansen, 2012)

• Extends the standard CS theory:

• Vector spaces → Separable Hilbert spaces
• Matrices U ∈ CN×N → Operators U : `2(N)→ `2(N).

• Key issues: (i) truncation of U via uneven sections and balancing property

(ii) dimension-independent probability bounds (iii) dealing with infinite,

and unknown, tails

Implementation in CS MRI

• Guerquin-Kern, Häberlin, Pruessmann & Unser, 2011
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The Fourier/wavelets recovery problem is coherent

Example: 6.25% random subsampling with N = 2048× 2048.

Image Reconstruction

Unfortunately, for any wavelet basis

µ(U) = O (1), N →∞.

The theorem suggests that m ≈ Nµ(U)s ≈ N is required.
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Incoherence is rare in practice

Recall that
µ(U) = max

i,j=1,...,N
|uij |2.

Any problem that arises from the combination of a

• continuous transform (e.g. Fourier, Radon,...),

• a countable orthonormal basis or frame,

or a discretization thereof, will have a finite, and fixed coherence.

i.e. Most applications of CS in inverse problems.
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But CS is known to work for such problems...

To use CS in these applications, one must sample according to a variable
density (Lustig, Donoho & Pauli (2007)). Rather than choosing Ω
uniformly at random, one oversamples at low frequencies:

Example: 6.25% subsampling with N = 2048× 2048.

Image index set Ω ⊆ Z2
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The need for a new framework

No existing CS theory fully explains why this works. In particular, the
standard assumptions of

• Incoherence

• Uniform random subsampling

are clearly not relevant here.

Claim: In such applications, sparsity alone does not explain the
reconstruction quality observed. In fact, the structure/ordering of the
sparsity plays a crucial role.
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The Flip Test

Recall: Sparsity means that there are s important coefficients, and their
locations do not matter.

The Flip Test (BA, Hansen, Poon & Roman (2013)):

1. Take an image f with coefficients x . Form the measurements y = PΩUx
and compute the approximation f1 ≈ f by the usual CS reconstruction
with appropriate Ω

min
z∈CN

‖z‖l1 subject to ‖PΩUz − y‖l2 ≤ δ.

2. Permute the order of the wavelet coefficients by flipping the entries of x ,

to get a vector x̃ .

3. Form measurements ỹ = PΩUx̃ and use exactly the same CS

reconstruction to get the approximation x̃1 ≈ x̃ .

4. Reverse the flipping operation to get the approximation f2 ≈ f .
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3. Form measurements ỹ = PΩUx̃ and use exactly the same CS

reconstruction to get the approximation x̃1 ≈ x̃ .

4. Reverse the flipping operation to get the approximation f2 ≈ f .

21 / 48



Compressed sensing The need for a new theory A new framework Getting more from less Conclusions

The Flip Test

Recall: Sparsity means that there are s important coefficients, and their
locations do not matter.

The Flip Test (BA, Hansen, Poon & Roman (2013)):

1. Take an image f with coefficients x . Form the measurements y = PΩUx
and compute the approximation f1 ≈ f by the usual CS reconstruction
with appropriate Ω

min
z∈CN

‖z‖l1 subject to ‖PΩUz − y‖l2 ≤ δ.

2. Permute the order of the wavelet coefficients by flipping the entries of x ,

to get a vector x̃ .
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Numerical results

Sparsity is unaffected by permuations, so f1 and f2 should give the same
reconstructions:

unflipped reconstruction f1 flipped reconstruction f2

• 10% subsampling at 1024× 1024 with a variable density strategy
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Numerical results

unflipped recon. flipped recon. subsampling map

X-ray CT: N = 512× 512, m/N = 12%, U = FW , F is the Fourier
transform

The flip test also shows that: (i) there is no RIP (ii) the optimal
subsampling strategy must depend on the image
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Numerical results

unflipped recon. flipped recon. subsampling map

Radio interferometry: N = 512× 512, m/N = 15%, U = FW , F is the
Fourier transform

The flip test also shows that: (i) there is no RIP (ii) the optimal
subsampling strategy must depend on the image
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Fluorescence microscopy: N = 512× 512, m/N = 20%, U = HW , H is
the Hadamard transform
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New assumptions for compressed sensing

Conventional assumptions of CS:

• Incoherence

• Sparsity

• Uniform random subsampling

New assumptions:

• Local coherence in levels

• Sparsity in levels

• Multilevel random subsampling
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Asymptotic incoherence

Definition
A matrix U is asymptotically incoherent if

µ(P⊥K U), µ(UP⊥K )→ 0, K ,N →∞,K/N ≤ c < 1.

Here P⊥K is the projection onto indices {K + 1, . . . ,N}.

• High coherence occurs only in the leading K × K submatrix of U.

Abs. values of the entries of the matrix U (all examples are coherent):

Fourier/wavelets, O(K−1) Fourier/polynomials, O(K−2/3) Hadamard/wavelets, O(K−1)
26 / 48
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Local coherence in levels

We divide the matrix U into rectangular blocks. Let

• N = (N1, . . . ,Nr ) ∈ Nr with 0 = N0 < N1 < . . . < Nr = N,

• M = (M1, . . . ,Mr ) ∈ Nr with 0 = M0 < M1 < . . . < Mr = N.

Notation: for M,K ∈ N, let PK
M = PMP⊥K .

Definition (Local coherence)

The (k, l)th local coherence of U is given by

µ(k , l) =
√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
)µ(P

Nk−1

Nk
U), k , l = 1, . . . , r .

Asymptotically incoherent matrices are globally coherent, but locally
incoherent away from their leading blocks.
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Multilevel random subsampling

Asymptotic incoherence suggests a new sampling strategy:

1. Sample fully in coherent regions of U (first K rows).

2. Subsample elsewhere (remaining rows).

In general, we divide up the rows of U into the same levels indexed by N,
and let

• m = (m1, . . . ,mr ) ∈ Nr with mk ≤ Nk − Nk−1,

• Ωk ⊆ {Nk−1 + 1, . . . ,Nk}, |Ωk | = mk be chosen uniformly at
random.

We call ΩN,m =
⋃

k Ωk an (N,m)-multilevel sampling scheme.

• Note that variable density strategies can be modelled by multilevel
schemes with mk/(Nk − Nk−1)→ 0 as k →∞.
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Sparsity in levels

The flip test shows we must incorporate structure into the new sparsity
assumption.

To do this, we divide our vector x up into levels corresponding to the
column blocks of U indexed by M. Let

s = (s1, . . . , sr ) ∈ Nr , sk ≤ Mk −Mk−1.

We say that x = (x1, . . . , xN)> is (s,M)-sparse if

|{j : xj 6= 0} ∩ {Mk−1 + 1, . . . ,Mk}| ≤ sk , k = 1, . . . , r .

Note: The levels do not necessarily correspond to wavelet scales.
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Images are asymptotically sparse in wavelelets

Definition
A vector x is asymptotically sparse in levels if x is sparse in levels with
sk/(Mk −Mk−1)→ 0 as k →∞.

Wavelet coefficients are not just sparse, but asymptotically sparse when
the levels correspond to wavelet scales.
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20

40

60

80

100

Left: image. Right: percentage of wavelet coefficients per scale > 10−3.
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Towards the main theorem

We need the concept of a relative sparsity.

Definition (Relative sparsity)

Let x ∈ l2(N) with |{j : xj 6= 0} ∩ {Mk−1 + 1, . . . ,Mk}| = sk for
k = 1, . . . , r . Define the relative sparsity

Sk = max
η∈Θ
‖PNk−1

Nk
Uη‖2,

where Θ = {η : ‖η‖l∞ ≤ 1, |supp(P
Ml−1

Ml
η)| = sl , l = 1, . . . , r}.

This concept takes into account interference between different sparsity
levels, i.e. the fact that U is not block diagonal.
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Main theorem

Given s and M, let σs,M(x) be the error of the best l1 norm
approximation of x using an (s,M)-sparse vector.

Theorem (BA, Hansen, Poon & Roman (2013))

Let ε > 0 be given. Suppose that:

• we have

mk & (Nk − Nk−1)

(
r∑

l=1

µ(k , l) · sl

)(
log(ε−1) + 1

)
· log(N),

• we have mk & m̂k · (log(ε−1) + 1) · log(N), where m̂k satisfies

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µ(k , l) · Sk , l = 1, . . . , r .

32 / 48



Compressed sensing The need for a new theory A new framework Getting more from less Conclusions

Main theorem

Theorem (BA, Hansen, Poon & Roman (2013))

Let x̂ be any minimizer of

min
z∈CN

‖z‖l1 subject to ‖PΩUz − y‖l2 ≤ δ.

Then, with probability at least 1− ε,

‖x − x̂‖l2 ≤ C
(
δ
√

K (1 + L
√

s) + σs,M(x)
)
,

for some universal constant C > 0, where K = maxk=1,...,r
Nk−Nk−1

mk
and

L = 1 +

√
log2(6ε−1)

log2(4KM
√
s)

. If mk = Nk − Nk−1, k = 1, . . . , r , then this holds

with probability 1.

• Generalization of standard CS result (Candès & Plan) to the case of
more than one level.

• Extends to the infinite-dimensional CS setting (BA & Hansen).
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Interpretation

The key parts of the theorem are the estimates

mk & (Nk − Nk−1)

(
r∑

l=1

µ(k , l) · sl

)(
log(ε−1) + 1

)
· log(N), (1)

and mk & m̂k · (log(ε−1) + 1) · log(N), where

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µ(k , l) · Sk , l = 1, . . . , r . (2)

Main point: The local numbers of samples mk now depend on

• the local sparsities s1, . . . , sr ,

• the relative sparsities S1, . . . ,Sr

• the local coherences µ(k , l),

rather than the global sparsity s and global coherence µ.
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Sharpness of the estimates

The estimates are complicated by two factors:

• The local sparsities Sk

• The nondiagonal terms µ(k , l), k 6= l .

Relative sparsities:

• Note that Sk ≤ s = s1 + . . .+ sr in general.
• Moreover, it is easy to construct examples where Sk = sk′ for some

k ′ 6= k , i.e. Sk may have no relation to sk .

This means that we cannot in general get bounds of the form:

mk & sk × log factors,

as one may intuitively have expected.

Theorem (BA, Hansen, Poon & Roman (2013))

Subject to mild conditions, if U = V ⊗W is a Kronecker product matrix
then the estimates (1) and (2) reduce to known information-theoretic
limits (up to a log factor in the failure probability ε).
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The Fourier/wavelets case

Recall this is the usual setup for CS in MRI and other inverse problems.

Theorem (BA, Hansen, Poon & Roman (2013))

Let M correspond to wavelet scales. Let A > 1 be a constant depending
on the smoothness and number of vanishing moments of the wavelet
used. Then, subject to appropriate, but mild, conditions one can find
Nk = O (Mk) such that

mk &

(
sk +

∑
l 6=k

A−|k−l|sl

)
× log factors. (?)

• The estimate mk & sk × log factors is optimal.

• Thus, (?) is optimal up to exponentially decaying factors.

This is the first comprehensive proof that CS works in such applications.

• Krahmer & Ward (2013): sparsity-based estimates for Haar wavelets
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Ideas behind the proof

Off-diagonal blocks have small contributions. In particular:

• µ(k, l) . A−|k−l|µ(k , k) for l 6= k

• Sk . sk +
∑

l 6=k A−|k−l|sl

In other words, interference between levels is provably controllable.
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Beyond sparsity: getting even more from less

Much of compressed sensing is based on sparsity.

• Most standard theory: incoherence, RIP, NSP, unversality...

• Standard ‘designer’ matrices: e.g. random Gaussian, Bernoulli

Inverse problems: the flip test shows that sparsity alone is not sufficient.
Structure plays a vital role in the reconstruction quality.

Structured sparsity: Given that such structure is present in many CS
applications, we should try to leverage it.

• Tsaig & Donoho (2006), Eldar (2009), He & Carin (2009), Baraniuk et al.

(2010), Krzakala et al. (2011), Duarte & Eldar (2011), Som & Schniter

(2012), Renna et al. (2013), Chen et al. (2013) + others
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Compressive Imaging

Unlike in most inverse problems, in many CS applications we have
substantial freedom in designing the sensing matrix U.

• E.g. Single-pixel camera (Rice), lenseless imaging (Bell Labs)

• Hardware constraints: U must be binary.

The usual CS approach is to use random Bernoulli matrices. However:

• Unstructured, must be stored. Infeasible for > 256× 256 resolution.

• Universal: work for any sparsity basis (e.g. wavelets), but cannot
exploit sparsity structure.

There exist alternatives with fast transforms (e.g STOne, random
convolutions), but these also cannot exploit structure.
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Using asymptotic incoherence to exploit structure

Our theory shows that asymptotic incoherence is a blessing, as opposed
to a curse.

• It is much more general than uniform incoherence (i.e. more
flexibility in sensing matrix design).

• It allows one to exploit structure via multilevel random subsampling.

Question: Do their exist computationally efficient binary sensing matrices
that are asymptotically incoherent with wavelet bases?

Answer: Yes! The Hadamard transform – O (N log N) + no storage.
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Getting even more from less (and doing it efficiently)

Example: The Berlin cathedral with 15% sampling at various resolutions
using Daubechies-4 wavelets.

Experiments performed using SPGL1 on an Intel i7-3770K, 32 GB RAM
and an Intel Xeon E7, 256 GB RAM.
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Getting even more from less (and doing it efficiently)

Resolution: 32× 32

Random Bernoulli Multilevel Hadamard Original image

RAM (GB): < 0.1 RAM (GB): < 0.1
Speed (it/s): 55.7 Speed (it/s): 53.1
Rel. Err. (%): 33.1 Rel. Err. (%): 20.5
Time: 4.7s Time: 5.7s

Hello
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Getting even more from less (and doing it efficiently)

Resolution: 64× 64

Random Bernoulli Multilevel Hadamard Original image

RAM (GB): < 0.1 RAM (GB): < 0.1
Speed (it/s): 39.8 Speed (it/s): 34.2
Rel. Err. (%): 27.8 Rel. Err. (%): 19.3
Time: 7.1s Time: 7.9s

Hello
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Getting even more from less (and doing it efficiently)

Resolution: 128× 128

Random Bernoulli Multilevel Hadamard Original image

RAM (GB): 0.3 RAM (GB): < 0.1
Speed (it/s): 12.4 Speed (it/s): 26.4
Rel. Err. (%): 26.4 Rel. Err. (%): 17.9
Time: 25s Time: 10.1s

Hello
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Getting even more from less (and doing it efficiently)

Resolution: 256× 256

Random Bernoulli Multilevel Hadamard Original image

RAM (GB): 4.8 RAM (GB): < 0.1
Speed (it/s): 1.31 Speed (it/s): 18.1
Rel. Err. (%): 22.4 Rel. Err. (%): 14.7
Time: 4m27s Time: 18.6s

Hello
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Getting even more from less (and doing it efficiently)

Resolution: 512× 512

Random Bernoulli Multilevel Hadamard Original image

RAM (GB): 76.8 RAM (GB): < 0.1
Speed (it/s): 0.15 Speed (it/s): 4.9
Rel. Err. (%): 19.0 Rel. Err. (%): 12.2
Time: 42m Time: 1m13s

Bernoulli only possible on the Xeon 256 GB RAM.
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Getting even more from less (and doing it efficiently)

Resolution: 1024× 1024

Random Bernoulli Multilevel Hadamard Original image

RAM (GB): 1229 RAM (GB): < 0.1
Speed (it/s): 0.0161 Speed (it/s): 1.07
Rel. Err. (%): ? Rel. Err. (%): 10.4
Time: 6h36m Time: 3m45s

Bernoulli not possible. Grey values are extrapolated.
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Getting even more from less (and doing it efficiently)

Resolution: 2048× 2048

Random Bernoulli Multilevel Hadamard Original image

RAM (GB): 19661 RAM (GB): < 0.1
Speed (it/s): 1.78e-3 Speed (it/s): 0.17
Rel. Err. (%): ? Rel. Err. (%): 8.5
Time: 2d14h Time: 28m

Bernoulli not possible. Grey values are extrapolated.
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Getting even more from less (and doing it efficiently)

Resolution: 4096× 4096

Random Bernoulli Multilevel Hadamard Original image

RAM (GB): 314,573 RAM (GB): < 0.1
Speed (it/s): 1.98e-4 Speed (it/s): 0.041
Rel. Err. (%): ? Rel. Err. (%): 6.6
Time: 25d1h Time: 1h37m

Bernoulli not possible. Grey values are extrapolated.
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Getting even more from less (and doing it efficiently)

Resolution: 8192× 8192

Random Bernoulli Multilevel Hadamard Original image

RAM (GB): 5,033,165 RAM (GB): < 0.1
Speed (it/s): 2.19e-5 Speed (it/s): 0.0064
Rel. Err. (%): ? Rel. Err. (%): 3.5
Time: 238d1h Time: 8h30m

Bernoulli not possible. Grey values are extrapolated.
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Comparison with other structured CS algorithms

Multilevel subsampling with Hadamard matrices

• Use standard recovery algorithm (l1 minimization)

• Exploit structure in the sampling process

Other structured CS algorithms

• Use standard sensing matrices (random Gaussian/Bernoulli)

• Exploit structure in the recovery algorithm

Model-based CS: Baraniuk et al. (2010)

• Modification of CoSaMP based on connected tree structure

Turbo AMP: Som & Schniter (2012)

• Based on Bayesian CS – Ji, Xue & Carin (2008), He & Carin (2009)

• Modification of iterative thresholding algorithms
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Comparison: 12.5% sampling at 256× 256 resolution

Original Model-CS, Err = 21.2%

TurboAMP, Err = 17.5% Multilevel, Err = 7.1%
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Comparison: 12.5% sampling at 256× 256 resolution

Original Model-CS, Err = 17.9%

TurboAMP, Err = 17.7% Multilevel, Err = 8.8%
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Conclusions

1. Standard compressed sensing is based on sparsity, incoherence and
uniform random subsampling. However, in many applications these are
not present.

2. We have introduced a new theory based on more realistic concepts:
sparsity in levels, local coherence and multilevel random subsampling.

3. This provides the first theoretical explanation for the success of
compressed sensing in many inverse problem applications.

4. Moreover, asymptotic incoherence allows one to exploit structure.
This can be done with efficient sensing matrices, allowing one to get
better reconstructions and go to much higher resolutions.

Paper:

• BA, Hansen, Poon & Roman, Breaking the coherence barrier: A new theory for compressed

sensing. Preprint on the arXiv, 2014.
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