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Motivation

Recently-developed sensors can record functions values and spatial
gradient information.

Question: What can we expect to gain from this additional data?
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Motivation

Recently-developed sensors can record functions values and spatial
gradient information.

Question: What can we expect to gain from this additional data?

Two potential answers:

(i) Efficient acquisition. Recording gradient information means sensors
can be placed further apart than in the case where only function
values are measured.

(ii) Improved reconstruction quality. In sparsity-regularized
reconstructions, one can exploit joint sparsity of functions and their
derivatives to attain better accuracy.

This talk: Mathematical understanding of (i) using sampling theory.

o Necessary first step towards (ii).
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Formulation

Let
e f:RY — R be the function
to recover,
e X ={x,:ne€l} be the set
of sensor locations.

Question: Under what conditions on f and on X is it possible to stably
recover f from the measurements

{f(xn) :n€ 1} U{VF(xy):nel}.
Or more generally, from the first k derivatives

{D%f(xp) :n € 1, |a|; < k}.
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Classical sampling theory

Let Q C RY be compact. The Paley—Wiener space

B(Q) = {f e L3(RY) : supp(F) C Q}

is the space of functions which are bandlimited to Q.

Shannon Sampling Theorem: Let Q = (—w,w)?. Any function
f € B((—w,w)9) is uniquely defined by the samples

f(Xn), Xn= n—ﬂ-, nezd.
w
Moreover,
Z f( )smc (wx — nm).

nezd
In particular, Parseval's identity holds

S ()] = iz

o We refer to the constant 57 as the Nyquist rate.

usions and Outlook
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Nonuniform sampling theory

Shannon's theorem requires uniformly-spaced samples. This is rarely the
case in practice. Moreover, Q must be a hypercube.

A collection of nonuniformly-spaced sample points
X ={x,:nel} CRY
is called a stable set of sampling for B(Q) if
AllflE: < D 1F () < BIFIZ,  VF € B(Q).
nel

The ratio B/A is a measure of stability.

Known results:

e d=1, Q= (—w,w). Almost complete characterization in terms of
Beurling density (Jaffard 1991, Seip 1995).

e d > 2, Q compact, convex and symmetric. Sufficient sharp condition in
terms of polar set of Q (Beurling 1960s, Benedetto & Wu 2000).
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Nonuniform sampling theory

Limitations:
o Requires separation of points: |[x, — x| > 1. B/A — 0o asn — 0.

e No explicit estimates for A and B.

9/25



ntroduction Nonuniform sampling theory Sampling theory with derivatives Conclt

Nonuniform sampling theory

Limitations:

o Requires separation of points: |[x, — x| > 1. B/A — 0o asn — 0.

e No explicit estimates for A and B.

The case d = 1. Grochenig (1992): define the density

0 = supinf [x — x,|.
xER nel

If 6 < 5= then, for all f € B(—w,w),

2wd 2wd
(1—) 1712 < 3 ual )2 < (1+) 1712,

nel

where the weights p, = %(X,,H — Xxp—1) compensate for local clustering.

= It suffices to take nonuniform samples just above the Nyquist rate.

isions and Outlook
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Nonuniform sampling theory

The case d > 2. Let X = {x,: n€ I} CRY. Let

® 0 = sup,cpo infpes [x — xp|

e i, = Vol(V,), where {V,},¢; are the Voronoi cells of X.

Grochenig (1992,2001): If Q C (—w,w)? and

log(2)
wd "’

o<

then X is a weighted stable set of sampling with

B/A < (2exp(—wdd) —1) 2.

isions and Outlook
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Nonuniform sampling theory

The case d > 2. Let X = {x,: n€ I} CRY. Let
® 0 = sup,cpo infpes [x — xp|
e i, = Vol(V,), where {V,},¢; are the Voronoi cells of X.

Grochenig (1992,2001): If Q C (—w,w)? and

log(2)

1)
<wd’

then X is a weighted stable set of sampling with

B/A < (2exp(—wdd) —1) 2.

Limitation: Not sharp — deteriorates linearly with d. Conversely,
Beurling's sharp condition is dimension independent.

usions and Outlook
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Nonuniform sampling theory

An improvement of Grochenig's result
Theorem (BA, Gataric, Hansen (2014))
Suppose that Q C B(a,w) for a € RY and w > 0 and that

log(2)  0.6931

~
~ .

w w

0 <

Then X is a weighted stable set of sampling with

B/A < (2exp(—wd) —1) 2.

o If Q= (~w,w)? then § < %. Factor of v/d improvement over
Grochenig's bound.

o If Q = B(a,w), then the estimate is sharp with respect to d.
However, it is strictly less than the sharp condition ¢ ~ 1.5708/w of
Beurling (albeit with explicit bounds).
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Sampling theory with derivative measurements

We now consider the data
{D“f(xy) : n€l,]aly < k},

where o = (o, ..., aq) is a multi-index and |a]; = a1 + ... + ag.

Objective: Show that increasing k allows for a larger maximum density §.
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Uniform sampling with derivatives

Classical problem: Shannon (1950s), Jagerman & Fogel (1956), Linden
& Abramson (1960), Papoulis (1977), Rawn (1989)

.....

Consider d =1 and let Q = (—w,w). If

k+1
x, = KD g

i
w

then {x, : n € Z} is a stable set of sampling for B(Q2), i.e.

(k+ 1)nm 2
Allf|%. < ZZ £ ( >‘ < B||f||3..

n€Z 1=0
Moreover, there exist functions hg(x), ..., hx(x) such that
(k+1)
f(x) = szo< + ”W)h,(wx—(k—i-l)mr), f € B(Q).
n€Z 1=0
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Multivariate nonuniform sampling theorem with derivatives

Setup:
o Let X = {x,:n€ I} CRY and define the weights
1 2« d
Mna = — (X_Xn) dX, nel,aeNO,
al Jy,

where {V,, : n € I} are the Voronoi cells of X.

e Define the function

hi(z) = exp(z) (exp(z Zz /r') , z€(0,00).

This function is increasing on (0, c0). Write Hy(w) for its inverse.
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Multivariate nonuniform sampling theorem with derivatives

Theorem (BA, Gataric, Hansen (2014))
Suppose that Q C B(a,w). If

Hi (1)

then X is a weighted stable set of sampling for derivatives, i.e.

AlflE: <D D pnalD*Fn)? < BlIf[E, VF e B(Q),

nel |al <k

where
exp((wd +1)2 +d —1)
(1 — hg(wd)?)

B/A<
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Discussion

The key part is the estimate

Remarks:

e Asin the k = 0 case, if Q = B(a,w) then (x) is independent of d.

e If Q = (—w,w)? is a hybercube, then (x) reads

Hi (1)
Vdw'’

i.e. it decays like 1/1/d for large d.

o<

ions and Outlook
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Discussion

k 1 2 3 4 5 6 7
Hi(1) | 0.8141 | 1.1268 | 1.4304 | 1.7290 | 2.0416 | 2.3170 2.6080
NYQ* | 3.1416 | 4.7124 | 6.2832 | 7.8540 | 9.4248 | 10.9956 | 12.5664

*Conjectured: currently no existing analogue of Beurling's theorem for
nonuniform sampling with derivatives

Large k asymptotics:

Proposition (BA, Gataric, Hansen (2014))
If W(-) is the Lambert-W function, then

Hi (1) ~ W(1/e)k ~ 0.2785k, k — oo.
Recall this holds for general domains Q and arbitrary nonuniform

samples, and gives explicit bounds. However, it is substantially less than
the conjectured Nyquist rate, which is ~ 1.5708k.
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The univariate case

Wirtinger-Sobolev inequality: Let f € H¥(a, b) with f(")(a) =0,
r=20,...,k—1. Then there is a constant ¢, > 0 such that

11l i2(a,6) < () (b = @) [IF ¥l (a0

Theorem

1
Cht1w *

Suppose that 6 < Then X is a weighted stable set of sampling for

e(‘s“’)zH(1+2(5w/‘1r)2
(1—(crprdw) 1)

derivatives for B(—w,w) with B/A <

e Based on earlier work of Grdchenig (k = 0) and Razafinjatovo (k = 1).

k 1 2 3 4 5 6 7
Hi(1) | 0.8141 | 1.1268 | 1.4304 | 1.7290 | 2.0416 | 2.3170 2.6080
1/cky1 | 1.8751 | 2.2248 | 2.5903 | 2.9621 | 3.3367 | 3.7125 4.0888
NYQ | 3.1416 | 4.7124 | 6.2832 | 7.8540 | 9.4248 | 10.9956 | 12.5664

For large k, 1/cii1 ~ e 1k =~ 0.3679k, as opposed to 0.2785k.
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Spatial-temporal sampling

In some applications, we consider f = f(x, t), where x € R? and

t € [0,00). Acquisition occurs sparsely in space and densely in time.
Measurements may not be taken at the same times at different sensors,
and only spatial derivatives are acquired.
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Sampling theory with derivatives
Spatial-temporal sampling
Define the set
Z = {(%n tmn) ERY x [0,00):n€ I, me J},
and consider the spatial derivative measurements:

{Df(Xnytmn) :n€l,me J |aj; < k}.

Theorem

Let 65 and 0; be the spatial and temporal sampling densities. Suppose
that f € B(Q), where Q C B(a,w) x (—v,v). If

T C(k) .
5t<5, (5X<T7 C(k)—{

1/Ck+1 d=1
Hi(1) d>2

Then Z is a stable weighted set of sampling for derivatives.
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Perturbation theory and larger sampling gaps

Perturbation theory: Kadec-1/4 theorem (1960s). Also Balan (1997) and
Christensen (1999).

Suppose X = {x, : n € I} is a (weighted) stable set of sampling for
derivatives, e.g. uniform samples. Consider the perturbed sample points:

{Zom:me Jy, nel},

with sufficiently small perturbation € = sup,¢; sup,,c [Xn — Xn,m|-

“w & P o & o o o e o » .
o & o o & ‘9 ,.-:.,,-'.’::,v.‘,'_.. ¢ o Black dots are Nyquist rate
. * > . .

N ':“"1.,.?'9 - : samples. Red dots are high
® & 0 o q o % BT % o, .
D I I '..:.‘ o« & density samples. Blue dots
oo Bom a0 e e . . .

°~"".‘i.‘é _:i' ‘1? e s e e are low density samples

. 1;#' s&.ﬁ"‘:?u L[4 e » . [

;""iﬁ?‘?"iﬂa S T L Note: different numbers of
:? #*‘;ﬁnﬁq&,?ﬁﬁ > € b b T

8% ‘.."" ._l,"a;.w';‘. ‘4 > % & o ‘e sensors allowed in different

2%, ‘::ﬁ,,"’z"uf;s‘."i’."f A locations.
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Perturbation theorem for derivatives

Theorem (BA, Gataric, Hansen (2014))

Suppose that X = {x, : n € I} is a (weighted) stable set of sampling for
derivatives for B(2) with bounds A and B, where Q C B(a,w). Let

X ={&m:m€Jy, ncl}, sup |Jn| < o0
n

and suppose that

log(1+ /A/B)

€ = sup sup |X, — Xn.m| <
nel med,

Then X is a stable weighted set of sampling for derivatives.

= Nyquist-sized gaps &~ k7 /w between samples are permitted, as long as
the perturbation € is small.
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Conclusions and Outlook

Conclusion: Nonuniform sampling with k derivatives allows for a larger
maximal sampling density §, scaling linearly with k. Optimal constants
remain elusive, but perturbation theory permit larger sampling gaps.

Future work:

e Improved density conditions, e.g. using random samples (Bass &
Grochenig 2004)

e Other function spaces, e.g. shift-invariant spaces

e Reconstructions from derivative samples
e Infinite-dimensional compressed sensing (BA & Hansen, 2011)
e Joint ¢! regularization — exploiting common sparsity of f and D*f
e Current work proves the existence of stably invertible sampling
operators, a necessary prerequisite for CS
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