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Abstract
We introduce and analyse the so-called Fourier exten-

sion method for the approximation of oscillatory phenom-
ena in bounded intervals. As we show, this method pos-
sesses good resolution properties for such problems. In
particular, the resolution constant, the number of degrees
of freedom per wavelength required to resolve an oscil-
lation at a given frequency, can be varied between 2 and
π by a user-determined parameter. The former value is
optimal and achieved by Fourier series, but only when
oscillations are periodic. Conversely, the Fourier exten-
sion method allows for the resolution of both periodic and
nonperiodic oscillations with near-optimal complexity.

1 Introduction
In many physical problems one encounters the phe-

nomenon of oscillation. When computing the solution to
such a problem with a numerical method, this naturally
leads to the question of resolution. That is, for a given fre-
quency ω, how many degrees of freedom are required to
resolve the solution to a desired accuracy [6, §3]? Whilst
it may be impossible to answer this question in general,
important a priori knowledge can be gained by studying
a particular model class of problem [3, chpt. 2]. For ex-
ample, in the unit interval [−1, 1] (the case we consider
in this paper), one typically considers the complex expo-
nentials

f(x) = exp(iπωx), (1.1)

where ω ∈ R is the frequency of oscillation.
Whenever a problem has periodic oscillations, Fourier

series present arguably the most effective means of ap-
proximation. In this case, as is easily seen from the model
function (1.1), one witnesses a resolution constant of pre-
cisely 2 degrees of freedom per wavelength. In fact, this
figure (referred to as the Nyquist rate in information the-
ory) is optimal. Hence, Fourier series possess good reso-
lution power for periodic oscillations.

The situation changes completely in the nonperiodic
setting, in which case the Fourier approximation suffers
from the Gibbs phenomenon and no longer converges uni-
formly on [−1, 1]. Put simply, Fourier series cannot be
used to resolve nonperiodic oscillations.

A common alternative in this case is to expand f in or-
thogonal polynomials – Chebyshev or Legendre polyno-
mials, for example. Whilst the orthogonal polynomial ex-
pansion of an analytic but nonperiodic function converges
rapidly (in fact, exponentially fast), this approach leads to
a suboptimal resolution constant of π [6, §3]. In Figure
1 we illustrate this behaviour by plotting the Chebyshev
and Legendre expansion coefficients of (1.1). Note that
the asymptotic decay of the nth coefficient, exponentially
fast in n, only sets in once n exceeds πω.
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Figure 1: The values log10 |an| against n = 1, 2, . . ., where
an is the nth Chebyshev (left) or Legendre (right) coefficient

of (1.1) and ω = 10, 20, 40.

A collection of commonly used alternative methods
arises from the desire to reconstruct a function directly
from its Fourier coefficients. Methods such as the Gegen-
bauer reconstruction technique [7], for example, typically
offer spectral convergence, but with a significant deterio-
ration in the resolution power [8].

Given this shortfall, the purpose of this paper is to
study an alternative approach for oscillatory problems,
the so-called Fourier extension method. As we discuss,
this method involves a user-determined parameter T ∈
(1,∞), which allows the resolution constant r = r(T ) to
be varied from 2 (in the limit T → 1) to π (T → ∞),
with exponential convergence occurring once the number
of degrees of freedom exceeds r(T )ω. Hence, Fourier
extensions are ideally suited for oscillatory problems.

Fourier extensions have been employed to overcome
the Gibbs phenomenon in standard Fourier expansions
[2]. Their application to surface parametrisations was ex-
plored in [4]. More recently, a method was developed
in [5] to solve time-dependent PDEs in complex geome-
tries. This was based on a similar, but not identical way
of obtaining one-dimensional Fourier extensions, in com-
bination with an alternating direction technique to handle



general domains. Interestingly, it was shown in [10] (see
also [5]) that this method leads to an absence of disper-
sion errors (or pollution errors) – another beneficial prop-
erty for oscillatory wave problems shared with classical
Fourier series, and very much related to resolution power.

In the next section, we introduce Fourier extensions
and discuss their convergence. Resolution power is ad-
dressed in §3, and §4 contains numerical examples.

2 The Fourier extension method
Suppose that f is analytic and nonperiodic on [−1, 1].

One potential route towards approximating f to high ac-
curacy is to seek an extension of f that is periodic on the
extended domain [−T, T ], where T > 1 is an arbitrary
parameter, and compute the Fourier series on [−T, T ] of
this extension. If Gn is the space of functions of the form

g(x) = a0 +

n∑
k=1

[
ak cos

kπ
T x+ bk sin

kπ
T x
]
,

then a simple means for computing such an extension
gn ∈ Gn is via the optimization problem

gn := arg min
g∈Gn

‖f − g‖L2[−1,1]. (2.1)

This leads to the Fourier extension method [2], [4], [9].

2.1 Convergence
Convergence of the Fourier extension method was con-

sidered in [9] for T = 2, and generalised to arbitrary
T > 1 in [1]. For brevity, we shall only sketch details.
Full proofs can be found in [1], [9].

We commence with the following:

Theorem 2.1 ([1]) Suppose that f ∈ Hk[−1, 1] for some
k ∈ N, where Hk[−1, 1] is the kth standard Sobolev
space, and let T0 > 1. Then, for all T ≥ T0, we have

‖f − gn‖L2[−1,1] ≤ ck(T0)(nπT−1)−k‖f‖Hk[−1,1],

where gn is the Fourier extension of f on [−T, T ].

This theorem confirms so-called spectral convergence
(i.e. faster than any algebraic power of n−1) of the Fourier
extension method. However, whenever f is sufficiently
regular, it turns out that the convergence rate is truly expo-
nential – an observation first confirmed in [9] for T = 2.
A generalisation of this result to arbitrary T > 1 is found
in [1]. We now summarise the key details of the proof.

We first write f(x) = fe(x) + fo(x) as a sum of the
even and odd functions fe(x) = 1

2(f(x) + f(−x)) and

fo(x) = 1
2(f(x) − f(−x)). Likewise, the Fourier ex-

tension gn of f can also be decomposed into even and
odd parts gn = ge,n + go,n, which may be considered
separately. By symmetry, we restrict x to the subinterval
[0, 1].

Note that ge,n ∈ Cn and go,n ∈ Sn, where Cn and
Sn are the spaces spanned by the functions cos kπT x,
k = 0, . . . , n and sin kπ

T x, k = 1, . . . , n respectively.
Since both cos kπT x and sin (k+1)π

T x/ sin π
T x are polyno-

mials of degree k in the variable y = cos πT x, it fol-
lows that the functions h1,n(y) = ge,n(x) and h2,n(y) =
go,n(x)/ sin

π
T x are polynomials of degree n in the vari-

able y ∈ [c(T ), 1], where c(T ) = cos πT . Moreover, since
ge,n and go,n are both defined by a least squares crite-
rion, the change of variable y = cos πT x gives that h1,n(y)
and h2,n(y) are precisely the orthogonal projections of the
functions f1(y) = fe(x) and f2(y) = fo(x)/ sin

π
T x re-

spectively onto the space Pn of polynomials of degree n
with respect to the weighted inner products

〈g, h〉1 =
∫ 1

c(T )
g(x)h(x)

1√
1− y2

dy,

〈g, h〉2 =
∫ 1

c(T )
g(x)h(x)

√
1− y2 dy.

This argument gives an expression for the Fourier exten-
sion gn in terms of polynomials in y. Note that, whilst
the weight functions w1(y) = 1/

√
1− y2 and w2(y) =√

1− y2 are identical to the Chebyshev weight functions
of the first and second kinds, the domain [c(T ), 1] does
not coincide with the standard unit interval [−1, 1]. In
particular, the resulting orthogonal polynomial systems
with respect to w1 and w2 are nonclassical. Yet, the sim-
ilarity is striking, and, accordingly, the name half-range
Chebyshev polynomials was introduced in [9].

There is at least one other similarity with Chebyshev
polynomials. Recall that the Chebyshev approximation of
a function f(y) arises by applying the periodising trans-
formation y = cos θ and computing the Fourier series of
the periodic function f(cos θ). Here the situation is re-
versed. We approximate a function f(x) by a Fourier se-
ries (i.e. the Fourier extension gn), and, in order to anal-
yse this approximation, relate it to a polynomial expan-
sion in the variable y = cos πT x.

Let us return to the quantities hi,n. Recall that the ex-
pansion of an analytic function g in (almost) any orthog-
onal polynomial system converges exponentially fast at
rate ρ, where ρ is determined by the largest Bernstein el-
lipse (appropriately translated to [c(T ), 1]) within which g
is analytic. For the particular case of the functions fi(y),



i = 1, 2, the mapping cos−1 y introduces square-root type
singularities at the point y = −1, which determine the
value of this parameter. We have

Theorem 2.2 ([9], [1]) Whenever the function f is suf-
ficiently analytic, the approximation gn defined by (2.1)
satisfies

|f(x)− gn(x)| ∼ E(T )−n, −1 ≤ x ≤ 1,

where E(T ) =
3+c(T )+2

√
2+2c(T )

1−c(T ) .

This theorem confirms exponential convergence of the
Fourier extension. As noted in [9], if f is not analytic
in a sufficiently large Bernstein ellipse, the rate of expo-
nential convergence is slower. This is of little concern
to this paper, however, since we principally consider the
entire function (1.1).

2.2 Numerical implementation
The most straightforward numerical implementation of

the Fourier extension method involves solving the opti-
mization problem (2.1) directly. This results in a (2n +
1)×(2n+1) linear system for the coefficients of gn, with
corresponding matrix A.

The infinite system {φj}∞j=1, from which the Fourier
extension gn is computed, comprises a tight frame for the
space L2[−1, 1] (with redundancy T ). Hence, we expect
the computation of gn in this system to be severely ill-
conditioned. In fact, numerical experiments indicate that
the condition number κ(A) ∼ E(T )2n for large n (note
that dimGn = 2n) [9].

Whilst ill-conditioning cannot be avoided by a straight-
forward numerical method, it can be significantly amelio-
rated. The approach proposed in [1] is to define an exten-
sion gn ∈ Gn of f via the collocation conditions

gn(xi) = f(xi), i = 0, . . . , 2n+ 2, (2.2)

where xi are the so-called symmetric mapped Chebyshev
nodes, given by

xi =
T

π
cos−1

[
1

2
(1− c(T )) cos

(
(2i+ 1)π

2n+ 2

)
+
1

2
(1 + c(T ))

]
, i = 0, . . . , n,

and xn+1+i = −xi, i = 0, . . . , n. Observe that, rather
than computing polynomial expansions in the variable
y ∈ [c(T ), 1] (as is the case for (2.1)), this approach com-
putes polynomial interpolants in y at the set of Chebyshev

nodes on [c(T ), 1]. By standard results on polynomial ap-
proximation, the convergence rate of this approximation
remains E(T )−n. However, as shown in [1], the con-
dition number of the corresponding linear system is sig-
nificantly reduced: κ(A) ∼ E(T )n. In turn, this leads to
significantly better numerical behaviour of approximation
(2.2) over (2.1) [1].

We shall return to the issue of numerical computations
in §4. For the moment, let us make one important obser-
vation. Since we approximate f in a frame, the inherent
redundancy means that there will be infinitely many dif-
ferent representations of f . Thus, for large n, there will
be many approximate representations of f from the set
Gn. Hence, the exact Fourier extension defined by (2.1)
may differ quite dramatically from that obtained via any
particular numerical method.

3 Resolution power
Having introduced Fourier extensions, we now address

resolution power and the value of the constant r(T ).
An immediate, albeit naı̈ve, answer to this ques-

tion is provided by Theorem 2.1. Since the function
f(x) = exp(iπωx) is smooth and satisfies ‖f‖Hk[−1,1] =

O
(
(πω)k

)
, it follows that

‖f − gn‖L2[−1,1] . (ωTn−1)k, k = 1, 2, . . . .

The approximation gn has 2n degrees of freedom, so we
deduce that r(T ) ≤ 2T . However, this estimate is only
accurate for T ≈ 1. In fact, for large T one witnesses
r(T ) ≈ π. This comes as little surprise in view of the
interpretation in terms of polynomials. As T increases,
the spaces Cn and Sn both resemble polynomial spaces,
and thus gn behaves much like a polynomial expansion.
The figure π arises directly as the well-known resolution
constant of polynomial approximations [3, chpt. 2].

A better estimate for r(T ) can be derived by similar
arguments to those used to establish exponential conver-
gence of Fourier extension gn. In particular, one obtains
the following theorem:

Theorem 3.1 ([1]) The resolution constant of the Fourier
extension method (2.1) satisfies r(T ) ≤ T

√
2− 2c(T ).

In particular, r(T ) = 2T +O
(
(T − 1)2

)
for T → 1 and

r(T ) = π +O
(
T−2

)
as T →∞.

This theorem is verified in Figure 2.

4 Numerical examples
Theorem 3.1 concerns the resolution power of the ex-

act Fourier extension (2.1), which, as discussed, may not
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Figure 2: The quantity ‖f − gn‖∞ against n = 1, 2, . . .,
where f and gn are given by (1.1) and (2.2) respectively,

T =
√
2 (left), T = 5 (right) and ω = 10, 20, 40.

coincide with the result of a given numerical implemen-
tation. This discrepancy has an important effect on res-
olution for larger T , as highlighted in Figure 3. Whilst
r(T ) is approximately 2T for small T , when T � 1 the
observed quantity is much larger than the value of π given
by Theorem 3.1. In fact, when implemented this way, the
Fourier extension method appears to satisfy r(T ) = 2T
for all T , exactly as predicted by the naı̈ve estimate in
Theorem 2.1. This is confirmed in Figure 4.
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Figure 3: The quantity ‖f − gn‖∞ against n, where
T =

√
2 (left), T = 5 (right) and ω = 10, 20, 40.
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Figure 4: The quantity ‖f − gn‖∞ against n, where
f(x) = exp(50iπx) and T = 2, 3, 4, 5 (squares, circles,

crosses and diamonds respectively).

To sum up, due to the inherent redundancy of the frame
{φj}∞j=1, it appears challenging to obtain a resolution
constant of π for large T with a straightforward numerical
implementation. However, it is mainly the case of T ≈ 1,
which leads to the best resolution power, that is of interest
in this paper. In this instance, as evidenced by Figures 2
and 3, the resolution constant is largely unaffected.

Recall that part of the motivation for this work was to
improve the resolution constant of π for polynomial ex-
pansions. To show this improvement, in Figure 5 we com-
pare the Fourier extension method to standard Chebyshev

expansion of the oscillatory function

f(x) = (1 + x2) cos 10x cos 100πx. (4.1)

As expected, the Fourier extension resolves f with fewer
degrees of freedom. In particular, n ≈ 140 gives ten dig-
its of accuracy.
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Figure 5: The quantity ‖f − gn‖∞, where gn is the
Chebyshev expansion (crosses), or the Fourier extension
approximation with T = 4

3 (squares), T = 8
7 (circles).
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