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Compressed sensing problems

Roughly speaking, compressed sensing problems fall into two categories:

Type I. Imposed sensing operators. Measurements are specified by the
physical sensor.

• E.g. MRI, X-ray CT, electron microscopy, seismology, radio
interferometry,...

Type II. Designed sensing operators. The sensing mechanism allows
substantial freedom to design measurements so as to get the best CS
reconstruction.

• E.g. compressive imaging (single pixel camera, lensless imaging),
fluorescence microscopy,...

• The only constraint is the measurement matrix should be binary.
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Summary of the previous talk

1. For type I problems, there is high global coherence between the
measurements (e.g. Fourier) and the sparsifying system (e.g. wavelets).

2. However, there is asymptotic incoherence, which can be exploited by
multilevel random subsampling.

3. Wavelet coefficients are not just sparse, but asymptotically sparse in
levels.

4. Multilevel random subsampling recovers such coefficients using
near-optimal numbers of measurements. This is why CS works in type I
applications such as MRI, CT etc.

5. The flip test shows that the recovery quality depends crucially on this
sparsity structure.
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This talk

Goal: Show that the same principles also lead to improved CS approaches
for type II problems whenever the sparsifying transform Φ is

• A wavelet, curvelet, shearlet, etc-let transform,

• Total variation.
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The CS gospel

Gospel: Random Gaussian/Bernoulli measurements are ‘optimal’ for CS.

Near-optimal recovery guarantees: Taking

m & s log(N/s),

measurements ensures exact recovery of all s-sparse vectors with high
probability.

• The term s log(N/s) is optimal.

Universality: Random (sub)Gaussians are also highly desirable since the
recovery guarantees are independent of the sparsifying transformation.

5 / 32



The CS gospel

Gospel: Random Gaussian/Bernoulli measurements are ‘optimal’ for CS.

Near-optimal recovery guarantees: Taking

m & s log(N/s),

measurements ensures exact recovery of all s-sparse vectors with high
probability.

• The term s log(N/s) is optimal.

Universality: Random (sub)Gaussians are also highly desirable since the
recovery guarantees are independent of the sparsifying transformation.

5 / 32



Sparsity is invariant under permutations

Let P : {1, . . . ,N} → {1, . . . ,N} be a permutation. Given x ∈ CN ,
define the permuted image

x̃ = ΦPΦ∗x .

Example: CS reconstruction using DB4 wavelets, `1 minimization and
m = 8192 random Gaussian measurements with N = 256× 256.

Original image x Permuted image x̃
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Sparsity is invariant under permutations

Let P : {1, . . . ,N} → {1, . . . ,N} be a permutation. Given x ∈ CN ,
define the permuted image

x̃ = ΦPΦ∗x .

Example: CS reconstruction using DB4 wavelets, `1 minimization and
m = 8192 random Gaussian measurements with N = 256× 256.

CS recon, Err=31.54% Permuted CS recon, Err=31.51%
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Conclusion

Physical x Unphysical x̃

CS with random Gaussian, or in general, incoherent measurements, is
suboptimal for images. It recovers all objects in the space

Σs =
{
x ∈ CN : ‖Φ∗x‖0 ≤ s

}
,

exactly, and this includes too many unphysical images.
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New approach

Idea:

• Work with a smaller class of structured sparse objects.

• Don’t use incoherent measurements. Modify the measurements to
exploit structured sparsity.

Choosing an appropriate structure. Some options:

• Linear+sparse (two-level)

• Asymptotic sparsity (multilevel)

• Connected trees

• .....

Need to balance efficiency of the structured representation with ease of
measurement design and computational feasibility (cost and storage) of
the sensing matrix.
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Asymptotic sparsity in levels

For vectors c ∈ CN , let

0 = M0 < M1 < . . . < Mr = N,

denote r sparsity levels.

Definition

A vector c ∈ CN is (s,M)-sparse if

sk = |{j ∈ {Mk−1 + 1, . . . ,Mk} : cj 6= 0}| , k = 1, . . . , r .

Loosely speaking, c ∈ CN is asymptotically sparse in levels if

sk/(Mk −Mk−1)→ 0, k →∞.
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Images are asymptotically sparse in levels

Suppose the levels are taken as the wavelet scales.
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Left: image. Right: percentage of wavelet coefficients per scale > 10−3.

⇒ It is possible to find measurements that work well for ‘most’ images.
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Designing measurements for sparsity in levels

Write c = (c(1), . . . , c(r))>, where c(k) is the set of coefficients at the kth

scale. ‘Ideal’ measurements would be

y (k) = B(k)c(k), B(k) ∈ Cmk×(Mk−Mk−1),

where B(k) is incoherent. Hence

B = AΦ = diag
(
B(1), . . . ,B(r)

)
,

is block diagonal, where A ∈ Cm×N is the sensing matrix and Φ is the
wavelet transform.

However, we are only allowed to design A, not B. Nevertheless, this
suggests that good sensing matrices A for structured sparsity should yield
approximate block diagonality of B = AΦ with incoherent blocks.
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Using Type I measurements for Type II problems

Type I insight: Fourier measurements with multilevel subsampling recover
asymptotically sparse -let coefficients.

• If binary measurements are required, use the Hadamard transform
instead, subsampled in a similar way.
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Why Fourier measurement promote sparsity in levels

The Fourier transform of wavelets. Let φl,k be the Haar wavelet (for
simplicity) with scale l and translation k . Then

|Fφl,k(ω)|2 . 2−j2−|j−l|, 2j−1 ≤ |ω| ≤ 2j .

⇒ Wavelets give a natural division of Fourier space into dyadic bands

W0 = {0, 1}, Wj = {−2j + 1, . . . ,−2j−1} ∪ {2j−1 + 1, . . . , 2j}.

Only wavelets at scale l ≈ j have large spectrum within the band Wj .
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Local incoherence of Fourier meaurements with wavelets

Let U = FΦ be the Fourier/wavelets matrix. Then U has a dyadic block
structure:

U = {U(j,l)}rj,l=1, U(j,l) ∈ C2j×2l .

If µ(·) denotes the coherence, then we have

• Diagonal incoherence: µ(U(j,j)) . 2−j

• Exponential off-diagonal decay: µ(U(j,l)) . 2−|j−l|µ(U(j,j))
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Multilevel random subsampling

Pick mk indices from Wk uniformly at random:

Ωk ⊆Wk , |Ωk | = mk .

Let A ∈ Cm×N , where m =
∑

k mk , be the subsampled DFT with rows
corresponding to indices Ω1 ∪ . . . ∪ Ωr .

Choosing the mk ’s. For Haar wavelets, one can show that to recover an
(s,M)-sparse vector it suffices to take

mk &

sk +
∑
l 6=k

(
√

2)−|k−l|sl

 log(N).

• Extends to general wavelets with
√

2→ A, where A > 1 depends on
the smoothness and number of vanishing moments.
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Multilevel random subsampling
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Image Asymptotic sparsity of coefficients

Matrix U = F Φ Subsampling map in 2D
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Numerical example

Example: 12.5% measurements using DB4 wavelets.

256×256 512×512 1024×1024

Err = 41.6% Err = 25.3% Err = 11.6%

First case: Gaussian random measurements
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Numerical example

Example: 12.5% measurements using DB4 wavelets.

256×256 512×512 1024×1024

Err = 21.9% Err = 10.9% Err = 3.1%
(41.6%) (25.3%) (11.6%)

Second case: Multilevel subsampled Fourier measurements
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Efficient compressive imaging

Example: The Berlin cathedral with 15% sampling at various resolutions
using Daubechies-4 wavelets. Comparison between random Bernoulli and
subsampled multilevel subsampled Hadamard measurements.

Experiments performed using SPGL1 on an Intel i7-3770K, 32 GB RAM
and an Intel Xeon E7, 256 GB RAM.
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Efficient compressive imaging

Resolution: 128× 128

Random Bernoulli Hadamard Original image

RAM (GB): 0.3 RAM (GB): < 0.1
Speed (it/s): 12.4 Speed (it/s): 26.4
Rel. Err. (%): 26.4 Rel. Err. (%): 17.9
Time: 25s Time: 10.1s

Hello
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Efficient compressive imaging

Resolution: 256× 256

Random Bernoulli Hadamard Original image

RAM (GB): 4.8 RAM (GB): < 0.1
Speed (it/s): 1.31 Speed (it/s): 18.1
Rel. Err. (%): 22.4 Rel. Err. (%): 14.7
Time: 4m27s Time: 18.6s

Hello
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Efficient compressive imaging

Resolution: 512× 512

Random Bernoulli Hadamard Original image

RAM (GB): 76.8 RAM (GB): < 0.1
Speed (it/s): 0.15 Speed (it/s): 4.9
Rel. Err. (%): 19.0 Rel. Err. (%): 12.2
Time: 42m Time: 1m13s

Bernoulli only possible on the Xeon 256 GB RAM.
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Efficient compressive imaging

Resolution: 1024× 1024

Random Bernoulli Hadamard Original image

RAM (GB): 1229 RAM (GB): < 0.1
Speed (it/s): 0.0161 Speed (it/s): 1.07
Rel. Err. (%): ? Rel. Err. (%): 10.4
Time: 6h36m Time: 3m45s

Bernoulli not possible. Grey values are extrapolated.
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Efficient compressive imaging

Resolution: 2048× 2048

Random Bernoulli Hadamard Original image

RAM (GB): 19661 RAM (GB): < 0.1
Speed (it/s): 1.78e-3 Speed (it/s): 0.17
Rel. Err. (%): ? Rel. Err. (%): 8.5
Time: 2d14h Time: 28m

Bernoulli not possible. Grey values are extrapolated.
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Efficient compressive imaging

Resolution: 4096× 4096

Random Bernoulli Hadamard Original image

RAM (GB): 314,573 RAM (GB): < 0.1
Speed (it/s): 1.98e-4 Speed (it/s): 0.041
Rel. Err. (%): ? Rel. Err. (%): 6.6
Time: 25d1h Time: 1h37m

Bernoulli not possible. Grey values are extrapolated.
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Efficient compressive imaging

Resolution: 8192× 8192

Random Bernoulli Hadamard Original image

RAM (GB): 5,033,165 RAM (GB): < 0.1
Speed (it/s): 2.19e-5 Speed (it/s): 0.0064
Rel. Err. (%): ? Rel. Err. (%): 3.5
Time: 238d1h Time: 8h30m

Bernoulli not possible. Grey values are extrapolated.
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Example with other -lets

Example: 6.25% subsampling at 2048×2048 resolution. Comparing
wavelets, curvelets, contourlets and shearlets.

2048×2048 image 256×256 crop subsampling map

Note: The sampling pattern is not optimized to the sparsifying
transformation.
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Example with other -lets

wavelets curvelets

contourlets shearlets
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Other structured CS algorithms

Structured sparsity has been widely considered in CS.

• Tsaig & Donoho (2006), Eldar (2009), He & Carin (2009), Baraniuk et al.

(2010), Krzakala et al. (2011), Duarte & Eldar (2011), Som & Schniter

(2012), Renna et al. (2013), Chen et al. (2013) + others

Existing algorithms:

• Model-based CS, Baraniuk et al. (2010)

• Bayesian CS, Ji, Xue & Carin (2008), He & Carin (2009)

• Turbo AMP, Som & Schniter (2012)
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Structured sampling vs. structured recovery

Multilevel subsampling with Fourier/Hadamard matrices

• Use standard recovery algorithm (l1 minimization)

• Exploit asymptotic sparsity in levels structure in the sampling
process, e.g. Fourier/Hadamard

Other structured CS algorithms

• Exploit the connected tree structure of wavelet coefficients

• Use standard measurements, e.g. random Gaussians/Bernoullis

• Modify the recovery algorithm (e.g. CoSaMP or IHT)
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Comparison: 12.5% sampling at 256× 256 resolution

Original `1 Gauss., Err = 15.7% Model-CS, Err = 17.9%

BCS, Err = 12.1% TurboAMP, Err = 17.7% Mult. Four., Err = 8.8%
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Comparison: 12.5% sampling at 256× 256 resolution

Original `1 Bern., Err = 41.2% Model-CS, Err = 41.8%

BCS, Err = 29.6% TurboAMP, Err = 39.3% Mult. Four., Err = 18.2%
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Multilevel Fourier with other sparsifying transformations

wavelets, Err = 18.2% curvelets, Err = 17.4%

shearlets, Err = 16.5% TV, Err = 17.6%
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Remarks

Multilevel Fourier/Hadamard:

• substantial error reduction

• lower cost/storage

• uses black box optimization solvers

• East incorporation of other sparsifying transformations

Other approaches:

• Leverage more structure (connected trees)

• Asymptotically as N →∞, a better model for images

• However, for finite N may be too restrictive

• Algorithms used are less forgiving to model mismatch than l1
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Agnosticism of `1 minimization

The sampling levels N1, . . . ,Nr and number of samples m1, . . . ,mr are
chosen by the user. The sparsity levels M1, . . . ,Mr and sparsities
s1, . . . , sr do not need to be specified.

Main estimates. Suppose that

mk & (Nk − Nk−1)

(
r∑

l=1

µ(k , l) · sl

)(
log(ε−1) + 1

)
· log(N), (1)

and if mk & m̃k · (log(ε−1) + 1) · log(N), where m̃k satisfies

1 &
r∑

k=1

(
Nk − Nk−1

m̃k
− 1

)
· µ(k , l) · Sk , l = 1, . . . , r . (2)

Then, in the absence of noise (for simplicity),

‖x̂ − x‖ . σs,M(x).
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Agnosticism of `1 minimization

For the purposes of analysis, we choose the levels M1, . . . ,Mr to be
wavelet scales. If s1, . . . , sr , then the condition

m̃k & sk +
∑
l 6=k

A−|k−l|sl , k = 1, . . . , r .

This implies (1) and (2).

But this choice may not give the smallest (s,M)-term approximation
error σs,M(x). Other pairs (s′,M′) may give smaller approximation errors.
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Summary

1. Standard CS using incoherent sensing matrices, e.g. random
Gaussians, is highly suboptimal for imaging with -lets.

2. Images are not just sparse, but always possess a distinct asymptotic
sparsity in levels structure.

3. Such structure can be exploited using multilevel subsampling of
Fourier/Hadamard matrices.

4. These matrices are not incoherent with wavelets, but have a distinct
asymptotic incoherence structure.

5. By doing so, one obtains substantial improvements in accuracy and
computational efficiency over standard CS, and also outperforms other
structured CS algorithms.
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Open problems

The majority of CS is based on sparsity and incoherence. This work
suggests that sparsity in levels and local coherence in levels are better
suited in many cases.

• In type I problems (e.g. MRI), they explain why CS works.

• In type II problems (e.g. compressive imaging), they give substantial

improvements over standard and structured CS algorithms.

Future work: Take your favourite CS concept and generalize it to sparsity
with levels. E.g.

• RIP, instance optimality

• phase transitions

• iterative algorithms

• ....
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