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Abstract

We consider expansions of smooth, nonperiodic functions defined on compact intervals
in eigenfunctions of polyharmonic operators equipped with homogeneous Neumann bound-
ary conditions. Having determined asymptotic expressions for both the eigenvalues and
eigenfunctions of these operators, we demonstrate how these results can be used in the
efficient computation of expansions. Next, we consider the convergence. We establish the
key advantage of such expansions over classical Fourier series – namely, both faster and
higher-order convergence – and provide a full asymptotic expansion for the error incurred
by the truncated expansion. Finally, we derive conditions that completely determine the
convergence rate.

1 Introduction

Modified Fourier expansions have recently been introduced as a minor adjustment of classical
Fourier series for the approximation of nonperiodic functions in bounded domains. Developed by
Iserles and Nørsett for functions defined in the compact intervals [15], such expansions converge
uniformly throughout the domain, including on the boundary. In fact, when truncated after N
terms, the modified Fourier expansion of a (sufficiently smooth) function converges at a rate of
O
(
N−2

)
inside the domain and O

(
N−1

)
on the boundary [21]. Conversely, Fourier series suffer

from the well-known Gibbs phenomenon [17], with O (1) errors being present near the boundary,
and slower convergence at a rate of O

(
N−1

)
being witnessed inside the domain.

Whilst offering more rapid convergence, such expansions also retain many of the benefits of
classical Fourier series. Indeed, in the unit interval [−1, 1], the modified Fourier basis is precisely

{cosnπx : n ∈ N} ∪
{

sin(n− 1
2 )πx : n ∈ N+

}
, (1.1)

and thus only differs from the Fourier basis by the shifted argument n− 1
2 appearing in the sine

function. Since (1.1) forms an orthogonal basis of L2[−1, 1] [15], any function f ∈ L2[−1, 1] may
be expressed in terms of its modified Fourier expansion

f(x) ∼ 1

2
f̂C0 +

∞∑
n=1

[
f̂Cn cosnπx+ f̂Sn sin(n− 1

2 )πx
]
, x ∈ [−1, 1],

where f̂Cn =
∫ 1

−1
f(x) cosnπxdx and f̂Sn =

∫ 1

−1
f(x) sin(n − 1

2 )πxdx are the modified Fourier
coefficients of f . As regards numerical computation of these coefficients, it has been found to be
advantageous to use combinations of highly oscillatory and nonstandard classical quadratures
[15, 16], rather than using the Fast Fourier Transform – which, unsurprisingly, could be exploited
in this setting. This approach allows for the more efficient computation of coefficients, with
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computation of the first N coefficients being theoretically possible in only O (N) operations, as
opposed to O (N logN) for FFT-based approaches.

To date, modified Fourier expansions have found applications in a number of areas, including
the spectral discretisation of boundary value problems [3, 4] and the computation of spectra of
oscillatory integral operators [10]. Potential benefits over more standard approaches, typically
polynomial-based methods, have been documented in [4] and [10].

In this paper, we consider a particular generalisation of the modified Fourier basis (1.1). The
aim of this generalisation is to obtain both faster rates and higher degrees of convergence, whilst
retaining the principal advantages of modified Fourier expansions. This topic was originally
developed in [7]. The intent of this paper is to provide both a comprehensive theory of such
expansions, including resolving a number of conjectures raised therein, and, using theoretical
results proved, give a more detailed account of the practical computation of such expansions.
First, however, we recap the salient aspects of [7].

1.1 Expansions in polyharmonic eigenfunctions

Modified Fourier expansions can be identified with expansions in eigenfunctions of the Laplace
operator equipped with homogeneous Neumann boundary conditions. In the unit interval, (1.1)
is precisely the set of eigenfunctions satisfying

−φ′′(x) = µφ(x), x ∈ [−1, 1], φ′(±1) = 0. (1.2)

Interestingly, but of no direct consequence to this paper, this observation facilitates the gen-
eralisation of modified Fourier expansions to functions defined on certain higher-dimensional
domains, including d-variate cubes [16] and particular simplices [13]. As discussed in [15], Neu-
mann boundary conditions are vital to the success enjoyed by such expansions over classical
Fourier series. Had Dirichlet boundary conditions φ(±1) = 0 been employed, for example, lead-
ing to the basis

{
cos(n− 1

2 )πx : n ∈ N+

}
∪ {sinnπx : n ∈ N+}, slower convergence would be

witnessed, in addition to a Gibbs-type phenomenon near the endpoints.
The interpretation of the modified Fourier basis in terms of eigenfunctions of the Laplace–

Neumann operator indicates how such an approach can be generalised. Seeking more rapidly
convergent expansions, we replace the Laplace–Neumann operator with a particular higher-order
differential operator equipped with suitably chosen boundary conditions. In [7], it was argued
that, amongst all operators of fixed, even order 2q, q ∈ N+, fastest convergence occurs when
a function f is expanded in eigenfunctions of the univariate polyharmonic operator subject to
homogeneous Neumann boundary conditions

(−1)qφ(2q)(x) = µφ(x), x ∈ [−1, 1], φ(r)(±1) = 0, r = q, . . . , 2q − 1. (1.3)

In this case, as was shown in [7], the uniform convergence rate is O (N−q). This figure improves
with increasing q, and exceeds the O

(
N−1

)
estimate for modified Fourier expansions, which, in

view of (1.2), naturally correspond to index q = 1.
A significant component of [7] was devoted to constructing the expansion of a function f

in such polyharmonic–Neumann eigenfunctions. By standard spectral theory, the spectrum of
(1.3) consists only of real, nonnegative eigenvalues µn, n ∈ N, with corresponding eigenfunctions
φn that form an orthogonal basis of L2[−1, 1]. For q ≥ 2, as shown in [7], eigenvalues arise
as solutions of a particular transcendental equation and can be easily computed with Newton–
Raphson iterations. Moreover, corresponding eigenfunctions always occur in two cases, even and
odd, and can be written as sums of products of trigonometric and hyperbolic functions with
coefficients that are computed by solving a q × q algebraic eigenproblem.

The computation of the expansion coefficients f̂n =
∫ 1

−1
f(x)φn(x) dx was also considered in

[7]. Using essentially identical techniques to those employed in the modified Fourier case, it was
shown that the first N coefficients can be computed in O (N) operations from the knowledge of
only certain pointwise values of f and its derivatives.
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1.2 Key results and outline

The intent of this paper is to present a more comprehensive study of the eigenfunctions of (1.3)
and the corresponding expansion of a function f in such eigenfunctions. The first result we prove
concerns the precise nature of polyharmonic–Neumann eigenvalues and eigenfunctions. We show
that such quantities, whilst not being known explicitly for q ≥ 2, possess explicit asymptotic
representations (in n) that are accurate up to exponentially small remainders. Specifically,
having introduced the fundamental properties of polyharmonic–Neumann expansions in Section
2 (and recapped the principal results of [7]), in Section 3 we prove that, if µn = α2q

n is the nth

eigenvalue, then

αn =
1

4
(2n+ q − 1)π +O

(
e−nπγq

)
, n� 1, (1.4)

where γq = sin π
q . Moreover, if φn is the corresponding L2-normalised eigenfunction, we have

φn(x) =
1

c

q−1∑
s=0

cs

[
e

1
4 (2n+q−1)πλs(x−1) + (−1)n+q+1e−

1
4 (2n+q−1)πλs(x+1)

]
+O

(
e−nπγq

)
, (1.5)

where λs = −ie
isπ
q and the values cs, c are independent of n and known explicitly as minors of

a particular q × q matrix.
Results (1.4) and (1.5) are naturally of theoretical interest. Moreover, they are necessary

precursors to a detailed study of the convergence of expansions in polyharmonic–Neumann eigen-
functions, a topic we consider further in Sections 4–6. However, before doing so, we demonstrate
how (1.4) and (1.5) provide a simple and effective means to compute the majority of the eigenval-
ues and eigenfunctions. Indeed, whilst eigenvalues and eigenfunctions can always be computed
by solving an algebraic eigenproblem [7], we show that this is only necessary for the first handful
of values n = 1, 2, . . .. Whenever n is sufficiently large the estimates (1.4) and (1.5) are exact up
to machine epsilon and no computations are required.

Convergence of the polyharmonic–Neumann expansion is considered in Section 4. We prove
uniform convergence of this expansion for f ∈ H1[−1, 1] (the first classical Sobolev space),
and determine the corresponding rate of convergence in Section 5. For smooth f , we derive
an asymptotic series for the error incurred by its polyharmonic–Neumann expansion (when
truncated after N terms), valid at any point x ∈ [−1, 1]. In particular, we show that the rate
of convergence is O (N−q) uniformly and O

(
N−q−1

)
in (−1, 1). These results generalise those

proved in [21] for the modified Fourier (q = 1) case. Finally, in Section 6, we discuss the
particular factors that determine the convergence rate.

Proofs in this paper are largely self-contained: we only assume some basic spectral theory of
self-adjoint linear operators.

1.3 Background

The expansion of a function in eigenfunctions of an arbitrary differential operator has been ex-
tensively studied. More commonly referred to as a Birkhoff expansion [8, 9, 11, 20], much is
known in the general case about both convergence and the asymptotic nature of the eigenvalues
and eigenfunctions. However, as mentioned in [7], this theory inadequately describes the case
of polyharmonic–Neumann expansions. In particular, estimates similar to (1.4) and (1.5) are
known to hold for a broad variety of differential operators and boundary conditions, but only
with O

(
n−1

)
remainder terms. To the best of our knowledge, the exponentially small terms

appearing in (1.4) and (1.5) do not currently exist in literature. In addition, though much is
known regarding convergence of Birkhoff expansions, in particular as regards the phenomenon of
equiconvergence [19] (see also [24]), most studies consider only convergence in (−1, 1), or assume
that the approximated function obeys the same boundary conditions as those prescribed to the
linear operator. For polyharmonic–Neumann expansions, such results are of limited use. Nev-
ertheless, the particular nature of the polyharmonic–Neumann operator and its eigenfunctions
permits us to compile a far more thorough and accurate theory of the corresponding expansions.

3



1.4 Notation

We write L2[−1, 1] for the standard space of complex-valued, square-integrable functions on
[−1, 1], with corresponding inner product

(f, g) =

∫ 1

−1

f(x)g(x) dx, ∀f, g ∈ L2[−1, 1],

(here z denotes the complex conjugate of z ∈ C) and norm ‖f‖ =
√

(f, f). We let Hr[−1, 1] be
the classical Sobolev space of order r ∈ N, with norm denoted by ‖·‖r. We shall also occasionally
consider the space L∞[−1, 1] with corresponding norm, the uniform norm, denoted by ‖·‖∞.

Whilst the eigenfunctions of (1.3) form a countable set {φ0,n}q−1
n=0 ∪ {φn}∞n=1 (see below),

we will occasionally not make this enumeration explicit. Thus, we write φ for an arbitrary
eigenfunction of (1.3) with eigenvalue µ = α2q. The function φ need not be normalised, and
therefore is only unique up to a scalar multiple. Conversely, the enumerated eigenfunctions
{φ0,n}q−1

n=0 ∪ {φn}∞n=1 will always be L2-normalised.

2 Polyharmonic eigenfunction bases

The univariate polyharmonic operator L = (−1)q d2q

dx2q , when equipped with homogeneous Neu-
mann boundary conditions, is semi-positive definite. Hence, its spectrum consists of a countable
number of nonnegative eigenvalues [18], which we denote µn, n ∈ N. For convenience, we define
αn so that µn = α2q

n .
Since L[φ] = 0 if and only if φ ∈ Pq−1 is a polynomial of degree less than q, µ = 0 is a q-fold

eigenvalue. The corresponding orthonormal eigenfunctions are φ0,n, n = 0, . . . , q − 1, where

φ0,n = (n+ 1
2 )

1
2Pn and Pn is the nth Legendre polynomial. All other eigenvalues µn are positive

and simple: moreover, the collection {µn} has no finite limit point in R. The corresponding
L2-normalised eigenfunctions φn, n ∈ N, in combination with φ0,n, n = 0, . . . , q − 1, form a
dense, orthonormal subset of L2[−1, 1].

An explicit form for the polyharmonic–Neumann eigenfunctions was derived in [7]. In the
next section we recap this construction.

2.1 Explicit form of polyharmonic–Neumann eigenfunctions

Let φ be a polyharmonic–Neumann eigenfunction with eigenvalue µ = α2q. We first note that

φ(x) =

2q−1∑
r=0

cre
λrαx, (2.1)

where the values λr ∈ C satisfy λ2q
r = (−1)q, r = 0, . . . , 2q − 1 and the parameters cr ∈ C

are determined by the boundary conditions. Simplification of this expression requires one to
separately address the two cases corresponding to even and odd q. With q even, the eigenfunction
φ takes one of two possible forms φe, φo, corresponding to an even or odd function respectively.
These are

φe(x) =

q
2∑

r=0

cer cos

(
αex sin

πr

q

)
cosh

(
αex cos

πr

q

)

+

q
2−1∑
r=1

der sin

(
αex sin

πr

q

)
sinh

(
αex cos

πr

q

)
, (2.2)
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φo(x) =

q
2−1∑
r=0

cor cos

(
αox sin

πr

q

)
sinh

(
αox cos

πr

q

)

+

q
2∑

r=1

dor sin

(
αox sin

πr

q

)
cosh

(
αox cos

πr

q

)
. (2.3)

The parameters cer, d
e
r, α

e and cor, d
o
r, α

o are specified by enforcing the boundary conditions,
which results in an algebraic q × q eigenproblem. The case of q odd is treated in a virtually
identical manner [7].

It transpires that eigenfunctions always occur in even and odd cases, regardless of q. Hence,
we will occasionally use the notation φen, φe0,n and φon, φo0,n to distinguish such cases. More
frequently, however, we will write φ0,n, φn and ignore this fact. As with classical Fourier series,
splitting into even and odd cases is most convenient for computations, where real numbers are
desirable. Conversely, for the purposes of analysis it is simpler not to make this distinction.

The biharmonic (q = 2) case warrants further attention. It presents the first significant gener-
alisation beyond modified Fourier series, and highlights several features of general polyharmonic–
Neumann expansions. In this setting, the eigenfunctions are given by

φen(x) =
1√
2

(
cosαenx

cosαen
+

coshαenx

coshαen

)
, φon(x) =

1√
2

(
sinαonx

sinαon
+

sinhαonx

sinhαon

)
, (2.4)

and the values αen, αon, n ∈ N are precisely the roots of the nonlinear equations tanhαe+tanαe =
0 and tanhαo−tanαo = 0 respectively. These values lie in intervals of exponentially small width.
In fact, for all n ∈ N,

αen ∈
(

(n− 1
4 )π, (n− 1

4 )π + ce−2(n− 1
4 )π
)
, αon ∈

(
(n+ 1

4 )π − ce−2(n+ 1
4 )π, (n+ 1

4 )π
)
, (2.5)

where c = cos 1+sin 1
sin 1 . Upon redefining αen = α2n−1 and αon = α2n, it is readily seen that this

establishes the conjecture (1.4) for q = 2. A simple argument, based on (2.4) and (2.5), also
verifies (1.5) in this setting. We defer a proof of (1.4) and (1.5) in the general case to Section 3.

2.2 Expansions in polyharmonic–Neumann eigenfunctions

We may express any function f ∈ L2[−1, 1] in terms of its expansion in polyharmonic–Neumann
eigenfunctions,

f(x) =

q−1∑
n=0

f̂0,nφ0,n(x) +

∞∑
n=1

f̂nφn(x), (2.6)

where f̂0,n = (f, φ0,n) and f̂n = (f, φn) are the coefficients of f in the polyharmonic–Neumann
basis, and identification is in the usual L2 sense. Moreover, the following Parseval characterisa-
tion holds,

‖f‖2 =

q−1∑
n=0

|f̂0,n|2 +

∞∑
n=1

|f̂n|2, ∀f ∈ L2[−1, 1]. (2.7)

In practice, the infinite series in (2.6) is truncated after N ∈ N+ terms, leading to the approxi-
mation

fN (x) =

q−1∑
n=0

f̂0,nφ0,n(x) +

N∑
n=1

f̂nφn(x). (2.8)

Note that fN is the orthogonal projection of f onto the space spanned by the first N + q
eigenfunctions. In particular, fN → f in the L2 norm. However, it turns out that, for sufficiently
smooth f , fN → f uniformly on [−1, 1] at a rate of O (N−q). Moreover, whilst f(±1)−fN (±1) =
O (N−q), the error f(x)− fN (x) = O

(
N−q−1

)
uniformly in compact subsets of (−1, 1). Figure

1 demonstrates this observation for f(x) = e2x and q = 1, 2, 3, 4. We devote Sections 4 and 5 to
the study of convergence of the approximation fN , including a proof of these statements.
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Figure 1: Error in approximating f by fN for q = 1 (squares), q = 2 (circles), q = 3 (crosses) and
q = 4 (diamonds). Left: scaled error Nq‖f − fN‖L∞[−1,1] for N = 1, . . . , 100. Right: scaled error
Nq+1‖f − fN‖L∞[− 1

2
, 1
2
].

As mentioned, the original motivation for polyharmonic–Neumann expansions was to obtain
faster convergence. The aforementioned convergence rates demonstrate the benefit gained by
increasing q. Figure 1 also highlights this improvement. For example, with q = 1 and N = 50,
the uniform error in approximating f(x) = e2x is roughly 6.0×10−2, whereas when q is increased
to 4, this value is 1.1× 10−6 – approximately 6× 105 times smaller.

Such an improvement in convergence with increasing q is a direct consequence of the Neumann
boundary conditions. In the next section, we briefly explain why this is the case.

2.3 Neumann boundary conditions

A simple argument to this end was given in [7]. Let f̂n = (f, φn) be the coefficient of a
smooth function f with respect to the normalised polyharmonic eigenfunction φn with eigen-
value µn = α2q

n (for the moment we do not specify boundary conditions). Upon replacing φn by

(−1)qα−2q
n φ

(2q)
n and integrating by parts 2q times, we obtain the expression

f̂n =

∫ 1

−1

f(x)φn(x) dx =
(−1)q

α2q
n

[
2q−1∑
r=0

(−1)rf (r)(x)φ
(2q−r−1)
n (x)

∣∣∣∣1
x=−1

+

∫ 1

−1

f (2q)(x)φn(x) dx

]
.

It is known in a rather general context that the parameter αn = O (n) for large n and the

derivative φ
(r)
n (x) = O (nr) [20]. Substituting these results into the above expression, a simple

argument now demonstrates that, amongst all possible boundary conditions, the fastest possible
decay of the coefficient f̂n is O

(
n−q−1

)
. Moreover, such decay occurs when Neumann boundary

conditions are prescribed (in which case, the first q terms of the above sum vanish). Upon the
assumption of uniform convergence of fN to f , this translates into a uniform approximation
error of O (N−q) (see Section 5).

The necessity of such boundary conditions is highlighted upon consideration of the Dirichlet
boundary conditions

φ(r)(±1) = 0, r = 0, . . . , q − 1. (2.9)

These give the slowest possible coefficient decay: f̂n = O
(
n−1

)
. As a result, the expansion of

a function f in polyharmonic–Dirichlet eigenfunctions does not converge uniformly on [−1, 1],
and suffers from a Gibbs-type phenomenon near x = ±1 (a fact we confirm in Section 4).
This observation comes as little surprise: due to (2.9), the truncated expansion of an arbitrary
function f in polyharmonic–Dirichlet eigenfunctions must vanish at x = ±1, along with its first
q−1 derivatives. Thus, unless f also vanishes at x = ±1, we cannot expect uniform convergence
of its expansion.

It is possible that other boundary conditions yield the same coefficient decay (but no better).
For example, when q = 1, the Robin boundary conditions φ′(±1) + aφ(±1) = 0, a ∈ R, also give

f̂n = O
(
n−2

)
. We choose Neumann boundary conditions for their simplicity, thereby making

the construction of the approximation fN easier.
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3 Asymptotics for polyharmonic–Neumann eigenvalues and
eigenfunctions

This section is devoted to establishing the estimates (1.4) and (1.5). As stated, similar estimates,
but with only O

(
n−1

)
remainder terms, form a central component in the study of general

Birkhoff expansions [11, 20]. To the best of our knowledge, estimates for the polyharmonic–
Neumann case with exponentially small remainders do not currently exist in literature. As we
discuss later, this is doubtless due to the fact that such estimates are only valid under rather
specific conditions.

3.1 Polyharmonic–Neumann eigenvalues

Consider an eigenfunction φ with eigenvalue µ = α2q 6= 0. By definition (−1)qφ(2q) = α2qφ and
φ(q+r)(±1) = 0, r = 0, . . . , q−1. Suppose now that we write φ as in (2.1). Then, an application of
the boundary conditions yields the following system of equations for the coefficients c0, . . . , c2q−1:

2q−1∑
s=0

cs(αλs)
r+qeαλs =

2q−1∑
s=0

cs(αλs)
r+qe−αλs = 0, r = 0, ..., q − 1.

As a result, the values α are precisely the roots of the equation g(α) = 0, where

g(α) = det



eαλ0 eαλ1 · · · eαλ2q−1

λ0eαλ0 λ1eαλ1 · · · λ2q−1eαλ2q−1

...
...

. . .
...

λq−1
0 eαλ0 λq−1

1 eαλ1 · · · λq−1
2q−1eαλ2q−1

e−αλ0 e−αλ1 · · · e−αλ2q−1

λ0e−αλ0 λ1e−αλ1 · · · λ2q−1e−αλ2q−1

...
...

. . .
...

λq−1
0 e−αλ0 λq−1

1 e−αλ1 · · · λq−1
2q−1e−αλ2q−1


. (3.1)

Using Cramer’s rule, we obtain

g(α) =
∑
σ∈S2q

sgn(σ)eα
∑q−1
r=0 [λσ(r)−λσ(q+r)]

q−1∏
r=0

[
λσ(r)λσ(q+r)

]r
, (3.2)

where S2q is the set of permutations of the indices {0, . . . , 2q − 1}, σ(r) ∈ {0, . . . , 2q − 1} is the
image of the index r = 0, . . . , 2q − 1 under the permutation σ ∈ S2q, and sgn(σ) takes value +1
if σ is an even permutation and −1 otherwise.

Our interest lies with the asymptotic behaviour α → ∞. Note that, since the eigenvalues
{µn}∞n=1 are nonnegative and possess no finite limit point, there must be solutions of g(α) = 0

in this regime. Hence, we scrutinise the sum
∑q−1
r=0[λσ(r) − λσ(q+r)]. To do so, we introduce

the following ordering on the values λ0, . . . , λ2q−1. We define λ0 = −i and λr = λ0λ
r, where

λ = e
iπ
q . Notice that λq = i, and λq+r = −λr. Moreover, Reλr ≥ 0 for r = 0, . . . , q, and

Reλr < 0 otherwise.

Lemma 3.1. The quantity Re
∑q−1
r=0[λσ(r) − λσ(q+r)] takes maximal value 2 cot π

2q = 2θq. This
is attained precisely when σ ∈ T2q = Uq ∪ Vq, where

Uq = {σ ∈ S2q : σ(r) ∈ {0, . . . , q − 1}, r = 0, . . . , q − 1} ,
Vq = {σ ∈ S2q : σ(r) ∈ {1, . . . , q}, r = 0, . . . , q − 1} .

Moreover,
∑q−1
r=0[λσ(r)−λσ(q+r)] = 2(θq− i) for σ ∈ Uq and

∑q−1
r=0[λσ(r)−λσ(q+r)] = 2(θq+i) for

σ ∈ Vq. Conversely, if σ /∈ T2q then Re
∑q−1
r=0[λσ(r) − λσ(q+r)] ≤ 2(θq − γq), where γq = sin π

q .
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Proof. Note that
q−1∑
r=0

λr = λ0

q−1∑
r=0

λr =
2i

e
iπ
q − 1

= θq − i,

and
∑q
r=1 λr = 2i +

∑q−1
r=0 λr = θq + i. Hence, Re

∑q−1
r=0[λσ(r) − λσ(q+r)] is constant on T2q and

takes value 2θq. Moreover,

q−1∑
r=0

[λσ(r) − λσ(q+r)] = 2(θq − i), σ ∈ Uq,
q−1∑
r=0

[λσ(r) − λσ(q+r)] = 2(θq + i), σ ∈ Vq,

as required.
Now suppose that σ /∈ T2q. Then, there exists r1, r2 = 0, . . . , q − 1 such that σ(r1) ∈

{q + 1, . . . , 2q − 1} and σ(q + r2) ∈ {1, . . . , q − 1}. In particular, Reλσ(r1) ≤ −Reλ1 = −γq and
Reλσ(q+r2) ≥ γq. Therefore

Re

q−1∑
r=0

[λσ(r) − λσ(q+r)] ≤ Re

q−1∑
r=0

[λr − λq+r]− 2γq = 2(θq − γq).

Thus, the maximal value of Re
∑q−1
r=0[λσ(r) − λσ(q+r)] is attained on T2q and is bounded by

2(θq − γq) for σ /∈ T2q.

This lemma allows us to immediately provide an estimate for the function g:

Lemma 3.2. The function g(α) defined by (3.1) satisfies

g(α) = e2θqα detV0 detV1

[
e−2iα + (−1)qe2iα

]
+O

(
e2(θq−γq)α

)
, α→∞,

where V0, V1 ∈ Cq×q are independent of α and have (r, s)th entries λrs and λrq+s respectively,
r, s = 0, . . . , q − 1.

Note that both V0 and V1 can be expressed in terms of products of diagonal and Vandermonde
matrices. Thus, the constant detV0 detV1 can be exactly specified [12, chpt. 4]. Indeed, for a
Vandermonde matrix V ∈ Cq×q with (r, s)th entry xsr, r, s = 0, . . . , q − 1, we have

detV =
∏

0≤r<s≤q−1

(xs − xr) . (3.3)

However, since these exact values are of little relevance to the present discussion, we shall not
pursue this issue further.

Proof of Lemma 3.2. Applying the result of Lemma 3.1 to (3.2) gives

g(α) =e2(θq−i)α
∑
σ∈Uq

sgn(σ)

q−1∏
r=0

(
λσ(r)λσ(q+r)

)r
+ e2(θq+i)α

∑
σ∈Vq

sgn(σ)

q−1∏
r=0

(
λσ(r)λσ(q+r)

)r
+O

(
e2(θq−γq)α

)
, α→∞. (3.4)

If σ ∈ Uq, we may write

σ(r) =

{
σ′(r) r = 0, . . . , q − 1
q + σ′′(r − q) r = q, . . . , 2q − 1,

where σ′, σ′′ ∈ Sq. In particular, sgn(σ) = sgn(σ′)sgn(σ′′). Hence

∑
σ∈Uq

sgn(σ)

q−1∏
r=0

(
λσ(r)λσ(q+r)

)r
=

∑
σ′,σ′′∈Sq

sgn(σ′)sgn(σ′′)

q−1∏
r=0

(
λσ′(r)λq+σ′′(r)

)r
,
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and this is precisely detV0 detV1. Similar arguments can be applied to σ ∈ Vq. Noting that
λ2q = λ0, we write

σ(r) =

{
1 + σ′(r) r = 0, . . . , q − 1
q + 1 + σ′′(r − q) r = q, . . . , 2q − 1.

In this case sgn(σ) = −sgn(σ′)sgn(σ′′), and hence

∑
σ∈Vq

sgn(σ)

q−1∏
r=0

(
λσ(r)λσ(q+r)

)r
= −detV2 detV3,

where V2, V3 ∈ Cq×q have (r, s)th entries λr1+s and λrq+1+s respectively. Observe that V2 = DV0,

V3 = DV1, where D ∈ Cq×q is the diagonal matrix with rth entry λr. Therefore

detV2 detV3 = (detD)2 detV0 detV1 = λq(q−1) detV0 detV1 = e−iπ(q−1) detV0 detV1,

Substituting this expression into (3.4) now completes the proof.

We are now able to establish the key result of this section: namely, equation (1.4). We have

Theorem 3.3. Suppose that µn = α2q
n , n ∈ N+, is the nth eigenvalue of the polyharmonic–

Neumann operator. Then αn = 1
4 (2n+ q − 1)π +O (e−nπγq ) as n→∞.

Proof. For an eigenvalue µ = α2q we have g(α) = 0. Hence, e4iα = eiπ(q−1) +O
(
e−2γqα

)
, which

in turn gives α = αn = 1
4 (2n+ q − 1)π +O (e−nπγq ), as required.

As mentioned, this result is a vital step towards the effective computation of the values αn.
In Section 3.3, we discuss this computation. Before doing so, however, we turn our attention to
the asymptotic behaviour of the polyharmonic eigenfunctions φn themselves.

3.2 Polyharmonic–Neumann eigenfunctions

We wish to establish (1.5). Recall that the eigenfunction φ corresponding to eigenvalue µ =
α2q 6= 0 can be written as a sum of exponentials (2.1). Enforcing the boundary conditions
φ(q+r)(±1) = 0, r = 0, . . . , q − 1, leads to a system of equations for the unknown coefficients,
from which it is simple to verify that φ can be be expressed as

φ(x) = det



eαλ0x eαλ1x · · · eαλ2q−1x

λq0eαλ0 λq1eαλ1 · · · λq2q−1eαλ2q−1

λq+1
0 eαλ0 λq+1

1 eαλ1 · · · λq+1
2q−1eαλ2q−1

...
...

. . .
...

λ2q−1
0 eαλ0 λ2q−1

1 eαλ1 · · · λ2q−1
2q−1eαλ2q−1

λq0e−αλ0 λq1e−αλ1 · · · λq2q−1e−αλ2q−1

λq+1
0 e−αλ0 λq+1

1 e−αλ1 · · · λq+1
2q−1e−αλ2q−1

...
...

. . .
...

λ2q−2
0 e−αλ0 λ2q−2

1 e−αλ1 · · · λ2q−2
2q−1e−αλ2q−1


=

2q−1∑
s=0

eαλsx(−1)s detA[s],

(3.5)
where A[s] is the corresponding minor

A[s] =



λq0eαλ0 · · · λqs−1eαλs−1 λqs+1eαλs+1 · · · λq2q−1eαλ2q−1

...
. . .

...
...

. . .
...

λ2q−1
0 eαλ0 · · · λ2q−1

s−1 eαλs−1 λ2q−1
s+1 eαλs+1 · · · λ2q−1

2q−1eαλ2q−1

λq0e−αλ0 · · · λqs−1e−αλs−1 λqs+1e−αλs+1 · · · λq2q−1e−αλ2q−1

...
. . .

...
...

. . .
...

λ2q−2
0 e−αλ0 · · · λ2q−2

s−1 e−αλs−1 λ2q−2
s+1 e−αλs+1 · · · λ2q−2

2q−1e−αλ2q−1


,
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(recall here that we do not stipulate any normalisation on φ). Using Cramer’s rule once more,
we deduce that

detA[s] =
∑

σ∈S2q,s

sgn(σ)eα[
∑q−1
r=0 λσ(r)−

∑q−2
r=0 λσ(q+r)]

q−1∏
r=0

λq+rσ(r)

q−2∏
r=0

λq+rσ(q+r), (3.6)

where S2q,s is the set of bijections from {0, . . . , 2q− 2} to {0, . . . , s− 1, s+ 1, . . . , 2q− 1}. As in
the previous section, we wish to analyse detA[s] as α→∞. We have

Lemma 3.4. Suppose that s = 0, . . . , q. Then

detA[s] = e(2θq−λs)α detB detV [s] +O
(

e[2(θq−γq)−Reλs]α
)
, α→∞,

where B ∈ Cq×q has (r, s)th entry λq+rq+1+s and

V [s] =


λq0 · · · λqs−1 λqs+1 · · · λqq
λq+1

0 · · · λq+1
s−1 λq+1

s+1 · · · λq+1
q

...
. . .

...
...

. . .
...

λ2q−1
0 · · · λ2q−1

s−1 λ2q−1
s+1 · · · λ2q−1

q

 . (3.7)

Note that the matrices V [s] are independent of α (as is B). Moreover, each V [s] corresponds
to a particular minor of the matrix V ∈ C(q+1)×(q+1) with (r, s)th entry λq+rs . Though not
important in our present considerations, this observation will be pertinent later.

Proof of Lemma 3.4. Consider the quantity Re
[∑q−1

r=0 λσ(r) −
∑q−2
r=0 λσ(q+r)

]
. Arguing as in

Lemma 3.1, we find that this is maximised precisely when σ ∈ Tq,s, where

Tq,s = {σ ∈ S2q,s : σ(r) ∈ {0, . . . , s− 1, s+ 1, . . . , q}, r = 0, . . . , q − 1} ,

in which case
∑q−1
r=0 λσ(r) −

∑q−2
r=0 λσ(q+r) = 2θq − λs. For σ /∈ Tq,s, we have

Re

[
q−1∑
r=0

λσ(r) −
q−2∑
r=0

λσ(q+r)

]
≤ 2(θq − γq)− Reλs.

Substituting this into (3.6), we obtain

detA[s] = e(2θq−λs)α
∑
σ∈Tq,s

sgn(σ)

q−1∏
r=0

λq+rσ(r)

q−2∏
r=0

λq+rσ(q+r) +O
(

e[2(θq−γq)−Reλs]α
)
.

In an identical manner to Lemma 3.1, we deduce that this sum is precisely detB detV [s].

The eigenfunction φ, as defined by (3.5), is not normalised. Since we eventually seek an
expression for the normalised eigenfunction φn, this lemma indicates that it is first prudent to
scale the eigenfunction φ by dividing by e2θqα detB. This gives the new expression

φ(x) =

q−1∑
s=0

[
(−1)s detV [s]eλsα(x−1) − bse−λsα(x+1)

]
+O

(
e−2γqα

)
, α→∞, (3.8)

where the constants b0, . . . , bq−1 are to be determined. We have

Lemma 3.5. The constants bs, s = 0, . . . , q − 1 appearing in (3.8) satisfy

bs = (−1)s detV [s]iq−1e2iα +O
(
e−2γqα

)
, α→∞, s = 0, . . . , q − 1,

where V [s] is given by (3.7).
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Proof. Consider the boundary condition φ(q+r)(−1) = 0, r = 0, . . . , q − 1. Substituting (3.8)
gives

0 = α−q−rφ(q+r)(−1) =

q−1∑
s=0

[
(−1)s detV [s]λq+rs e−2λsα − (−1)q+rλq+rs bs

]
+O

(
e−2γqα

)
.

Suppose that D̃ ∈ Rq×q is the diagonal matrix with rth entry (−1)q+r. Then, written in matrix
form, the above expression is

D̃V [q]{br}q−1
r=0 = V [q]{(−1)r detV [r]e−2λrα}q−1

r=0 +O
(
e−2γqα

)
=
(

detV [0]e−2λ0α
)
V [q]{1, 0, . . . , 0}> +O

(
e−2γqα

)
= detV [0]e2iα{λq+r0 }q−1

r=0 +O
(
e−2γqα

)
.

The matrix D̃ is self-inverse. Moreover, D̃{λq+r0 }q−1
r=0 = {(−1)q+rλq+r0 }q−1

r=0 = {λq+rq }q−1
r=0. Hence

V [q]{br}q−1
r=0 = detV [0]e2iα{λq+rq }q−1

r=0 +O
(
e−2γqα

)
,

and, using Cramer’s rule, we find that bs = detV [0]e2iα det Ṽ [s]

detV [q] +O
(
e−2γqα

)
, where

Ṽ [s] =


λq0 · · · λqs−1 λqq λqs+1 · · · λqq−1

λq+1
0 · · · λq+1

s−1 λq+1
q λq+1

s+1 · · · λq+1
q−1

...
. . .

...
...

. . .
...

λ2q−1
0 · · · λ2q−1

s−1 λ2q−1
q λ2q−1

s+1 · · · λ2q−1
q−1

 .

This matrix is obtained from the matrix V [s] by interchanging precisely q − s − 1 columns.
Hence det Ṽ [s] = (−1)q+s+1 detV [s]. Moreover, it is trivial to show that V [0] = DV [q], where
D ∈ Cq×q is the diagonal matrix with sth entry λq+s. Substituting these observations into
the expression for bs, we deduce that bs = e2iα(−1)q+s+1 detD detV [s] + O

(
e−2γqα

)
. Since

detD = λq
2+ 1

2 q(q−1) = (−1)qiq−1, we obtain the result.

Using this lemma, we obtain the expression

φ(x) =

q−1∑
s=0

(−1)s detV [s]
[
eλsα(x−1) + iq−1e2iαe−λsα(x+1)

]
+O

(
e−2γqα

)
, α→∞, (3.9)

for the eigenfunction φ. To establish (1.5), we first need to normalise the eigenfunction φ. This
requires an asymptotic formula for ‖φ‖. We have

Lemma 3.6. Suppose that φ is the polyharmonic–Neumann eigenfunction with asymptotic ex-
pansion (3.8) and corresponding eigenvalue µ = α2q 6= 0. Then

‖φ‖ = c+O
(
e−γqα

)
, α→∞, (3.10)

where

c = 2
1
2 q(q−1)+1

∏
0≤r<s<q

sin
π(r − s)

2q
. (3.11)

Proof. Suppose that we write b = iq−1e2iα, so that

φ(x) =

q−1∑
s=0

cs

[
eαλs(x−1) + be−λsα(x+1)

]
+O

(
e−2γqα

)
.

Then

‖φ‖2 =

q−1∑
r,s=0

cr c̄s

∫ 1

−1

[
eαλr(x−1) + be−λrα(x+1)

] [
eαλ̄s(x−1) + b̄e−λ̄sα(x+1)

]
dx+O

(
e−2γqα

)
.
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Consider the constant b. Since e2iα = (−1)q−1e−2iα + O
(
e−2γqα

)
, we deduce that b is real in

the limit α → ∞. Specifically, b = b̄ + O
(
e−2γqα

)
. Expanding the previous expression and

simplifying now gives

‖φ‖2 = 2

q−1∑
r,s=0

cr c̄se
−α(λr+λ̄s)

[∫ 1

−1

coshα(λr + λ̄s)xdx+ b

∫ 1

−1

coshα(λr − λ̄s)xdx

]
+O

(
e−2γqα

)
.

Note that
∫ 1

−1
cosh zxdx = 2

z sinh z for z 6= 0 and 2 otherwise. Moreover, for r, s = 0, . . . , q − 1,

λr + λ̄s = 0 if and only if r = s = 0, and λr − λ̄s = 0 only when r + s = q. Hence

‖φ‖2 = 4|c0|2 +

q−1∑
r,s=0

(r,s) 6=(0,0)

4cr c̄s
α(λr + λ̄s)

e−α(λr+λ̄s) sinhα(λr + λ̄s)

+

q−1∑
r,s=0
r+s6=q

4bcr c̄s
α(λr − λ̄s)

e−α(λr+λ̄s) sinhα(λr − λ̄s) + 4b

q−1∑
r=1

cr c̄q−re
−2λrα +O

(
e−2γqα

)
.

(3.12)

The final sum is O
(
e−2γqα

)
, and hence can be discarded. For the second sum, we notice that

2e−α(λr+λ̄s) sinhα(λr + λ̄s) = 1 +O
(
e−2γqα

)
for (r, s) 6= (0, 0). Therefore

q−1∑
r,s=0

(r,s)6=(0,0)

4cr c̄s
α(λr + λ̄s)

e−α(λr+λ̄s) sinhα(λr + λ̄s) =
2

α

q−1∑
r,s=0

(r,s)6=(0,0)

cr c̄s
λr + λ̄s

+O
(
e−2γqα

)
.

Now consider the third sum in (3.12). Since 2e−α(λr+λ̄s) sinhα(λr − λ̄s) = e−2αλ̄s − e−2αλr , and

e−2αλ̄s − e−2αλr =


−e2iα r = 0, s = 1, . . . , q − 1
e−2iα s = 0, r = 1, . . . , q − 1

e−2iα − e2iα r = s = 0
0 otherwise

up to a term of order e−2γqα, it follows that

2b

q−1∑
r,s=0
r+s 6=q

cr c̄s
α(λr − λ̄s)

e−α(λr+λ̄s) sinhα(λr − λ̄s)

= b
c0c̄0

λ0 − λ̄0

(
e−2iα − e2iα

)
− b

q−1∑
s=1

c0c̄s
α(λ0 − λ̄s)

e2iα + b

q−1∑
r=1

cr c̄0
α(λr − λ̄0)

e−2iα +O
(
e−2αγq

)
= −b

q−1∑
s=0

c0c̄s
α(λ0 − λ̄s)

e2iα + b

q−1∑
r=0

cr c̄0
α(λr − λ̄0)

e−2iα +O
(
e−2αγq

)
.

Recall from the proof of Lemma 3.5 that detV [0] = detD detV [q] and detD = (−1)qiq−1. Hence
c0 = detV [0] = (−1)qiq−1 detV [q] = iq−1cq, and therefore

bc0e2iα = i2(q−1)e4iαcq = cq +O
(
e−2γqα

)
,

since e4iα = eiπ(q−1) + O (e−γqα) (see Theorem 3.3). Since b is real in the limit α → ∞, we
also find that bc̄0e−2iα = c̄q + O

(
e−2γqα

)
. Substituting these observations into the previous

expression, we obtain

4b

q−1∑
r,s=0
r+s6=q

cr c̄s
α(λr − λ̄s)

e−α(λr+λ̄s) sinhα(λr − λ̄s) =
2

α

q−1∑
s=0

cq c̄s
λq + λ̄s

+
2

α

q−1∑
r=0

cr c̄q
λr + λ̄q

+O
(
e−2γqα

)
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for the third term of (3.12). Combining this with the expression for the second term now gives

‖φ‖2 = 4|c0|2 +
2

α

q∑
r,s=0

(r,s)6=(0,0),(q,q)

cr c̄s
λr + λ̄s

+O
(
e−2γqα

)
.

To establish (3.10), we first need to demonstrate that the sum vanishes. To prove this result, it
suffices to show that

t∑
r=0

cr c̄t−r
λr + λ̄t−r

= 0, t = 1, . . . , q,

q∑
r=t−q

cr c̄t−r
λr + λ̄t−r

= 0, t = q + 1, . . . , 2q − 1.

Moreover, since λr + λ̄t−r = −iλr(1− λ−t), these conditions reduce to

t∑
r=0

cr c̄t−rλ
−r = 0, t = 1, . . . , q,

q∑
r=t−q

cr c̄t−rλ
−r = 0, t = q + 1, . . . , 2q − 1. (3.13)

Suppose that we define the matrix V ∈ C(q+1)×(q+1) with (r, s)th entry λq+rs , r, s = 0, . . . , q. It
is readily seen that (−1)q+r detV [r] = detV (V −1)r,q. Hence

{cr}qr=0 = (−1)q(detV )V −1{0, . . . , 0, 1}>.

Consider the matrix V . Since λq+rs = λq+r0 λrsλqs, we may write V = D[0]WD[1], where W is
the Vandermonde matrix with (r, s)th entry λrs, and D[0] and D[1] are the diagonal matrices
with rth entries λq+r0 and λqr = (−1)r respectively. Simple arguments now give that

(−1)q

detV
{(−1)rcr}qr=0 = W−1{0, . . . , 0, 1}>.

Set er = (−1)q+r

detV cr. To prove (3.13), it suffices to show the result with the values cr replaced
by er. Note that W{er}qr=0 = {0, . . . , 0, 1}>. This is equivalent to the polynomial interpolation
conditions p(λr) = δr,q, r = 0, . . . , q, where p ∈ Pq is the polynomial

∑q
r=0 erx

r. Trivially, p can
be written in terms of the qth Lagrange polynomial:

p(x) =

q−1∏
r=0

x− λr

λq − λr
.

Now consider the polynomial

q(x) = p(x)p(λ−1x) =

q∑
r,s=0

ēserλ
−rxr+s =

2q∑
t=0

γtx
2t,

where γt =
∑t
r=0 er ēt−rλ

−r for t = 0, . . . , q and γt =
∑q
r=t−q er ēt−rλ

−r for t = q+1, . . . , 2q−1.

Therefore, it suffices to show that the polynomial q(x) involves only 1 and x2q and no other
powers of x. We have

p(x)p(λ−1x) =
1

|detV |2
q−1∏
r=0

(x− λ̄r)(xλ−1 − λr) = − 1

|detV |2
q−1∏
r=0

(x− λ2q−r)(x− λr+1).

The product may be written as
∏2q
r=1(x − λr). Since λ is a 2qth root of unity, this reduces to

x2q − 1. Hence q(x) = −|detV |−2(x2q − 1), as required. This gives (3.13).
We conclude that ‖φ‖2 = 4|c0|2 + O

(
e−2γqα

)
. To complete the proof, recall that c0 =

detV [0], where V [0] ∈ Cq×q is the matrix defined by (3.7) with (r, s)th entry λq+rs+1. Note that

λq+rs+1 = (λ0λ
s+1)q+r = λq+r1 λrsλqs. Therefore, V [0] = D[0]WD[1], where W is the Vandermonde

matrix with (r, s)th entry λrs and D[0] and D[1] are diagonal matrices with rth entries λq+r1 and
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λqr = (−1)r respectively. In particular, detD[0] = λ
1
2 q(3q−1)
1 = e−

1
4 iπ(3q−1)(q−2) and detD[1] =

e
1
2 iπq(q−1). Therefore, applying (3.3), we obtain

|detV [0]| = |detW | =
∏

0≤r<s<q

|λr − λs|,

which gives

|detV [0]|2 =
∏

0≤r<s<q

2
[
1− cos π(r−s)

q

]
= 2q(q−1)

∏
0≤r<s<q

sin2 π(r−s)
2q ,

as required.

With this lemma to hand, we are now able to prove the main result of this section and
thereby establish (1.5):

Theorem 3.7. Suppose that µn = α2q
n , n ∈ N+, is the nth eigenvalue of the polyharmonic–

Neumann operator with corresponding L2-normalised eigenfunction φn. Then

φn(x) =
1

c

q−1∑
s=0

cs

[
e

1
4 (2n+q−1)πλs(x−1) + (−1)n+q+1e−

1
4 (2n+q−1)πλs(x+1)

]
+O

(
e−

1
2nπγq

)
uniformly in x ∈ [−1, 1], where c is given by (3.11), cs = (−1)s detV [s], and the matrix V [s] is
defined by (3.7).

Proof. This follows immediately from (3.9), Lemma 3.6 and Theorem 3.3.

One consequence of this theorem is that we can perform an extremely detailed study of
expansions in polyharmonic–Neumann eigenfunctions. In particular, we are able to provide an
asymptotic expansion for the error f(x)− fN (x) in inverse powers of N at any point x ∈ [−1, 1],
with explicitly known constants (see Section 5).

Let us connect Theorem 3.7 to the explicit example of biharmonic eigenfunctions (see Section
2.1). Observe that when q = 2 this result gives

φn(x) =
(1− i)

2
√

2
e

1
4 (2n+1)πi

[
e−

1
4 (2n+1)πix + (−1)n+1e

1
4 (2n+1)πix

]
−
√

2ie−
1
4 (2n+1)π

[
e

1
4 (2n+1)πx + (−1)n+1e−

1
4 (2n+1)πx

]
+O

(
e−

1
2nπ
)
.

Suppose, for example, that n = 2m− 1 (the case n = 2m is identical). Then αn = (m− 1
4 )π +

O (e−mπ), and we obtain

φ2m−1(x) = (−1)m+1i cos(m− 1
4 )πx− i√

2

cosh(m− 1
4 )πx

cosh(m− 1
4 )π

+O
(
e−mπ

)
= − i√

2

[
cos(m− 1

4 )πx

cos(m− 1
4 )π

+
cosh(m− 1

4 )πx

cosh(m− 1
4 )π

]
+O

(
e−mπ

)
.

Upon comparison of this formula with (2.4), we confirm Theorem 3.7 in this case, up to a
renormalisation factor c ∈ C with |c| = 1.

Another simple consequence of Theorem 3.7 concerns the asymptotic behaviour of the eigen-
functions φn in the interior (−1, 1). As the following corollary indicates, such eigenfunctions are
exponentially close to regular oscillators away from the endpoints x = ±1:

Corollary 3.8. Suppose that φn is as in Theorem 3.7. Then

φn(x) = c′e
1
4 (2n+q−1)πi cos 1

4 (2n+ q − 1)πx+O
(

e−
1
2nπγq(1−|x|)

)
, n+ q odd,

φn(x) = −c′ie 1
4 (2n+q−1)πi sin 1

4 (2n+ q − 1)πx+O
(

e−
1
2nπγq(1−|x|)

)
, n+ q even,

uniformly for x in compact subsets of (−1, 1), where c′ = ei arg(detV [0]).
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Figure 2: Top row: the triharmonic eigenfunctions φn (thicker line) and approximations cos 1
2
(n+ 1)πx

(thinner line) for n = 6, 14, 20 (left to right). Bottom row: the error |φn(x)− cos 1
2
(n+ 1)πx|.

Proof. Since Reλs ≥ γq for s = 1, . . . , q − 1, an application of Theorem 3.7 gives

φn(x) =
c0
c

[
e−

1
4 (2n+q−1)πi(x−1) + (−1)n+q+1e

1
4 (2n+q−1)πi(x+1)

]
+O

(
e−

1
2nπγq(1−|x|)

)
.

=
c0
c

e
1
4 (2n+q−1)πi

[
e−

1
4 (2n+q−1)πix + (−1)n+q+1e

1
4 (2n+q−1)πix

]
+O

(
e−

1
2nπγq(1−|x|)

)
.

Suppose that n+ q is odd. Then

φn(x) =
2c0
c

e
1
4 (2n+q−1)πi cos 1

4 (2n+ q − 1)πx+O
(

e−
1
2nπγq(1−|x|)

)
.

Recall from the proof of Lemma 3.6 that c = 2|c0| and c0 = detV [0]. This gives the result.

In Figure 2 we exhibit this result for q = 3. Note the very rapid onset of the asymptotic
behaviour away from the endpoints. Here and elsewhere, the exact eigenfunctions φn, as opposed
to their asymptotic forms, were found using the techniques of [7]. Section 3.3 gives a more
detailed description.

A central component of the study of general Birkhoff expansions is the phenomenon of
equiconvergence [19, 24]. In the interior (−1, 1), eigenfunctions of a large class of differen-
tial operators approach regular oscillators in the limit n → ∞ (though, in general, only at a
rate of O

(
n−1

)
). For this reason, pointwise convergence of Birkhoff expansions may be studied

using standard tools of Fourier analysis. Although it is possible to use Corollary 3.8 to apply
this technique to polyharmonic–Neumann expansions, this is not recommended. As we prove in
Section 5, such expansions converge much more rapidly than classical Fourier series; an observa-
tion which is not easily obtained via an equiconvergence argument. In addition, our interest also
lies with uniform convergence throughout [−1, 1], which, in light of the nonuniform convergence
of the Fourier series of a nonperiodic function, is also not easily established in this way.

As discussed in [7], much is known regarding the zeros of polyharmonic–Neumann eigenfunc-
tions. For example, the nth eigenfunction possesses precisely n + q simple zeros in (−1, 1) and
zeros of consecutive eigenfunctions interlace [22]. As a direct result of Theorem 3.7, we are able
to precisely determine the distribution of such zeros in the limit n → ∞. Unsurprisingly, given
that φn is exponentially close to a regular oscillator in (−1, 1), this distribution is uniform:

Corollary 3.9. The zeros of φn are asymptotically uniformly distributed as n→∞.

Proof. Suppose that I = [a, b] ⊆ (−1, 1) is a closed interval. Let Zn(I) be the number of zeros
of φn in I. It follows from Theorem 3.7 that Zn(I) = 1

2 (b− a)n+O (1) as n→∞. Since φn has
precisely n+ q simple zeros in [−1, 1] , the proportion of zeros in I is 1

2 |I|+O
(
n−1

)
for large n.

Note that |I| = 2 for I = [−1, 1], which explains the factor of 1
2 .
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It remains to show that the same result holds for intervals I containing at least one of the
endpoints x = ±1. For this case, we first note that φn is either even or odd. Hence, it suffices
to consider I = [a, 1] ⊆ (−1, 1]. If a > 0, then

Zn(I) =
1

2
Zn ([−1,−a] ∪ [a, 1]) =

1

2
{Zn([−1, 1])− Zn([−a, a])} =

1

2
(1− a)n+O (1) ,

as required. If a < 0, then Zn(I) = Zn([−1, 1])− Zn([−a, 1]), and the result follows.

Though this result is of interest, it is included primarily as a simple example of the usefulness
of Theorem 3.7 and will not be needed in subsequent analysis. Nonetheless, this result does
indicate that the FFT could potentially be employed in the computation of polyharmonic–
Neumann expansions – a question we leave open for future research.

To finish this section, we present one further result concerning polyharmonic–Neumann eigen-
functions φn: namely, the growth of their derivatives as functions of n. This knowledge will be
useful in Sections 4–6.

Lemma 3.10. Suppose that φn is the nth polyharmonic–Neumann eigenfunction with corre-

sponding eigenvalue µn = α2q
n 6= 0. Then ‖φ(r)

n ‖∞ = O (nr) for large n and any r ∈ N.
Moreover,

φn(1) =
dr
c
αrn +O

(
e−

1
2nπγq

)
, φn(−1) = (−1)n+re

3
4 (q−1)πiφn(1) +O

(
e−

1
2nπγq

)
,

where dr = c0(−i)q−r−1 +
∑q−1
s=0 csλ

r
s.

Proof. Consider equation (1.5). This expression is uniform in x ∈ [−1, 1]. Therefore,

φ(r)
n (x) =

1

c
αrn

q−1∑
s=0

csλ
r
s

[
eλsαn(x−1) + (−1)riq−1e2iαne−λsαn(x+1)

]
+O

(
e−

1
2nπγq

)
.

Since Reλs ≥ 0, the functions eλsαn(x−1) and e−λsαn(x+1) are bounded by 1 on [−1, 1]. Hence
the first result now follows immediately. For the second, substituting x = 1 (for example) into
the above expression gives

φ(r)
n (1) =

1

c
αrn

[
c0λ

r
0(−1)riq−1e4iαn +

q−1∑
s=0

csλ
r
s

]
+O

(
e−

1
2nπγq

)
.

Noting that e4iαn = (−1)q−1 +O
(

e−
1
2nπγq

)
(see Theorem 3.3) completes the proof.

The estimates proved in this section, namely the exponential asymptotics for polyharmonic
eigenvalues and eigenfunctions, improve known results in the literature of Birkhoff expansions.
We speculate that the principal reason for their omission is due to the fact that such estimates
are only valid under very specific conditions. In fact, there is evidence to suggest that only the
polyharmonic operator with particularly simple boundary conditions will admit such estimates.
A proof of such a result requires further study, most likely along similar lines to [20], and is
beyond the scope of this paper.

As we address next, the exponential asymptotics provided in this section are of great use
in the computation of the expansion fN . In [7], the polyharmonic operator was chosen, out of
all possible 2qth order operators, for its simplicity. The previous observation indicates another
reason for such a choice.

3.3 Computation of polyharmonic–Neumann expansions

In [7] it was shown how to construct the eigenfunctions φn in a systematic manner (see also
Section 2.1). Once the values αn have been computed, the coefficients of such functions are
found by solving a q× q algebraic eigenproblem. Computation of the values αn involves solving
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n 1 2 3 4 5 10 15 20 25 30

q = 2
en 2.43 4.00 5.16 6.99 8.44 15.5 22.5 29.5 36.4 43.3
an 3 3 2 2 2 1 0 0 0 0

q = 3
en — 3.62 — 6.20 — 13.6 — 25.7 — 37.7
an 0 3 0 2 0 1 0 0 0 0

q = 4
en 2.35 4.63 4.42 5.44 6.97 11.6 16.8 21.5 26.5 31.4
an 4 3 3 2 2 1 1 0 0 0

Table 1: Numerical computation of αn for q = 2, 3, 4. The value en = − log10

(
|αn − 1

4
(2n+ q − 1)|/αn

)
measures the number of significant digits (a dash indicates where αn = 1

4
(2n + q − 1) exactly) and an

is the number of Newton–Raphson iterations required to obtain machine epsilon.

n 1 2 3 4 5 10 15 20
q = 2 (7.6, 2) (4.2, 4) (1.9, 5) (8.8, 7) (3.9, 8) (6.3, 15) (9.6, 22) (1.5, 28)
q = 3 (1.5, 2) (2.9, 3) (6.5, 5) (1.5, 5) (2.8, 7) (1.3, 12) (4.3, 19) (2.2, 24)
q = 4 (1.0, 2) (5.0, 3) (9.3, 4) (7.2, 5) (3.9, 6) (1.9, 10) (9.9, 16) (4.4, 20)

Table 2: Uniform error in approximating φn using Theorem 3.7 for q = 2, 3, 4. Here (c, n) = c× 10−n

for c ∈ R and n ∈ N.

a transcendental equation, which can be carried out with standard iterative techniques, e.g.
Newton–Raphson.

However, the exponential asymptotics mean that such a procedure is only necessary for small
values of the parameter n. Once n is sufficiently large, we may use the approximations given
in Theorems 3.3 and 3.7 instead (note that Theorem 3.7 gives an expression involving complex
parameters. It is a simple, albeit tedious, exercise to translate this result into a real form,
thereby giving an expression better suited for computations). To highlight this fact, in Tables
1 and 2 we consider the error in approximating αn and φn by their asymptotic estimates. As
is evident, such estimates are accurate to within machine epsilon whenever n > 15, meaning
that only the first 15 eigenvalues and eigenfunctions require numerical computation. Moreover,
for those values αn which require computation, only four Newton–Raphson iterations at most
are required for machine accuracy. This observation is readily explained by the exponential
asymptotics. We remark in passing that had the estimates in Theorems 3.3 and 3.7 only been
accurate up to O

(
n−1

)
, as is the case for the majority of Birkhoff expansions, then computation

of both αn and φn would have been significantly more intensive.
The other main task in constructing the expansion fN involves computing the coefficients f̂n.

We shall not dwell on this issue, one dealt with more thoroughly in [7], aside from mentioning
that the basic approach is to replace the function f by a certain interpolating polynomial p and
approximate the coefficient f̂n by p̂n. This is a so-called Filon-type method (see also [14]). High
asymptotic accuracy is guaranteed by interpolating certain derivatives of f at the endpoints x =
±1, whilst high classical order (in the sense of numerical quadrature) is obtained by interpolating
the function f at a collection of nodes in [−1, 1].

To sum up, the computation of polyharmonic-Neumann expansions can be carried out in two
stages. First, the eigenvalues and eigenfunctions are found, with an algebraic eigenproblem being
solved for the low values of n and the asymptotic expansion being used otherwise. Second, the
coefficients of the function to be expanded are computed using the quadratures mentioned above.
From now on, we assume that such expansions are computed in this manner. Moreover, we also
assume the error in such computations to be negligible in comparison to the error committed by
the truncated expansion.

4 Convergence of polyharmonic–Neumann expansions

In the final three sections of this paper, we consider the convergence of polyharmonic–Neumann
expansions. In particular, we wish to determine conditions under which fN → f uniformly
on [−1, 1], and thereby confirm the benefit gained from polyharmonic–Neumann expansions
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over both Fourier series and expansions in polyharmonic–Dirichlet eigenfunctions, for example.
Moreover, we also seek to fully assert the advantage of increasing the parameter q: namely, both
a faster rate and higher degree of convergence of the expansion fN .

Since polyharmonic–Neumann eigenfunctions form an orthogonal basis of L2[−1, 1], the ap-
proximation fN converges to f in the L2 norm. Our main focus in this section is the question of
convergence in higher-order Sobolev spaces Hr[−1, 1], r ∈ N. In turn, this study allows uniform
convergence to be verified, using standard imbedding theorems.

As mentioned, much is known about the convergence of general Birkhoff expansions, espe-
cially as regards the phenomenon of equiconvergence. However, these results typically do not
sufficiently describe the case of polyharmonic–Neumann expansions. In the forthcoming sections,
we present a largely self-contained convergence analysis of such expansions.

4.1 Duality under differentiation

In [3], it was shown that modified Fourier expansions (polyharmonic–Neumann expansions with
q = 1) form an orthogonal basis not just for L2[−1, 1], but also for the space H1[−1, 1]. In
particular, fN converges to f ∈ H1[−1, 1] in the H1 norm. This proof was generalised in [7]:
polyharmonic–Neumann expansions form an orthogonal basis Hq[−1, 1], provided this space is
equipped with the inner product

(f, g)q = (f, g) +
(
f (q), g(q)

)
, f, g ∈ Hq[−1, 1]. (4.1)

Here (·, ·) denotes the standard L2 inner product. Central to this proof is the following lemma:

Lemma 4.1. If we apply the operator dq

dxq to the set of polyharmonic–Neumann eigenfunctions
φn, we obtain, up to scalar multiples, the set of polyharmonic eigenfunctions that satisfy the
Dirichlet boundary conditions (2.9). Such eigenfunctions are dense and orthogonal in L2[−1, 1].
Moreover, for f ∈ Hq[−1, 1], (fN )(q) is precisely the truncated expansion of f (q) in such eigen-
functions.

Proof. Though this proof is found in [7], it is useful to repeat it here, since similar techniques
will be used later.

It is clear that q-fold differentiation yields the set of polyharmonic–Dirichlet eigenfunctions
(note that the polyharmonic–Dirichlet operator has no zero eigenvalue). Density and orthogo-
nality now follow directly from standard spectral theory [18]. For the second result, we first note
that, for f ∈ Hr[−1, 1], r = 0, . . . , q,

(f, φ) =
(−1)q+r

α2q

(
f (r), φ(2q−r)

)
, (4.2)

where φ is the normalised polyharmonic–Neumann eigenfunction with corresponding eigenvalue
µ = α2q. This follows from the expression φ(2q) = (−1)qα2qφ and repeated integration by parts.
Now, suppose that φ(q) = cψ, where ψ is the corresponding normalised polyharmonic–Dirichlet
eigenfunction and c is a constant. Using (4.2) with r = q gives

c2 = c2‖ψ‖2 = ‖φ(q)‖2 = α2q.

Moreover, we have

(f, φ) =
1

α2q

(
f (q), φ(q)

)
=

1

c

(
f (q), ψ

)
,

so that (f, φ)φ(q)(x) = (f (q), ψ)ψ(x). The result now follows.

This so-called duality under differentiation of polyharmonic–Neumann and polyharmonic–
Dirichlet expansions immediately provides the main result:
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Theorem 4.2. The set of polyharmonic–Neumann eigenfunctions forms an orthogonal basis for
the space Hq[−1, 1] equipped with the inner product (4.1). In particular, fN converges to f in
the Hq norm, and we have the Parseval-type characterisation

|||f |||2q =

q−1∑
n=0

|f̂0,n|2 +

∞∑
n=1

(1 + µn)|f̂n|2, ∀f ∈ Hq[−1, 1], (4.3)

where |||f |||q =
√

(f, f)q is the norm induced by (4.1).

This theorem indicates that polyharmonic–Neumann expansions contrast strongly with, for
example, Fourier series, which only converge in the L2 sense. As we later consider, the same is
true for polyharmonic–Dirichlet expansions. This higher degree of convergence translates into a
faster convergence rate, as we demonstrate in Section 5.

Theorem 4.2 also provokes the following question: for which values of r 6= 0, q does fN
converge to f ∈ Hr[−1, 1] in the Hr norm? As we will show in Section 4.3, this holds for all
r = 1, . . . , q − 1. To do so, much as in Lemma 4.1, we first need to describe the rth derivative

f
(r)
N in terms of an expansion in certain polyharmonic eigenfunctions.

4.2 Biorthogonal pairs of polyharmonic–Neumann eigenfunctions

For r = 1, . . . , q − 1, the derivative f
(r)
N can no longer be expressed as an orthogonal series.

Instead, it can be written in terms of a certain biorthogonal pair of polyharmonic eigenfunctions.
Let us first recall some theory of Birkhoff expansions (see [20], for example). Suppose that

the polyharmonic operator L = (−1)q d2q

dx2q is equipped with homogeneous boundary conditions
Brφ = 0, r = 1, . . . , 2q. The adjoint boundary conditions B∗rφ = 0, r = 1, . . . , 2q, are defined so
that

(Lφ, ψ) = (φ,Lψ) ,

for all 2q-times continuously differentiable, complex-valued functions φ, ψ satisfying Brφ = 0
and B∗rψ = 0. We say that the operator L, when equipped with boundary conditions Br (which
we write as {L,Br}), is self-adjoint provided Br = B∗r (up to reordering).

Under some assumptions on the Br, the spectrum of {L,Br} is countable with real eigenval-
ues {µn} and eigenfunctions {φn} [20]. Moreover, the spectrum of {L,B∗r} consists of precisely
the values µn, with corresponding eigenfunctions {ψn} that satisfy (φn, ψm) = δn,m (after ap-
propriate renormalisation). For this reason, we refer to the pair {φn, ψn} as a biorthogonal pair
of polyharmonic eigenfunctions. Such biorthogonality signals that a function f may be expanded
in the formal series

f(x) =

∞∑
n=1

(f, ψn)φn(x).

Note that we do not make any assumptions regarding convergence of this series at this point.
It is evident that, when prescribed either Neumann φ(q+r)(±1) = 0, r = 0, . . . , q − 1, or

Dirichlet φ(r)(±1) = 0 boundary conditions, the operator L is self-adjoint. We now catalogue
the nature of the polyharmonic operator under a variety of other boundary conditions:

Lemma 4.3. Suppose that p = 1, . . . , q − 1 and that the polyharmonic operator L = (−1)q d2q

dx2q

is equipped with boundary conditions

φ(q+r−p)(±1) = 0, r = 0, . . . , q − 1. (4.4)

Then the adjoint boundary conditions are

ψ(r)(±1) = 0, r = 0, . . . , p− 1, ψ(2q−r−1)(±1) = 0, r = 0, . . . , q − p− 1. (4.5)

In particular, the corresponding pair of polyharmonic eigenfunctions subject to boundary condi-
tions (4.4) and (4.5) are biorthogonal.
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Proof. Integrating by parts, we obtain∫ 1

−1

Lφ(x)ψ(x) dx = (−1)q
2q−1∑
r=0

(−1)r+1φ(r)(x)ψ(2q−r−1)(x)

∣∣∣∣1
−1

+

∫ 1

−1

φ(x)Lψ(x) dx.

If φ satisfies boundary conditions (4.4), then this sum vanishes precisely when ψ obeys the
conditions (4.5).

For subsequent analysis, it is necessary to understand the nature of the zero eigenfunction
of the operator L when equipped with boundary conditions (4.4) or (4.5). Recall that the
polyharmonic–Neumann operator has a zero eigenvalue of multiplicity q. The corresponding
eigenspace is Pq−1, the space of polynomials of degree q − 1. Trivial calculations verify that the
polyharmonic operator with boundary conditions (4.4) or (4.5) has a (q−p)-fold zero eigenvalue.
The corresponding eigenspaces are Pq−p−1 and

{
g ∈ Pq+p−1 : g(r)(±1) = 0, r = 0, . . . , p− 1

}
re-

spectively.
We are now in a position to prove the main result of this section:

Theorem 4.4. If we apply the differentiation operator dp

dxp , p = 1, . . . , q − 1, to the set of
polyharmonic–Neumann eigenfunctions, we obtain, up to scalar multiples, the set of polyhar-
monic eigenfunctions that satisfy the boundary conditions (4.4). Furthermore, for f ∈ Hp[−1, 1],
(fN )(p) is the truncated expansion of f (p) in the biorthogonal pair of polyharmonic eigenfunctions
corresponding to boundary conditions (4.4) and (4.5).

Proof. The first result is trivial. For the second, suppose that φn is the nth normalised eigenfunc-

tion of the polyharmonic–Neumann operator with eigenvalue µn = α2q
n 6= 0. Let φ

(p)
n = cnψn

and φ
(2q−p)
n = dnχn, where {ψn, χn} is the biorthogonal pair corresponding to boundary condi-

tions (4.4) and (4.5). Assume that such eigenfunctions are normalised so that (ψn, χm) = δn,m.
Setting r = p, φ = φn and f = φn in (4.2) immediately gives

1 =
(−1)q+p

α2q
n

cndn (ψn, χn) .

Hence, cndn = (−1)q+pα2q
n . Moreover, using (4.2) once more,

f̂nφ
(p)
n (x) =

(−1)q+p

α2q
n

cndn

(
f (p), χn

)
ψn(x) =

(
f (p), χn

)
ψn(x).

It follows that

dp

dxp

N∑
n=1

f̂nφn(x) =

N∑
n=1

(
f (p), χn

)
ψn(x) (4.6)

for any N ∈ N. To complete the proof, we need to consider the component of the expansion
fN corresponding to the q-fold zero eigenvalue. To this end, suppose that we write {ψ0,n : n =
0, . . . , q − p − 1} and {χ0,n : n = 0, . . . , q − p − 1} for the sets of normalised polyharmonic
eigenfunctions corresponding to the zero eigenvalue and subject to boundary conditions (4.4)
and (4.5) respectively. It now suffices to show that

dp

dxp

q−1∑
n=0

f̂0,nφ0,n(x) =

q−p−1∑
n=0

(
f (p), χ0,n

)
ψ0,n(x). (4.7)

Since {ψ0,n} is a basis for Pq−p−1, we have dp

dxp

∑q−1
n=0 f̂0,nφ0,n(x) =

∑q−p−1
n=0 anψ0,n(x) for values

an ∈ C. Due to the biorthogonality relation (ψ0,n, χ0,m) = δn,m, we have

an =

(
dp

dxp

q−1∑
m=0

f̂0,mφ0,m, χ0,n

)
.
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In view of (4.6) and the fact that (ψn, χ0,m) = 0, we may write

an =

(
dp

dxp

{
q−1∑
m=0

f̂0,mφ0,m +

N∑
m=1

f̂nφm

}
, χ0,n

)
=

(
dp

dxp
fN , χ0,n

)

for any N ∈ N+. We now note that, since χ
(r)
0,n(±1) = 0 for r = 0, . . . , p− 1, integration by parts

p times gives the relation (
g(p), χ0,n

)
=
(
g, χ

(p)
0,n

)
(4.8)

for any function g ∈ Hp[−1, 1]. In particular, an =
(
fN , χ

(p)
0,n

)
. Since N was arbitrary and

fN → f in the L2[−1, 1] norm, it follows that an =
(
f, χ

(p)
0,n

)
. An application of (4.8) now gives

an = (f (p), χ0,n), hence verifying (4.7).

Well known results for general Birkhoff expansions can now be used to establish convergence

of f
(r)
N to f (r) in the L2 norm, and therefore the convergence of fN to f ∈ Hr[−1, 1] in the Hr

norm. However, the particular nature of polyharmonic–Neumann eigenfunctions allows us to
present an alternative, simpler proof of this result in a completely self-contained manner.

4.3 Convergence in the Hr norm, r = 1, . . . , q − 1

Throughout this section we write c for a positive constant, independent of f and N .
Our technique of proof will be based on known results for the cases r = 0, q and interpolation

therein for the intermediate values r = 1, . . . , q− 1. To do so, we first need to establish a Bessel-
type inequality in the Hr norm for polyharmonic–Neumann expansions. Specifically, we shall
prove that ‖fN‖r ≤ c‖f‖r for f ∈ Hr[−1, 1] and N ∈ N+.

We commence by stating the following lemma, found in a virtually identical form in [11,
p.2332]:

Lemma 4.5. Suppose that a = (a1, a2, . . .), where an =
∫ 1

−1
ezn(1±x)f(x) dx (with the same sign

for all n) and f ∈ L2[−1, 1]. Suppose further that z 6= 0 and Re z ≤ 0. Then a = (a1, a2, . . .) ∈
l2(N) and ‖a‖ ≤ c‖f‖, where ‖a‖2 =

∑∞
n=1 |an|2.

This lemma possesses the following converse, also found in [11]:

Lemma 4.6. Suppose that b = (b1, b2, . . .) ∈ l2(N). Then, for Re z ≤ 0 and z 6= 0, the family
of all finite sums of terms of the form bnezn(1±x) is uniformly bounded in L2[−1, 1] with norm
bounded by c‖b‖.

With these lemmas in hand, we now return to the polyharmonic problem:

Lemma 4.7. Suppose that {ψn, χn} are a biorthogonal pair of polyharmonic eigenfunctions, with
ψn and χn subject to boundary conditions (4.4) and (4.5) respectively, and let f ∈ L2[−1, 1].
Then, the family of all finite sums of terms (f, χn)ψn is uniformly bounded in L2[−1, 1] with
norm bounded by c‖f‖.

Proof. Much as in Theorem 3.7, we may write χn as

χn(x) =

q−1∑
s=0

[
ase

αnλs(x−1) + bse
−αnλs(x+1)

]
+O

(
e−nπγq

)
, (4.9)

with constants as and bs independent of n. Since αn = 1
4 (2n+q−1)π+O (e−nπγq ) and Reλs ≤ 0,

χn is a finite sum of exponentials of the form ezn(1±x) with Re z ≤ 0 and z 6= 0. Hence, for
f ∈ L2[−1, 1], it follows from Lemma 4.5 that the sequence (f, χn) is in l2(N) with norm bounded
by c‖f‖. Since we may also write ψn in the form (4.9), with different constants as and bs, the
full result is now a consequence of Lemma 4.6.
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We are now able to prove the aforementioned Bessel-type inequality for polyharmonic–
Neumann expansions:

Lemma 4.8. Suppose that f ∈ Hr[−1, 1], r = 0, . . . , q, and that fN is the truncated expansion
of f in polyharmonic–Neumann eigenfunctions. Then ‖fN‖r ≤ c‖f‖r for all N ∈ N+.

Proof. By Theorem 4.4, the function f
(r)
N is a finite sum of terms of the form (f (r), χn)ψn. An

application of Lemma 4.7 now gives the result.

Having established this inequality, we may now prove the key result of this section:

Theorem 4.9. Suppose that f ∈ Hr[−1, 1], r = 0, . . . , q, and that fN is the truncated expansion
of f in polyharmonic–Neumann eigenfunctions. Then fN converges to f in the Hr[−1, 1] norm.

Proof. Since we have already proved the result for r = 0, q (Theorem 4.2), we assume that
r = 1, . . . , q − 1. In this case, given ε > 0, there exists g ∈ Hq[−1, 1] with ‖f − g‖r < ε [2]. In
view of Lemma 4.8, ‖fN − gN‖r < cε. Hence

‖f − fN‖r ≤ ‖g − gN‖r + ‖f − g‖r + ‖fN − gN‖r < ‖g − gN‖q + (1 + c)ε.

Since g ∈ Hq[−1, 1], we have ‖g − gN‖q < ε for all large N (Theorem 4.2). This completes the
proof.

An immediate consequence of this theorem is uniform convergence of polyharmonic–Neumann
expansions:

Corollary 4.10. Suppose that f ∈ Hr[−1, 1], r = 1, . . . , q, and that fN is the truncated

polyharmonic–Neumann expansion of f . Then f
(s)
N converges uniformly to f (s) for s = 0, . . . , r−

1.

Proof. This follows immediately from the Sobolev imbedding Hs[−1, 1] ↪→ Cs−1[−1, 1], s ∈ N,
(see, e.g. [2]) and Theorem 4.9.

In particular, this corollary establishes that fN converges uniformly to f whenever f ∈
H1[−1, 1]. Note that this improves upon a result proved in [7], which assumed Hq-regularity.

We remark in passing that, as a consequence of Theorem 4.9, the expansion of a function
in any biorthogonal pair of polyharmonic eigenfunctions with boundary conditions (4.4) and
(4.5) converges in the L2 norm. This result, as mentioned, is known in a more general context.
The (somewhat circuitous) method of proof presented above cannot be extended to arbitrary
Birkhoff expansions, except in very specific cases, since it relies both on the particular duality
of polyharmonic eigenfunctions and known results for the Dirichlet and Neumann cases. These
themselves are consequences of standard spectral theory for self-adjoint differential operators.

Theorem 4.9 and Corollary 4.10 clearly demonstrate the advantage gained from increasing
the parameter q: namely, higher orders of convergence. As we consider in Section 5, this also
corresponds to faster convergence rates. In addition, the results of this section provide criteria
for both the best and worst boundary conditions to prescribe to the polyharmonic operator
in terms of the convergence of the truncated expansion fN , as opposed to the arguments of
Section 2.2 based on the decay of the coefficients f̂n. Specifically, it is easily established that the
expansion based on polyharmonic eigenfunctions subject to boundary conditions (4.4) converges
maximally in the Hq−p norm, p = 0, . . . , q. Correspondingly, for boundary conditions (4.5), only
L2 convergence occurs. Hence, choosing p = 0 for the highest possible degree of convergence, we
arrive once more at Neumann boundary conditions. Conversely, Dirichlet boundary conditions
(p = q) give the worst possible degree of convergence.

22



4.4 Pointwise convergence

Corollary 4.10 verifies that fN and its first (q − 1) derivatives converge uniformly to the cor-
responding derivatives of f . In this section, we prove that the qth derivative of fN , whilst not
converging uniformly on [−1, 1], does in fact converge to f (q) uniformly in compact subsets of
(−1, 1).

To prove this result, we first note that the expression (4.2) for the coefficient f̂n can be
repeatedly integrated by parts to give

f̂n =
1

α2q
n

p−1∑
s=0

(−1)s
[
f (q+s)(1)φ

(q−s−1)
n (1)− f (q+s)(−1)φ

(q−s−1)
n (−1)

]
+

(−1)p

α2q
n

(
f (q+p), φ(q−p)

n

)
, (4.10)

provided f ∈ Hq+p[−1, 1], p = 0, . . . , q. In particular, since αn ∼ 1
2nπ for large n and

φ
(q−1)
n (±1) = (±1)nc−1dq−1α

q−1
n +O

(
nq−1e−nπγq

)
by Lemma 3.10, we have

f̂n =
1

α2q
n

[
f (q)(1)φ

(q−1)
n (1)− f (q)(−1)φ

(q−1)
n (−1)

]
+O

(
n−q−2

)
.

=
dq−1

cαq+1
n

[
f (q)(1) + (−1)n+1f (q)(−1)

]
+O

(
n−q−2

)
(4.11)

for f ∈ Hq+2[−1, 1]. Furthermore, for x ∈ (−1, 1), it follows from Theorem 3.7 that

φ(q)
n (x) = αqn(−1)qc0

[
e−iαn(x−1) + (−1)n+1eiαn(x+1)

]
+O

(
nqe−

1
2nπγq(1−|x|)

)
. (4.12)

We are now in a position to establish pointwise convergence of f
(q)
N to f :

Theorem 4.11. Suppose that f ∈ Hq+1[−1, 1] and that fN is the truncated expansion of f

in polyharmonic–Neumann eigenfunctions. Then f
(q)
N converges to f (q) uniformly in compact

subsets of (−1, 1).

Proof. In [6, Lemma 3.1] it was shown that the partial sums

N∑
n=1

1

α2q
n

φq−1
n (±1)φ(q)

n (x)

converge uniformly in compact subsets of (−1, 1). Using (4.11), (4.12), and this result, we deduce

convergence of f
(q)
N (x) to a continuous function g(x) whenever f ∈ Hq+2[−1, 1]. Since f

(q)
N → f (q)

in the L2 norm and g is continuous, we conclude that g ≡ f (q), as required.
It remains to prove the result when f ∈ Hq+1[−1, 1]. Note first that, for any ε > 0, there

exists g ∈ Hq+2[−1, 1] such that ‖f (q) − g(q)‖1 < ε. For x ∈ (−1, 1), we have

|f (q)(x)− (fN )(q)(x)| ≤ |g(q)(x)− (gN )(q)(x)|+ |f (q)(x)− g(q)(x)|+ |(gN )(q)(x)− (fN )(q)(x)|
≤ 2ε+ |(gN )(q)(x)− (fN )(q)(x)|

for all sufficiently large N . Let h = f − g. The proof is now complete, provided |(hN )(q)(x)| ≤
c‖h(q)‖1 for all N and some c > 0. To establish this claim, note from (4.10) that

ĥn =
1

α2q
n

[
h(q)(1)φ

(q−1)
n (1)− h(q)(−1)φ

(q−1)
n (−1)

]
− 1

α2q
n

(
h(q+1), φ(q−1)

n

)
.

Upon substituting this into hN , we find that

(hN )(q)(x) =

N∑
n=1

1

α2q
n

[
h(q)(1)φ

(q−1)
n (1)− h(q)(−1)φ

(q−1)
n (−1)

]
φ(q)
n (x)

−
N∑
n=1

1

α2q
n

(
h(q+1), φ(q−1)

n

)
φ(q)
n (x)

=GN (x)−HN (x).
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Figure 3: The Gibbs phenomenon for polyharmonic–Dirichlet expansions. Graph of f(x) = 1 and f50(x)
for −1 ≤ x ≤ 1, where q = 2 (left), q = 3 (right) and fN is the expansion of f in polyharmonic–Dirichlet
eigenfunctions.

By earlier arguments, we deduce that |GN (x)| ≤ c‖h(q)‖∞ for all N . The imbedding H1[−1, 1] ↪→
C[−1, 1] now gives |GN (x)| ≤ c‖h(q)‖1. Therefore, it suffices to consider HN . For this, we first
notice that HN (±1) = 0. Next, consider the derivative H ′N . By the arguments of Section 4.2,

H ′N (x) =

N∑
n=1

(
h(q+1), ψn

)
χn(x),

where {ψn, χn} is the biorthogonal pair of polyharmonic eigenfunctions subject to boundary
conditions (4.4) and (4.5) respectively with p = q − 1. It follows from Lemma 4.7 that ‖H ′N‖ ≤
c‖h(q+1)‖. Since HN (±1) = 0, an application of Poincaré’s inequality gives ‖HN‖ ≤ c‖h(q)‖1,
and thus we obtain ‖HN‖∞ ≤ c‖HN‖1 ≤ c‖h(q)‖1, as required.

As mentioned, the expansion of a function f in polyharmonic–Dirichlet eigenfunctions does
not converge uniformly on [−1, 1]. However, in view of Lemma 4.1, the previous theorem equiva-
lently states that such expansions converge away from the endpoints x = ±1. Near the endpoints,
however, they suffer from a Gibbs-type phenomenon. In Figure 3, we exhibit this effect for the
approximation of the function f(x) = 1 by polyharmonic–Dirichlet eigenfunctions. The pres-
ence of O (1) oscillations near x ± 1 highlights the Gibbs phenomenon in this case. Note that,
despite both graphs looking superficially identical, there is a slight change in both the maximal
overshoot of fN (x) and its location as q increases from 2 to 3. This topic is discussed in greater
detail in [6].

5 Rate of convergence

The purpose of this section is to provide estimates for the rate of convergence of the approxima-
tion fN . We first derive results in various Sobolev norms. However, the exponential asymptotics
of Section 3 can be used to provide precise expressions for the pointwise error f(x) − fN (x) at
any point x ∈ [−1, 1]. In turn, this allows us to derive not only the stated O

(
N−q−1

)
estimate

for the convergence rate in (−1, 1), but also an exact expression for the leading-order error term
as a function of x. We devote Section 5.2 to this topic.

5.1 Convergence rate in various norms

Standard techniques of Fourier analysis are used to derive the first result of this section:

Lemma 5.1. Suppose that f ∈ Hr[−1, 1]. Then ‖f − fN‖r ≤ cNr−s‖f‖s for s = r, . . . , q.

Proof. Consider the case r = 0. By (2.7), we have ‖f−fN‖2 =
∑
n>N |f̂n|2. Note that α2s

n |f̂n|2 =(
f (s), ψn

)
, where ψn is a polyharmonic eigenfunction equipped with boundary conditions (4.4)
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Figure 4: Error in approximating f(x) = e2x by FN [f ](x) for q = 1 (squares), q = 2 (circles), q = 3

(crosses) and q = 4 (diamonds). Left: scaled error Nq+ 1
2 ‖f −FN [f ]‖ for N = 1, . . . , 100. Right: scaled

error Nq− 1
2 ‖f −FN [f ]‖1.

and p = q− s. It now follows from the proof of Lemma 4.7 that
∑
n>N α

2s
n |f̂n|2 ≤ c‖f‖2s. Using

this result and the fact that αn ∼ 1
2nπ, we obtain

‖f − fN‖2 =
∑
n>N

α2s
n

α2s
n

|f̂n|2 ≤ N−2s
∑
n>N

α2s
n |f̂n|2 ≤ N−2s‖f‖2s,

which completes the proof for r = 0. Now suppose that r = 1, . . . , s. Recall the multiplicative
interpolation inequality (see, for example, [2])

‖g‖r ≤ c‖g‖1−
r
s ‖g‖

r
s
s , ∀g ∈ Hs[−1, 1]. (5.1)

Setting g = f − fN ,and using the previously derived result, we obtain

‖f − fN‖r ≤ cN−s(1−
r
s )‖f‖1−

r
s

s ‖f − fN‖
r
s
s = cNr−s‖f‖1−

r
s

s ‖f − fN‖
r
s
s .

Note that ‖f−fN‖s ≤ ‖f‖s+‖fN‖s. An application of Lemma 4.8 now gives ‖f−fN‖s ≤ c‖f‖s,
thus completing the proof.

This lemma gives estimates for the convergence rate of fN in various Sobolev norms. However,
for smooth functions f , it leads to the conclusion that ‖f − fN‖ = O (N−q). This turns out not

to be the case. The convergence rate is in fact O(N−q−
1
2 ), as the following result demonstrates:

Theorem 5.2. Suppose that f ∈ Hq+1[−1, 1]. Then ‖f − fN‖r ≤ cNr−q− 1
2 ‖f‖q+1 for r =

0, . . . , q. Moreover, ‖(f − fN )(r)‖∞ ≤ cNr−q‖f‖q+1 for r = 0, . . . , q − 1.

Proof. From (4.10), we find that |f̂n| ≤ cn−q−1‖f‖q+1. Hence, using (2.7), we have

‖f − fN‖2 ≤ c‖f‖2q+1

∑
n>N

n−2q−2 ≤ cN−2q−1‖f‖2q+1,

giving the result for r = 0. By an identical argument, using (4.3) instead of (2.7), we also obtain
the result for r = q. The full proof now follows after an application of (5.1) with g = f −fN and
s = q. To derive the estimate for the uniform error, we use Theorem 5.2 and the interpolation
inequality ‖g‖∞ ≤ c

√
‖g‖‖g‖1, ∀g ∈ H1[−1, 1], with g = (f − fN )(r).

The first part of Theorem 5.2 is verified in Figure 4. The result for the uniform error,
‖f − fN‖∞ = O (N−q), was previously confirmed in Figure 1.
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5.2 The error f(x)− fN(x)

The exponential asymptotics of Section 3 allow us to determine an explicit asymptotic expan-
sion for the error f(x) − fN (x) in inverse powers of N . This expansion involves only certain
derivatives of f evaluated at the endpoints x = ±1. A particular consequence of this result is
the aforementioned estimate f(x)− fN (x) = O

(
N−q−1

)
for −1 < x < 1. However, we may also

give an exact expression for the leading order behaviour of the error as a function of both N
and x. This was originally established in [21] for the modified Fourier (q = 1) case. Our result,
proved in a similar manner, extends this result to arbitrary q ≥ 2.

For the sake of simplicity, we assume that f ∈ C∞[−1, 1] throughout this section. Minor mod-
ifications can be made to the results proved herein to deal with lower regularity. To commence,
recall that

φn(x) =
1

c

q−1∑
s=0

cs

[
eλsαn(x−1) + (−1)n+q+1e−λsαn(x+1)

]
+O

(
e−nπγq

)
, (5.2)

by Theorem 3.7. Suppose now that we define

Θ±(r,N ;x) =
1

c2

∑
n≥N

(±1)n

αrn
φn(x), r > 1, N ∈ N+. (5.3)

Note that the functions Θ± are well-defined and continuous (as functions of x) for all values
r > 1, since the infinite sum converges uniformly on [−1, 1]. We seek explicit expressions for Θ±.
In [21] it was noted for the case q = 1 that Θ± can be written in terms of a particular special
function, the Lerch transcendental function Φ(z, s, a) [23], defined by

Φ(z, s, a) =

∞∑
n=0

zn

(n+ a)s
, Re a > 0, Re s > 1, |s| ≤ 1. (5.4)

As we now demonstrate, Lerch functions are also used to express Θ± for arbitrary q ≥ 1:

Lemma 5.3. The function Θ±(r,N ;x) satisfies

Θ±(r,N ;x) ∼ 2r(±1)N

πrc2

q−1∑
s=0

cs

[
eλsαN (x−1)Φ

(
±e

1
2λs(x−1)π, r, 1

2 (2N + q − 1)
)

+ (−1)qe−λsαN (x+1)Φ
(
∓e−

1
2λs(x+1)π, r, 1

2 (2N + q − 1)
)]

up to exponentially small terms in n, where Φ is the Lerch transcendental function (5.4).

Proof. Consider the sum
∑
n≥N

eλαn

αrn
. Using the asymptotic expression for αn, we have

∑
n≥N

eλαn

αrn
∼
∑
n≥N

eλ
1
4 (2n+q−1)π

[ 1
4 (2n+ q − 1)π]r

∼ eλαN

(π2 )r

∞∑
m=0

(e
1
2λπ)m

[m+ 1
2 (2N + q − 1)]r

=
(

2
π

)r
eλαNΦ

(
e

1
2λπ, r, 1

2 (2N + q − 1)
)
. (5.5)

Next, consider the sum
∑
n≥N (−1)n eλαn

αrn
. In an identical manner, we derive

∑
n≥N

(−1)n
eλαn

αrn
∼
(

2
π

)r
(−1)NeλαNΦ

(
−e

1
2λπ, r, 1

2 (2N + q − 1)
)
.

We conclude that∑
n≥N

(±1)n
eλαn

αrn
∼
(

2
π

)r
(±1)NeλαNΦ

(
±e

1
2λπ, r, 1

2 (2N + q − 1)
)
. (5.6)
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With this to hand, we replace φn by (5.2) in (5.3), giving

Θ±(r,N ;x) ∼ 1

c2

q−1∑
s=0

cs

∑
n≥N

(±1)n
eλsαn(x−1)

αrn
+ (−1)q+1

∑
n≥N

(∓1)n
e−λsαn(x+1)

αrn


∼ c−2

(
2

π

)r q−1∑
s=0

cs

[
(±1)NeλsαN (x−1)Φ

(
±e

1
2λs(x−1)π, r, 1

2 (2N + q − 1)
)

+ (−1)q+1(∓1)Ne−λsαN (x+1)Φ
(
∓e−

1
2λs(x+1)π, r, 1

2 (2N + q − 1)
)]
,

as required.

The functions Θ± appear explicitly in the asymptotic expansion of f(x)− fN (x). To derive

such a result we first recall the expression (4.10) for the coefficient f̂n. Setting p = q and
iterating, we arrive at (see also [7])

f̂n ∼
∞∑
r=0

q−1∑
s=0

(−1)rq+s

α
2(r+1)q
n

[
f ((2r+1)q+s)(1)φ

(q−s−1)
n (1)− f ((2r+1)q+s)(−1)φ

(q−s−1)
n (−1)

]
.

Since αn ∼ 1
2nπ and φ

(r)
n = O (nr), this is an asymptotic expansion (in the Poincaré sense) for the

coefficient f̂n in inverse powers of n. Moreover, recalling that φ
(r)
n (±1) ∼ (±1)r+n+q+1c−1drα

r
n

(see Lemma 3.10), we have

f̂n ∼
1

c

∞∑
r=0

q−1∑
s=0

(−1)rq+sdq−s−1

α
(2r+1)q+s+1
n

[
f+

(2r+1)q+s + (−1)n+s+1f−(2r+1)q+s

]
, (5.7)

where f±r = f (r)(±1). With (5.7) in hand, we now obtain the main result of this section:

Theorem 5.4. For large N , the error f(x)− fN (x) has the following asymptotic expansion

f(x)− fN (x) ∼
∞∑
r=0

q−1∑
s=0

(−1)rq+sdq−s−1

[
f+

(2r+1)q+sΘ
+((2r + 1)q + s+ 1, N ;x)

+ (−1)s+1f−(2r+1)q+sΘ
−((2r + 1)q + s+ 1, N ;x)

]
. (5.8)

Proof. We may write f(x) − fN (x) =
∑
n≥N f̂nφn(x). Substituting the asymptotic expansion

(5.7) and replacing the various infinite sums with Θ± now yields the result.

Note that it is not clear a priori that (5.8) is an asymptotic expansion for f(x) − fN (x) in
the usual Poincaré sense. However, this is in fact the case, since the functions Θ±(r,N ;x) satisfy
Θ±(r,N ;x) = O (N−r) for −1 < x < 1 and Θ±(r,N ;x) = O

(
N1−r) when x = ±1. In fact, not

only can we derive such estimates, we may also exactly determine the leading-order asymptotic
behaviour of the functions Θ±(r,N ;x) in these cases:

Lemma 5.5. The function Θ±(r,N ;x) satisfies

Θ±(r,N ;x) = c0c
−2(±1)N

[
e−iαNx

1∓ ie−
1
2 iπx

+ (−1)q
eiαNx

1± ie
1
2 iπx

]
eiαNα−rN +O

(
N−r−1

)
,

uniformly for x in compact subsets of (−1, 1).

Proof. For x ∈ (−1, 1) we have Reλs(x− 1) < 0 and Reλs(x+ 1) > 0, s = 1, . . . , q − 1. Hence,

Θ±(r,N ;x) ∼ 2r(±1)Nc0
πrc2

[
e−iαN (x−1)Φ

(
±e−i 12 (x−1)π, r, 1

2 (2N + q − 1)
)

+ (−1)qeiαN (x+1)Φ
(
∓ei 12 (x+1)π, r, 1

2 (2N + q − 1)
)]
.
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In [21], an asymptotic expansion for the Lerch function Φ(−eiπz, r,M) was derived. In particular,

Φ(−eiπz, r,M) = M−r
(
1 + eiπz

)−1
+O

(
M−(r+1)

)
, M →∞, −1 < x < 1.

We now consider the four Lerch functions appearing in the previous expression. Setting M =
1
2 (2N + q − 1), we have

Φ
(

e−i 12 (x−1)π, r, 1
2 (2N + q − 1)

)
= Φ

(
−e−i 12 (x+1)π, r, 1

2 (2N + q − 1)
)

= M−r
(

1− ie−
1
2 iπx

)−1

+O
(
M−(r+1)

)
.

Similarly

Φ
(
−ei 12 (x+1)π, r, 1

2 (2N + q − 1)
)

= M−r
(

1 + ie
1
2 iπx

)−1

+O
(
M−(r+1)

)
.

Hence

Θ+(r,N ;x) = c0c
−2

[
e−iαNx

1− ie−
1
2 iπx

+ (−1)q
eiαNx

1 + ie
1
2 iπx

]
eiαNα−rN +O

(
N−r−1

)
.

In a similar manner, we find an expression for Θ−(r,N ;x), giving the result.

It remains to determine the behaviour of Θ±(r,N ;x) when x = ±1. For this, we have

Lemma 5.6. The functions Θ±(r,N ;x) satisfy Θ±(r,N ;∓1) = O (N−r) and

Θ±(r,N ;±1) =
2(±1)q+1d0

c2π(r − 1)
α1−r
N +O

(
N−r

)
.

Proof. By the definition of Θ±, we have

Θ±(r,N ;∓1) =
1

c2

∑
n≥N

(±1)n

αrn
φn(∓1).

Since φ(∓1) = (∓1)n+q+1d0 by Lemma 3.10, it follows that

Θ±(r,N ;∓1) ∼ d0(∓1)q+1

c2

∑
n≥N

(−1)n

αrn
=
d02r(∓)q+1(−1)N

c2πr
Φ
(
−1, r, 1

2 (2N + q − 1)
)
,

and this is O (N−r). Now consider Θ±(r,N ;±1). By identical arguments

Θ±(r,N ;±1) ∼ 2r(±1)q+1d0

c2πr

∞∑
m=0

1

[m+ 1
2 (2N + q − 1)]r

.

The right-hand side is precisely ζ(r, 1
2 (2N + q − 1)), where ζ is the Hurwitz zeta function [1].

The result now follows immediately, since ζ(r,M) ∼ 1
r−1M

1−r for large M .

As shown in [21], it is also possible to provide a full asymptotic expansion for the Lerch
function Φ. Hence, we could have given a complete asymptotic expansion for Θ± in inverse
powers of N . However, our interest lies primarily with the leading order behaviour of Θ±, and
in turn the error f(x)− fN (x), for which we have the following theorem:

Theorem 5.7. The error f(x)− fN (x) satisfies

f(x)− fN (x) =
dq−1c0eiαN

c2αq+1
N

[
f+
q + (−1)N+qf−q

] [
(−1)q+1G+(N ;x) +G−(N ;x)

]
+O

(
N−q−1

)
uniformly for x in compact subsets of (−1, 1), where G±(N ;x) = e±iαNx(1 ± ie

1
2 iπx)−1. In

particular, f(x)− fN (x) = O
(
N−q−1

)
for −1 < x < 1. Moreover,

f(±1)− fN (±1) =
2dq−1d0(±1)q

c2πq
α−qN +O

(
N−q−1

)
= O

(
N−q

)
.
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Figure 5: Pointwise error f(x)−f50(x) for |x| ≤ 9
10

with q = 2 (left), q = 3 (right) and f(x) = x2 cos 2x.

Proof. We combine Lemmas 5.5 and 5.6 with (5.8).

This theorem is verified in Figure 5. In particular, the oscillations at frequency O (N)
present in the diagrams are due to the e±iαNx terms appearing in the functions G±. Moreover,
the envelope curve, which grows large as |x| → 1, is explained by the denominators 1± ie

1
2 iπx.

6 Derivative conditions and higher-order convergence

Closer inspection of the asymptotic expansion (5.8) reveals that the rate of convergence of the
approximation fN is completely determined by the values of certain derivatives of the function
f evaluated at x = ±1. As proved, for arbitrary functions with no vanishing derivatives, the
uniform error is O (N−q). However, whenever a finite number of such derivatives are zero, we
can expect faster convergence of the approximation.

To properly detail this effect, we define the finite set Dm ⊆ N by

Dm = {l ∈ N : l = (2r + 1)q + s < m, r ∈ N, s = 0, . . . , q − 1} , m ∈ N, (6.1)

and, for p = 0, . . . , q − 1 and k ∈ N we let

ρk,0 = 2kq, ρk,p = (2k + 1)q + p, p = 1, . . . , q − 1. (6.2)

Note that the derivative f (l)(±1) appears in (5.8) if and only if l ∈ Dρk,p for some k, p. For
this reason, we say that a function f obeys the first ρk,p derivative conditions if and only if
f (l)(±1) = 0, ∀l ∈ Dρk,p . For example, when q = 1, this condition is equivalent to f (2r+1)(±1) =
0, r = 0, . . . , k − 1. The properties of modified Fourier expansions of functions obeying such
derivative conditions have been detailed in [3, 5].

Returning to the general case, we have

Theorem 6.1. Suppose that f obeys the first ρk,p derivative conditions. Then the error ‖f −
fN‖∞ = O

(
N−(2k+1)q−p) and f(x) − fN (x) = O

(
N−(2k+1)q−p−1

)
uniformly for x in compact

subsets of (−1, 1).

Proof. This follows immediately after substituting the derivative conditions into the expression
(5.8) and using the estimates of Lemmas 5.5 and 5.6 for the functions Θ±.

This theorem demonstrates the effect of derivative conditions on the convergence rate of
polyharmonic–Neumann expansions. For example, when q = 1 a function obeying the first
2k = ρk,0 conditions has an O

(
N−2k−1

)
uniform error – a result which is also found in [3, 21].

Indeed, such conditions were exploited in [5, 6] to obtain faster convergence rates of modified
Fourier and polyharmonic–Neumann expansions respectively.

Throughout this and the previous section we have assumed that the approximated function
is smooth. This condition is not necessary, and results could also have been also derived under
lower smoothness assumptions. Naturally, derivative conditions only make sense for functions of
sufficient regularity. However, as the following theorem attests, whenever this is the case, they
also endow the approximation fN with a higher degree of convergence:
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Theorem 6.2. Suppose that f obeys the first ρk,p derivative conditions and that f ∈ Hρk,p [−1, 1]
for p 6= 0 or f ∈ H2kq+l[−1, 1] when p = 0, where l = 0, . . . , q. Then, the approximation fN
converges to f in the Hr norm for r = 0, . . . , ρk,p or r = 0, . . . , 2kq + l respectively.

For the sake of brevity, we omit the proof of this result. It follows similar lines to that of
Theorem 4.9, making necessary adjustments for the particular vanishing derivatives.

7 Conclusions

The aim of the paper was to study expansions in polyharmonic eigenfunctions equipped with
homogeneous Neumann boundary conditions. First, we have obtained exponential asymptotics
for both the eigenvalues and eigenfunctions. Using these results, we have determined a full
asymptotic expansion for the error in approximating a smooth function by its truncated expan-
sion. In doing so, we have resolved several conjectures raised in [7]. Moreover, we have detailed
how such asymptotic estimates can be used to efficiently construct the truncated expansion.

The main drawback of polyharmonic–Neumann expansions is that, though it is theoretically
possible to obtain arbitrarily high orders of convergence, as q increases so does the computa-
tional cost in forming the approximation fN . Therefore, it seems inadvisable to use values of q
much greater than q = 4. Nevertheless, as mentioned in Section 1, slowly convergent modified
Fourier expansions have been found to offer a number of advantages over more rapidly conver-
gent methods in a number of applications. Polyharmonic–Neumann expansions may also possess
such benefits, and this remains a question for future research.

Modified Fourier expansions were generalised in [16] to d-variate cubes, and their convergence
was studied in [4]. There is an obvious extension of univariate polyharmonic–Neumann expan-
sions along the same lines. However, care must be taken. Polyharmonic eigenfunctions in cubes
cannot be expressed in terms of simple functions, and thus are of little use in practical com-
putations. However, it can be shown that the eigenfunctions of the subpolyharmonic operator
L = (−1)q

(
∂2q
x1

+ . . .+ ∂2q
xd

)
arise precisely as Cartesian products of the univariate polyharmonic

eigenfunctions studied in this paper. Hence, this provides a potential route towards generalising
such expansions to higher dimensions.

Having said this, numerous questions also remain within the one-dimensional case. For
example, we have only studied the convergence of polyharmonic–Neumann expansions in various
Sobolev spaces, leaving open the topic of their convergence under a variety of other assumptions.
In particular, it seems possible that the condition f ∈ H1[−1, 1] for uniform convergence could
be relaxed.

On a different topic, future work will also seek to determine the largest set of linear opera-
tors and boundary conditions for which the eigenvalues and eigenfunctions possess exponential
asymptotics similar to those of the polyharmonic–Neumann case. Furthermore, as shown in this
paper, polyharmonic–Dirichlet expansions suffer from a Gibbs phenomenon. In [6] the exponen-
tial asymptotics obtained in this paper have been used to fully detail this phenomenon, including
the determination of the maximal overshoot near the domain boundary. Such asymptotics may
also reveal further interesting properties of polyharmonic eigenfunction expansions.
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