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Abstract

Modified Fourier expansions present an alternative to more standard algorithms for the ap-
proximation of nonperiodic functions in bounded domains. This thesis addresses the theory
of such expansions, their effective construction and computation, and their application to the
numerical solution of partial differential equations.

As the name indicates, modified Fourier expansions are closely related to classical Fourier
series. The latter are naturally defined in the d-variate cube, and, in an analogous fashion,
we primarily study modified Fourier expansions in this domain. However, whilst Fourier
coefficients are commonly computed with the Fast Fourier Transform (FFT), we use modern
numerical quadratures instead. In contrast to the FFT, such schemes are adaptive, leading
to great potential savings in computational cost.

Standard algorithms for the approximation of nonperiodic functions in d-variate cubes
exhibit complexities that grow exponentially with dimension. The aforementioned quadra-
tures permit the design of approximations based on modified Fourier expansions that do not
possess this feature. Consequently, such schemes are increasingly effective in higher dimen-
sions. When applied to the numerical solution of boundary value problems, such savings
in computational cost impart benefits over more commonly used polynomial-based methods.
Moreover, regardless of the dimensionality of the problem, modified Fourier methods lead to
well-conditioned matrices and corresponding linear systems that can be solved cheaply with
standard iterative techniques.

The theoretical component of this thesis furnishes modified Fourier expansions with a
convergence analysis in arbitrary dimensions. In particular, we prove uniform convergence of
modified Fourier expansions under rather general conditions. Furthermore, it is known that
the notion of modified Fourier expansions can be effectively generalised, resulting in a family of
approximation bases sharing many of the features of the modified Fourier case. The purpose of
such a generalisation is to obtain both faster rates and higher degrees of convergence. Having
detailed the approximation-theoretic properties of modified Fourier expansions, we extend
this analysis to the general case and thereby verify this improvement.

A central drawback of these expansions is that their convergence rate is both fixed and
typically slow. This makes the construction of effective convergence acceleration techniques
imperative. In the final part of this thesis, we design and analyse a robust method, appli-
cable in arbitrary numbers of dimensions, for accelerating convergence of modified Fourier
expansions. When employed in the approximation of multivariate functions, this culminates
in efficient, high-order approximants comprising relatively small numbers of terms.
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Chapter 1

Introduction

This thesis concerns a classical problem in numerical analysis: namely, the practical approxi-
mation of smooth, nonperiodic functions defined on bounded domains. This problem lies at
the heart of countless methods in computational mathematics, with applications ranging from
the numerical approximation of partial differential equations to the reconstruction of images
from discrete data.

Ostensibly, the approach we consider is extremely well known. Our approximation scheme
is based on expanding a function in eigenfunctions of a suitable differential operator with
prescribed boundary conditions. In particular, the majority of this thesis deals with one of the
simplest examples of such an approach: expansions in eigenfunctions of the Laplace operator
subject to either homogeneous Dirichlet or Neumann boundary conditions. Nonetheless, as
we henceforth describe, the cornerstone of the new research into this subject involves the
successful development and implementation of a number of novel numerical tools for such
expansions. The ensuing analysis requires both new techniques and generalisations of existing
results.

The expansion of univariate functions defined on compact intervals in eigenfunctions of
general linear differential operators has been the subject of a broad array of literature. There
is a well-developed theory of such expansions, including significant contributions from Birkhoff
[25, 26], who first studied the topic in its general form, and the volumes of Naimark [127] and
Dunford and Schwartz [51]. However, outside of the case of Fourier expansions (which are usu-
ally studied independently, and have spawned their own field, harmonic analysis [103, 107]),
few attempts have been made to date at performing practical computations with such eigen-
functions. The techniques introduced in this thesis, and elsewhere, bridge the gap between
existing theory and practical applications. Moreover, issues arising from practical problems
lead to generalisations in new directions, thereby complementing existing literature.

Fourier series present the most elementary example of such an approach. Their immense
success and widespread use in a myriad of practical applications, including image and signal
processing, electrical engineering and acoustics, can be attributed to several principal ingre-
dients. First, once an analytic and periodic function is expanded in this basis, the expansion
converges exponentially fast in the number of approximation terms. Second, provided N is a
highly composite integer, the first N approximation coefficients can be computed to within
exponentially small error in O (N logN) operations using the Fast Fourier Transform [37].
Third, in the context of discretisations of partial differential equations, the Fourier basis leads
to stable, well-conditioned algorithms, including diagonal matrices for constant coefficient

1



2 1. Introduction

problems.1

However, once periodicity is no longer present, Fourier series are far less appealing: the
error committed by the truncated expansion is O

(
N−1

)
inside the domain, and there is no

uniform convergence. The presence of O (1) oscillations near the endpoints—the celebrated
Gibbs phenomenon [83]—is a blight in many practical applications of such expansions [96].
For these reasons, the amelioration or, indeed, complete resolution of this phenomenon is an
area of continuing research [156].

In view of these shortfalls, the objective of this thesis is the study of approximation schemes
for nonperiodic functions that share many of the benefits of Fourier series (in particular,
those relating to the approximation of differential equations), whilst offering faster and, in
particular, uniform convergence. It turns out that the Fourier basis is amongst the worst (in
terms of rate of convergence) eigenfunction basis for approximating nonperiodic functions.
A minor modification, replacing the first-order differential operator by the Laplace operator
equipped with homogeneous Neumann boundary conditions, leads to uniformly convergent
eigenfunction expansions. In practice this corresponds to replacing the standard Fourier basis
on [−1, 1], given by

{cosnπx : n ∈ N0} ∪ {sinnπx : n ∈ N} ,

with a basis containing sine functions with shifted arguments:

{cosnπx : n ∈ N0} ∪
{

sin(n− 1
2)πx : n ∈ N

}
.

Such a basis, introduced in [94], forms the primary subject of this thesis. To emphasise its
proximity to classical Fourier series, we shall refer to expansions in such Laplace–Neumann
eigenfunctions as modified Fourier expansions (a term coined in [94]).

For modified Fourier expansions to enjoy any of the success of Fourier series, they must be
practical. In other words, expansions must be accompanied by numerical schemes to calculate
coefficients in a manner that mirrors the benefits of the FFT. A central tenet of this thesis is
the use of modern numerical quadratures for this task. These stem from recently developed
numerical techniques for the computation of highly oscillatory integrals. Such a strategy not
only possesses several of the virtues of the FFT, it also offers a number of crucial advantages.
Unlike the FFT, this approach is adaptive: coefficients are calculated one by one, and chang-
ing N does not require recalculation of any existing values. Moreover, any N (not necessarily
contiguous) coefficients can be calculated in O (N) operations, without the restriction that
N be a highly composite integer. As we describe in due course, in addition to their inher-
ent benefits, such features have important consequences for the design of efficient numerical
schemes based on modified Fourier expansions. In particular, they facilitate the incorporation
of so-called hyperbolic cross index sets [13, 158], which greatly reduce the computational cost
of constructing and evaluating approximations in multivariate domains.

Regardless of these factors, classical Fourier series are not commonly used to approximate
nonperiodic functions. Given an analytic, nonperiodic function in the unit interval, approx-
imation will more routinely be carried out by expanding in certain orthogonal polynomials.
Since the relevant coefficients can be calculated using the FFT, Chebyshev polynomials are

1In fact, the expansion and subsequent truncation of the solution of a periodic partial differential equation
in its Fourier series was the first example of a spectral method for numerical solution of such problems [67]. Its
success has spawned a large area of computational mathematics based on approximating solutions of differential
equations in rapidly convergent orthogonal bases [42, 142, 159].
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most typically utilised [31], although other Jacobi polynomials, including Legendre polynomi-
als, are also employed [42, chapter 2]. Such an approach is efficient, simple to implement and
provides exponentially accurate approximations. For this reason, orthogonal polynomials are
the common starting point for many spectral methods for the discretisation of nonperiodic
partial differential equations [142].2

Rather than judging modified Fourier expansions in comparison with classical Fourier
series, their merits must be viewed in light of polynomial-based methods. However, as we
now detail, there are a number of significant instances where such expansions can be expected
to offer benefits, therefore motivating their continued study.

1.1 Rationale

A common problem in the design of numerical methods for nonperiodic partial differential
equations is as follows. Whilst spectral methods based on orthogonal polynomials possess the
great advantage of rapid convergence, they lack both the generality and adaptability of finite
element methods. Conversely, despite being versatile and adaptable, finite element methods
converge slowly. As we now describe, modified Fourier expansions offer a potential route
towards the design of approximation schemes that incorporate both these features—flexibility
and high accuracy—thus extending the range of spectral methods to a wider class of problems.

Notwithstanding, the techniques of this thesis will not typically confer significant advan-
tages over polynomial-based methods for the straightforward task of approximating nonperi-
odic functions of one variable. In spite of this, we mention in passing that Fourier or Fourier-
like series, despite their slow convergence, are also commonly used in applications lacking
periodicity (in particular, image and signal processing [96]), since Fourier data is more often
available in certain applications. A key component therein is the design of algorithms for
convergence acceleration. This topic, including the significant adaption and generalisation of
certain existing schemes to modified Fourier expansions, also forms an important constituent
of this thesis (see Section 1.2.2).

The simplest setting for modified Fourier expansions is the approximation of functions
defined on the unit interval. The d-variate cube presents the first extension of this topic.
Theoretically speaking, such generalisation is attained relatively easily by means of Cartesian
products. Indeed, multivariate Fourier series and Chebyshev polynomials are well established
in this domain. However, such approximations typically involve O

(
Nd
)

coefficients which
can be computed in, at best, O

(
Nd logN

)
operations via the FFT. These figures grow ex-

ponentially with dimension, thereby making such schemes impractical for higher-dimensional
problems (even when d = 3, 4 significant effort is required to form such approximations).

Many physical problems, when formulated as mathematical models, require the approxi-
mation of higher-dimensional functions or the solution of higher-dimensional differential equa-
tions. Notably, these include applications ranging from fluid dynamics (the Navier–Stokes
equations) to quantum mechanics and computational chemistry (the Schrödinger equation)
[41]. In particular, direct modelling of a system of m interacting particles in Rd in theory
involves solving equations in md variables [75].

2The term spectral method here refers to any approximation basis that delivers so-called spectral accuracy:
in other words, convergence faster than any algebraic power. Commonly, once the approximated function is
endowed with sufficient regularity (for example, analyticity), exponential convergence is witnessed [42].
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Amongst the finite elements community, there exist well-developed numerical methods
for higher-dimensional problems—so-called sparse grid finite element methods—which reduce
the aforementioned figure to just O

(
N(logN)d−1

)
, or even O (N) independently of d, with-

out causing a significant deterioration in approximation quality [40, 41]. Theoretically at
least, spectral methods based on either Fourier series or orthogonal polynomials can also be
designed to reflect this feature [158]. Such approximations exploit a related tool, the aforemen-
tioned hyperbolic cross, to reduce computational cost. However, due to the non-adaptivity
of the FFT, it becomes significantly more difficult to realise such approximations as practical
schemes. Though there exist a number of non-standard variants of FFT to address this situa-
tion [18, 60], such techniques are not typically simple to implement. For these reasons, outside
of so-called sparse grid Fourier methods for periodic partial differential equations [75, 110],
few such spectral methods currently exist.

In contrast to the FFT, however, the numerical quadratures outlined previously are adap-
tive, thus allowing tools such as the hyperbolic cross to be incorporated into modified Fourier
expansions in a straightforward manner. For this reason, modified Fourier approximations
have potential application to higher-dimensional problems. In Chapter 2 we assess the theory
and construction of such approximations in d-variate cubes.

Outside of the approximation of multivariate functions, the numerical solution of boundary
value problems in two or more dimensions using modified Fourier expansions is a primary focus
of this thesis. As mentioned, the Fourier method for periodic problems is endowed with a
number of beneficial features. Due to the similarities between the Fourier and modified Fourier
bases, there is reason to expect that such features are inherited. This turns out to be the case,
making such techniques eminently suitable for these problems. Moreover, the incorporation
of the hyperbolic cross yields a method that possesses a number of advantages over standard
polynomial-based spectral methods, as we consider further in Chapter 4.

Though we shall not address the following topic in this thesis, we mention in passing that
the modified Fourier basis has also found application in another area: namely, the computation
of spectra of highly oscillatory Fredholm operators [38]. Such problems occur naturally in
a number of disciplines, including acoustic scattering, laser engineering (in particular, the
Fox–Li operator [46]) and electromagnetics. Analysis and numerical examples indicate that
the resulting method is both more effective and substantially simpler to implement than
polynomial-based approaches.

Aside from the previously discussed advantages of modified Fourier expansions, there
is at least one other significant motive for their continued study: the construction of ap-
proximation schemes in non-tensor-product domains. Both Fourier series and expansions in
Chebyshev polynomials are limited to d-variate cubes. Though orthogonal polynomials can
be constructed in, for example, triangular domains (via Koornwinder polynomials [106] and
Dubiner’s warped tensor-product construction [50]), this approach is by no means straight-
forward [42]. A particular issue herein is the determination of optimal quadrature nodes. In
recent years, there have been a number of attempts to extend classical Chebyshev polyno-
mials beyond tensor-product domains [125]. However, this results in orthogonal polynomials
defined on a deltoid, not a triangle, which presents a number of practical issues.

Conversely, Laplace eigenfunctions are known explicitly (as sums of plane waves) in a
variety of higher-dimensional simplices, including various triangles and tetrahedra [88, 95,
141]. This raises the possibility of designing multi-domain approximations based on modified
Fourier expansions in simplicial elements, therefore introducing an alternative means to tackle
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problems defined in complex geometries.

We mention this topic as an appealing direction for modified Fourier approximations.
Though a study of such expansions in the equilateral triangle has been initiated in [88], the
method remains in its infancy. In particular, we highlight the absence of a theory of conver-
gence of such expansions and the relatively unexplored generalisation to higher-dimensional
simplices. Conversely, the majority of this thesis is devoted to tensor-product domains: a
proper understanding of this scenario is naturally vital before tackling the aforementioned
case. Nevertheless, we give a more detailed exposition of such topic in Chapter 6.

1.2 Developments and extensions

Having developed modified Fourier expansions in their most basic form in the first segment
of this thesis, we pursue two extensions of this approach.

1.2.1 Birkhoff expansions

Modified Fourier expansions arise from eigenfunctions of the Laplace operator subject to ho-
mogeneous Neumann boundary conditions. It is simple to generalise this notion to Laplace
eigenfunctions corresponding to a variety of other boundary conditions. Indeed, as we detail
in Chapters 2 and 4 respectively, such generalisation is of both theoretical interest and prac-
tical use. However, a significantly more elaborate extension of this approach arises from the
consideration of suitable higher-order operators endowed with particular boundary conditions.
The purpose of such generalisation is to attain faster rates of convergence, whilst retaining
the benefits of the modified Fourier case. It transpires that a judicious choice of operator
and boundary conditions results in a one-parameter family of approximation bases [8]. As we
establish, the rates of convergence of the corresponding expansions scale with this parameter.

Chapter 3 is devoted to this topic. As we demonstrate therein, many features of the modi-
fied Fourier basis scale effectively to this setting. In particular, similar numerical quadratures
are employed to evaluate coefficients, and, in two or more dimensions, a hyperbolic cross may
be exploited to reduce the number of expansion coefficients. Furthermore, though a classi-
cal theory exists for so-called Birkhoff expansions (expansions in eigenfunctions of arbitrary
univariate differential operators) [127], it falls short of describing the case at hand. In our
analysis of convergence of such expansions, we establish a number of new results specific to
these particular approximation bases.

1.2.2 Accelerating convergence

The major shortcoming of Laplace eigenfunction expansions, or their aforementioned gener-
alisation, is that their rate of convergence is both fixed and typically slow. In view of this,
the final component of this thesis deals with the topic of accelerating convergence. It details
the design and analysis of robust methods based on such eigenfunctions possessing arbitrarily
fast rates of convergence.

A variety of techniques, readily adaptable to the modified Fourier case, exist for accelerat-
ing convergence of univariate Fourier series. Far fewer studies have addressed the multivariate
setting. Yet careful analysis of multivariate modified Fourier expansions, carried out in Chap-
ter 2, indicates how faster convergence can be attained. The purpose of Chapter 5 of this
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thesis is the generalisation of several known techniques to the d-variate cube, including pre-
viously lacking analysis. Moreover, we introduce several important improvements of existing
methods, aimed at both increasing numerical stability and lowering computational cost.

The obvious purpose of such study is to render modified Fourier approximations more
widely effective in comparison to polynomial-based methods. In Chapter 6, we give some pre-
liminary insight into the application of such approximations to the discretisation of boundary
value problems.

1.3 Existing literature

The topic of modified Fourier expansions was introduced by Iserles and Nørsett in [94], in-
cluding quadrature routines to evaluate coefficients. Generalisations to the d-variate cube
and equilateral triangle, along with Huybrechs, were pursued in [95] and [88] respectively. An
extension to Birkhoff expansions was considered in [8] and a study of convergence acceleration
initiated in [87].

Aside from proofs of suitable versions of the Fejér and de la Vallée Poussin theorems for the
univariate modified Fourier basis [94], the aforementioned papers mainly omitted the analysis
of convergence of such expansions. This was carried out by S. Olver in [134] and the author
in [3]. Multivariate expansions in the d-variate cube were studied by the author in [5] and
convergence acceleration was addressed in [4]. As regards applications, the modified Fourier
basis was employed in [38] to discretise highly oscillatory integral operators. In [5, 3] this
basis was applied to the numerical solution of boundary value problems.

Several review papers have also been written on this topic [7, 90].

1.4 Outline of the thesis

The outline of the remainder of this thesis is as follows. In Chapter 2 we develop modified
Fourier expansions in the d-variate cube. Chapter 3 is devoted to the generalisation of this
work to certain Birkhoff expansions. The spectral discretisation of boundary value problems
is studied in Chapter 4, and in Chapter 5 we assess convergence acceleration. Finally, in
Chapter 6 we outline directions for future research.



Chapter 2

Laplace eigenfunction expansions

2.1 Introduction

The subject of this chapter is the expansion of nonperiodic functions defined on d-variate
cubes in eigenfunctions of the Laplace operator equipped with either homogeneous Dirichlet
or Neumann boundary conditions. As described in Chapter 1, Laplace–Neumann expansions
(referred to as modified Fourier expansions) confer an advantage over classical Fourier series
for the approximation of nonperiodic functions. An objective of this chapter is to confirm
such an advantage through providing convergence analysis for these expansions.

However, we shall also study the Laplace–Dirichlet case. There are several reasons for
this. First, Laplace–Neumann and Laplace–Dirichlet expansions are dual to each other in a
certain sense. Analysis of the former is reliant on an understanding of the latter, and vice versa.
Hence, a concurrent study is necessary. Second, much like the modified Fourier basis, Laplace–
Dirichlet eigenfunctions have application to the spectral discretisation of certain boundary
value problems (a topic we address in detail in Chapter 4), thus independently motivating
their study. Finally, the Laplace–Dirichlet case highlights that the analysis pursued in this
chapter is more widely applicable than some classical Fourier analysis techniques. Indeed, it
is possible to analyse a raft of Laplace eigenfunctions corresponding to a variety of different
boundary conditions with only minor modifications of the approach of this chapter. However,
for the sake of clarity, we consider only the Dirichlet and Neumann cases. An indication of
the generality of this approach is given at the end of this chapter.

The key results of this chapter are as follows:

1. Expansions in Laplace eigenfunctions are best studied in certain non-classical Sobolev
spaces: namely, so-called Sobolev spaces of dominating mixed smoothness.

2. The set of Laplace–Neumann eigenfunctions is an orthogonal basis of not just L2(Ω), but
also of H1

mix(Ω), the first Sobolev space of dominating mixed smoothness. In particular,
the truncated expansion of a function f ∈ H1

mix(Ω) in Laplace–Neumann eigenfunctions
converges uniformly on Ω̄. This result holds for (almost) arbitrary index sets.

3. If the standard full index set is employed, then the pointwise error committed by the
N th truncated expansion is O

(
N−2

)
in Ω and O

(
N−1

)
on ∂Ω.

4. The coefficients f̂n lie on a hyperbolic cross. Hence, a hyperbolic cross index set can
be incorporated into the truncated expansion. This greatly reduces computational cost
from O

(
Nd
)

when a full index set is used to just O
(
N(logN)d−1

)
. Moreover, conver-

7
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gence rates only deteriorate by, at most, a logarithmic factor. A further improvement is
offered by exploiting a so-called optimized hyperbolic cross index set. In this case, the
computational cost is O (N), a figure which no longer grows with dimension. Conver-
gence rates, when measured in an appropriate norm, are not deteriorated.

5. Laplace–Dirichlet expansions have a virtually identical theory to their Laplace–Neumann
counterparts. However, both the degree and rate of convergence are one order lower. In
particular, much like classical Fourier expansions, the truncated expansion of a function
in Laplace–Dirichlet eigenfunctions does not converge uniformly on Ω̄, and suffers from
the Gibbs phenomenon.

6. Both the rate and degree of convergence of Laplace–Dirichlet and Laplace–Neumann
expansions are determined by whether the function being approximated satisfies cer-
tain derivative conditions on the boundary ∂Ω. If a function satisfies the first k such
conditions then all rates of convergence increase by a factor of N2k.

7. Both Laplace–Neumann and Laplace–Dirichlet coefficients can be calculated using com-
binations of classical and highly oscillatory quadratures. Unlike the FFT, such schemes
are adaptive (in that coefficients are calculated one by one), therefore permitting the
use of hyperbolic cross index sets.

The material in this chapter is based on the author’s papers [5, 3].

2.2 Definition and basic properties

Let Ω = (−1, 1) be the unit interval.1 On this domain, the eigenfunctions of the Laplace
operator subject to homogeneous Dirichlet and Neumann boundary conditions are given by

ψ
[0]
0 = ψ

[1]
0 = 0, ψ[0]

n (x) = cos(n− 1
2)πx, ψ[1]

n (x) = sinnπx, n ∈ N, (2.1)

and

φ
[0]
0 (x) =

1√
2
, φ

[1]
0 (x) = 0, φ[0]

n (x) = cosnπx, φ[1]
n (x) = sin(n− 1

2)πx, n ∈ N, (2.2)

respectively. Note that, for ease of notation, we define ψ
[0]
0 , ψ

[1]
0 and φ

[1]
0 in this manner. Aside

from the zero Neumann eigenvalue, both sets of eigenfunctions share the common eigenvalues

µ[0]
n = (α[0]

n )2 = n2π2, µ[1]
n = (α[1]

n )2 = (n− 1
2)2π2, n ∈ N. (2.3)

Density of both sets of eigenfunctions is immediately confirmed:

Lemma 2.1. The eigenfunctions (2.1) and (2.2) form orthonormal bases of L2(Ω).

Proof. This is a standard result of spectral theory [2].

The corresponding multivariate eigenfunctions in the d-variate cube Ω = (−1, 1)d, d ∈ N,
arise precisely from Cartesian products:

1We define Ω in this manner for the purpose of symmetry, at the expense of having two types of eigenfunc-
tions (even and odd respectively).
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Lemma 2.2. The Laplace–Dirichlet and Laplace–Neumann eigenfunctions on Ω = (−1, 1)d

are precisely Cartesian products of univariate eigenfunctions (2.1) and (2.2) respectively.
Moreover, they form orthonormal bases of L2(Ω).

Proof. As in Lemma 2.1 it is readily verified that the sets of multivariate Laplace–Dirichlet and
Laplace–Neumann eigenfunctions form orthonormal bases of L2(Ω). Trivially, any Cartesian
product of univariate eigenfunctions is a multivariate eigenfunction. By standard arguments
(see [153, p.193]), the set of Cartesian products of eigenfunctions also forms an orthonormal
basis of L2(Ω). By density and orthogonality, no other eigenfunctions are permissible.

If x = (x1, . . . , xd) ∈ [−1, 1]d, n = (n1, . . . , nd) ∈ Nd0 and i = (i1, . . . , id) ∈ {0, 1}d we write

ψ[i]
n (x) =

d∏
j=1

ψ
[ij ]
nj (xj), φ[i]

n (x) =
d∏
j=1

φ
[ij ]
nj (xj),

for the multivariate eigenfunctions. The corresponding eigenvalues are µ
[i]
n =

∑d
j=1 µ

[ij ]
nj .

Suppose now that f ∈ L2(Ω) and N ∈ N. We define the truncated expansion of f in Laplace–
Neumann eigenfunctions by

FN [f ](x) =
∑

i∈{0,1}d

∑
n∈IN

f̂ [i]
n φ

[i]
n (x), x ∈ [−1, 1]d, (2.4)

where f̂
[i]
n is the coefficient of f corresponding to the eigenfunction φ

[i]
n ,

f̂ [i]
n =

(
f, φ[i]

n

)
=

∫
Ω
f(x)φ[i]

n (x) dx, i ∈ {0, 1}d, n ∈ Nd0, (2.5)

and (·, ·) is the standard L2(Ω) inner product. Here IN ⊆ Nd0 is some finite index set. Usually,
IN = {0, . . . , N} in the univariate setting, so that

FN [f ](x) =
1√
2
f̂

[0]
0 +

N∑
n=1

f̂ [0]
n cosnπx+ f̂ [1]

n sin(n− 1
2)πx, x ∈ [−1, 1].

For multivariate expansions various different choices of IN are possible. We consider this
further in Sections 2.9 and 2.10. Suppose now that we define the finite dimensional space

SN = span
{
φ[i]
n : n ∈ IN , i ∈ {0, 1}d

}
. (2.6)

Then the operator FN , as defined in (2.4), is the the orthogonal projection L2(Ω)→ SN with
respect to (·, ·). Similarly, the truncated expansion of f in Laplace–Dirichlet eigenfunctions

FN [f ](x) =
∑

i∈{0,1}d

∑
n∈IN

f̌ [i]
n ψ

[i]
n (x), x ∈ [−1, 1]d, (2.7)

where f̌
[i]
n = (f, ψ

[i]
n ), is the orthogonal projection onto the space SN spanned by the functions

ψ
[i]
n with n ∈ IN , i ∈ {0, 1}d.
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Figure 2.1: Even periodic extensions of the functions f(x) = ex (left) and f(x) = ex − x cosh 1 −
1
2x

2 sinh 1.

The focus of the first part of this chapter is the convergence of FN [f ] to f in various norms.
The results we prove are essentially independent of the choice of index set IN , however we
will impose the following mild conditions

I1 ⊆ I2 ⊆ . . . ⊆ Nd0,
⋃
N∈N

IN = Nd0. (2.8)

With this assumption to hand, we may now prove a version of Parseval’s theorem [107] for
these bases:

Theorem 2.3 (Parseval). Suppose that SN , FN are defined for either Laplace–Neumann or
Laplace–Dirichlet eigenfunctions. Suppose further that f ∈ L2(Ω) and that IN satisfies (2.8).
Then, in both cases, FN [f ] is the best approximation to f from SN in the L2(Ω) norm and
‖f −FN [f ]‖ → 0 as N →∞. Moreover, we have the characterisations

‖f‖2 =
∑

i∈{0,1}d

∑
n∈Nd0

|f̂ [i]
n |2, ‖f‖2 =

∑
i∈{0,1}d

∑
n∈Nd

|f̌ [i]
n |2. (2.9)

Proof. Since f −FN [f ] is orthogonal to SN , we have

‖f − φ‖2 = ‖f −FN [f ]‖2 + ‖FN [f ]− φ‖2 ≥ ‖f −FN [f ]‖2,

for any φ ∈ SN . Hence, FN [f ] is the best approximation to f from the set SN . Using Lemmas
2.1 and 2.2 we immediately deduce that ‖f − FN [f ]‖ → 0 as N → ∞. To establish (2.9) we
first note that the result holds for any f ∈ SN . For f ∈ L2(Ω) we write f = FN [f ]+(f−FN [f ])
and use orthogonality and the previous result.

2.3 Comparison to Fourier series

Both Laplace–Dirichlet and Laplace–Neumann expansions exhibit a close relation to classical
Fourier series. For example, if a univariate function f defined on [−1, 1] is extended evenly
to the real line (see Figure 2.1), then its expansion in Laplace–Neumann eigenfunctions on
[−1, 1] is precisely the Fourier series of the periodic extension on [−2, 2] [90]. Similarly, the
Laplace–Dirichlet expansion relates to the odd extension of f .
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Despite this interpretation, an accurate study of modified Fourier expansions is best
achieved without applying known results from Fourier analysis. Moreover, the techniques
we develop in this chapter are readily transferrable to a variety of other eigenfunction expan-
sions, most of which do not share this connection to the Fourier basis (see Chapter 3 and
Section 2.11).

It is well known that the convergence rate of the Fourier expansion FN [f ] of a periodic
function f is completely governed by its smoothness. In fact, ‖f−FN [f ]‖r ≤ cN r−s‖f‖s for all
r, s ∈ N0 [42], where ‖·‖r is the rth classical Sobolev norm. The interpretation of the Laplace–
Dirichlet and Laplace–Neumann expansions in this manner demonstrates the barrier to fast
convergence. The even extension of f suffers from ‘jumps’ in its odd derivatives at x = ±1,
whereas the odd extension possesses such jumps in its even derivatives. These derivative
conditions completely determine the convergence rate of such expansions. As demonstrated
in Figure 2.1, if f has no jump in its first derivative, its even periodic extension has higher
regularity, thus guaranteeing faster convergence. We explore this issue in greater detail in the
forthcoming sections.

2.4 Derivative conditions

Unlike their Fourier counterpart, the bases of Laplace–Dirichlet or Laplace–Neumann eigen-
functions are not closed under differentiation. However, the derivative of a univariate Laplace–
Neumann eigenfunction is proportional to a Laplace–Dirichlet eigenfunction and vice-versa:

(φ[i]
n )′ = (−1)1+iα[i]

n ψ
[1−i]
n , (ψ[i]

n )′ = (−1)1+iα[i]
n φ

[1−i]
n , i ∈ {0, 1}, n ∈ N0. (2.10)

Suppose that we write Γ = ∂Ω for the boundary of Ω and define the subset Γj of Γ by
Γj = {x ∈ Γ : xj = ±1}, j = 1, . . . , d. We may now generalise this observation to the
d-variate cube:

Lemma 2.4. Suppose that β = (β1, . . . , βd) ∈ Nd0 and Ω = (−1, 1)d. Then, if we apply the

operator Dβ = ∂β1
x1 . . . ∂

βd
xd to the set of Laplace–Neumann eigenfunctions on Ω we obtain,

up to scalar multiples, the set of Laplace eigenfunctions that satisfy homogeneous Neumann
boundary conditions on the faces Γj where βj is even, and homogeneous Dirichlet boundary
conditions elsewhere. Such eigenfunctions are orthogonal and dense in L2(Ω).

Proof. From (2.10) it follows that

Dβφ[i]
n =

d∏
j=1

∂
βj
xjφ

[ij ]
nj =

d∏
j=1

(−1)(1+ij)βj (α
[ij ]
nj )βjθ

[ij ]
nj =

[
d∏
j=1

(−1)(1+ij)βj (α
[ij ]
nj )βj

]
θ[i]
n ,

where θ
[ij ]
nj is a univariate Laplace–Neumann (respectively Laplace–Dirichlet) eigenfunction

if βj is even (odd). Using identical arguments to those given in Section 2.2, we deduce

orthogonality and density of the eigenfunctions θ
[i]
n .

This duality is essential to establishing the convergence of such eigenseries. It also under-
scores why a concurrent study of both sets of eigenfunctions is necessary. Moreover, as we
demonstrate in Chapter 5, such duality also has a practical usage.
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Though convergence of FN [f ] to f in the L2(Ω) norm is guaranteed, the rate of convergence
may be arbitrarily slow. In the sequel, we verify that this rate improves if the truncated
expansion FN [f ] converges to f in higher-order Sobolev norms. Our goal now is to derive
conditions on the function f that ensure such convergence.

At this point, we remark that the primary consideration of this chapter will be the con-
vergence of such expansions in the uniform norm as well as various Sobolev norms with index
p = 2, i.e. the spaces Hr(Ω). Convergence of classical Fourier series in a variety of other
norms is the subject of a vast array of literature. We cannot hope to obtain analogous results
for modified Fourier expansions within the confines of one chapter. Needless to say, a study
of convergence in the spaces Hr(Ω) is a natural choice in view of the primary application,
boundary value problems, addressed in this thesis.

Returning to derivative conditions, consider a univariate function f ∈ C∞[−1, 1]. Since

φ
[i]
n is an eigenfunction of the univariate Laplace operator, we have

f̂ [i]
n =

∫ 1

−1
f(x)φ[i]

n (x) dx = − 1

µ
[i]
n

∫ 1

−1
f(x)(φ[i]

n )′′(x) dx, n ∈ N.

Integrating this expression by parts and applying the boundary conditions for φ
[i]
n we obtain

f̂ [i]
n =

(−1)i+1

α
[i]
n

f̂ ′
[1−i]
n .

Integrating by parts once more and iterating the result gives

f̂ [i]
n =

(−1)n+i

µ
[i]
n

{
f ′(1) + (−1)i+1f ′(−1)

}
− 1

µ
[i]
n

f̂ ′′
[i]

n

=

k−1∑
r=0

(−1)r+n+i

(µ
[i]
n )r+1

{
f (2r+1)(1) + (−1)i+1f (2r+1)(−1)

}
+

(−1)k

(µ
[i]
n )k

f̂ (2k)
[i]

n , k, n ∈ N. (2.11)

We immediately observe that the coefficients f̂
[i]
n are O

(
n−2

)
in general and O

(
n−2k−2

)
provided f satisfies f (2r+1)(±1) = 0, r = 0, . . . , k−1. A similar observation, which we explore
in greater detail in Section 2.7, holds regarding the coefficients of a multivariate function. If

f ∈ C∞([−1, 1]d), it turns out that f̂
[i]
n is O(n−2

1 . . . n−2
d ) in general and O(n−2k−2

1 . . . n−2k−2
d )

provided f satisfies the first k Neumann derivative conditions

∂2r+1
xj f

∣∣
Γj

= 0, j = 1, . . . , d, r = 0, . . . , k − 1. (2.12)

Aside from giving faster decay of the coefficients, such conditions also ensure convergence
of the expansion in higher-order Sobolev norms, as we shall demonstrate. Observe that, in

particular, the eigenfunctions φ
[i]
n automatically satisfy all derivative conditions.

In the Dirichlet setting we obtain (by identical arguments) the following

f̌ [i]
n =

k−1∑
r=0

(−1)r+n

(µ
[i]
n )r+

1
2

{
f (2r)(1) + (−1)if (2r)(−1)

}
+

(−1)k

(µ
[i]
n )k−

1
2

f̂ (2k−1)
[i]

n , k, n ∈ N. (2.13)

In an analogous manner, we say that a function f satisfies the first k Dirichlet derivative
conditions if

∂2r
xjf
∣∣
Γj

= 0, j = 1, . . . , d, r = 0, . . . , k − 1. (2.14)
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Once more, this ensures convergence of the Dirichlet expansion in higher-order norms.

As discussed in the previous section, these conditions are closely associated with periodic
extensions. The standard setting for Fourier analysis arises upon introduction of the periodic
spaces Hr(Td), where Td is the d-variate torus. Though possible, we shall not adopt a similar
approach for Laplace eigenfunction expansions.2

Nonetheless, it is of both theoretical interest and practical use to consider functions which
satisfy the first k such conditions. From the former standpoint, this governs the rate of
convergence of the approximation. For practical purposes, devices for accelerating convergence
of such approximations are typically based on interpolating the first k derivative conditions.
For example, if this is achieved with a function gk, then the new approximation to f given by
FN [f − gk] + gk converges at a faster rate. We devote Chapter 5 to this topic.

In Lemma 2.4 we exhibited the duality of the Laplace–Dirichlet and Laplace–Neumann
bases. For functions that obey the first k derivative conditions, a similar duality holds for the
truncated expansion FN [f ]. We have

Lemma 2.5. Suppose that f ∈ C∞(Ω̄), where Ω = (−1, 1)d, and that f satisfies the first
k Neumann derivative conditions (2.12) for some k ∈ N0.3 Suppose further that FN [f ] is
the truncated expansion of f in Laplace–Neumann eigenfunctions. If β ∈ Nd0 and |β|∞ ≤
2k + 1, then DβFN [f ] is the truncated expansion of Dβf in Laplace eigenfunctions that obey
homogeneous Neumann boundary conditions in the variables xj when βj is even and Dirichlet
boundary conditions elsewhere.

Conversely, if f satisfies the first k Dirichlet derivative conditions (2.14) for some k ∈ N
and FN [f ] is its truncated expansion in Laplace–Dirichlet eigenfunctions then, for |β|∞ ≤ 2k,
DβFN [f ] is the truncated expansion of Dβf in Laplace eigenfunctions that obey homogeneous
Dirichlet boundary conditions in the variables xj when βj is even and Neumann boundary
conditions elsewhere.

Proof. Consider the coefficient f̂
[i]
n . Since f obeys the first k derivative conditions, we may

integrate by parts βj ≤ 2k + 1 times in each variable with vanishing boundary terms. Hence

f̂ [i]
n =

[ d∏
j=1

(−1)(1+ij)βj (α
[ij ]
nj )βj

]−1
∫

Ω
Dβf(x)θ[i]

n (x) dx,

where θ
[i]
n is the Laplace eigenfunction that obeys homogeneous Neumann boundary conditions

in the variables xj where βj is even and homogeneous Dirichlet boundary conditions elsewhere.
Using this and Lemma 2.4, we obtain

DβFN [f ](x) =
∑

i∈{0,1}d

∑
n∈IN

f̂ [i]
n Dβφ[i]

n (x) =
∑

i∈{0,1}d

∑
n∈IN

(
Dβf, θ[i]

n

)
θ[i]
n (x),

which gives the result for the Neumann case. The proof for Laplace–Dirichlet expansions is
virtually identical.

2The primary reason for not doing so is that we do not want the number of derivative conditions satisfied
to be completely determined by the degree of smoothness. Such approach would not allow us to derive quasi-
optimal error estimates as readily.

3As a convention, when k = 0 we mean that the function satisfies no derivative conditions.
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We immediately note one ramification of this lemma: for equal numbers of derivative con-
ditions satisfied, the quantity DβFN [f ] is understood in terms of some orthogonal expansion
of Dβf for larger values of |β|∞ when FN [f ] is the expansion of f in Neumann eigenfunctions.
In particular, if the function f satisfies no Neumann or Dirichlet conditions then DβFN [f ] is
known for |β|∞ ≤ 1 in the Neumann case, but only β = 0 for the Dirichlet expansion. As
we next demonstrate, a consequence of this observation is uniform convergence of the expan-
sion in Laplace–Neumann eigenfunctions. Conversely, the Laplace–Dirichlet expansion suffers
from the Gibbs phenomenon.4

The result of this lemma also indicates that the classical Sobolev norms are insufficient
for a study of multivariate Laplace eigenfunction expansions. By definition, if f ∈ H2k+1(Ω)
then Dβf ∈ L2(Ω) for all |β| ≤ 2k + 1. However, in Lemma 2.5 the quantity DβFN [f ] is
understood for not only such β, but also any value β with |β|∞ ≤ 2k + 1. This warrants the
introduction of a new type of Sobolev space, a topic we now consider.

2.5 Sobolev spaces of dominating mixed smoothness

Sobolev spaces of dominating mixed smoothness are the standard setting whenever a hy-
perbolic cross index set (a device we consider in Section 2.10) or a sparse grid is employed
[41, 145, 158]. In the particular case of Laplace eigenfunction expansions, such spaces provide
a suitable framework for analysis, even for arbitrary index sets. Subsequently, we shall also

see that the associated norms are precisely those required to bound the coefficients f̂
[i]
n and

f̌
[i]
n in inverse powers of n1 . . . nd, which leads to quasi-optimal approximation error estimates.

For r ∈ N0 we define the rth Sobolev space of dominating mixed smoothness5 by

Hr
mix(Ω) = {f : Dβf ∈ L2(Ω), ∀ β ∈ Nd0 : |β|∞ ≤ r}, (2.15)

where the derivative Dβ is taken in the sense of distributions, with associated norm

‖f‖2r,mix =
∑
|β|∞≤r

‖Dβf‖2. (2.16)

This space is also commonly denoted by S
(r,...,r)
2 H(Ω) in literature [145, 158].6 Note that

Hrd(Ω) ⊆ Hr
mix(Ω) ⊆ Hr(Ω). It is readily seen that the condition f ∈ C∞(Ω̄) in Lemma

2.5 can be replaced by f ∈ H2k+1
mix (Ω) or f ∈ H2k

mix(Ω) in the Neumann or Dirichlet cases
respectively, thus motivating the use of such spaces in this context.

We note in passing the following geometric interpretation: Hr
mix(−1, 1)d is isomorphic

to the tensor-product space Hrmix(−1, 1)d = Hr(−1, 1) ⊗ . . . ⊗ Hr(−1, 1) [85]. Though we
shall not make use of this fact directly, we will repeatedly use the following result, which
follows immediately from this equivalent definition. This is the standard approximation by
smooth functions property: given f ∈ Hr

mix(Ω) and ε > 0 there exists g ∈ C∞(Ω̄) such that
‖f − g‖r,mix < ε.

4As in [72], we interpret the Gibbs phenomenon as the issue of recovering local information (function values)
from global information (coefficients). Several manifestations of this are the slow decay of the coefficients, the
lack of uniform convergence and the presence of O (1) oscillations near the boundary.

5In the periodic setting, such spaces are isomorphic to the Korobov spaces [158].
6This space is a particular example of the spaces Sγ2H(Ω), where γ = (γ1, . . . , γd) ∈ Nd0 [145], with γ1 =

. . . = γd = r. Though it is possible to study Laplace eigenfunction expansions in such setting, we shall not do
this here.



2.5 Sobolev spaces of dominating mixed smoothness 15

Imbedding theorems for the spaces (2.15) are of central importance to our study. In
particular, we require imbeddings in the Hölder spaces Cr,λ(Ω̄), r ∈ N0, 0 ≤ λ < 1. It
turns out that, unlike the classical Sobolev spaces (see, for example [2, 56]), imbeddings for
the spaces Hr

mix(Ω) are essentially independent of the dimension d. Our first result is the
following:

Lemma 2.6. We have the continuous imbedding Hr+1
mix (Ω) ↪→ Cr(Ω̄) for r ∈ N0.

To prove this lemma we require the following observation:

Lemma 2.7. Suppose that f ∈ C∞(Ω̄). Then

f(x) =
∑
t∈[d]∗

∫ xt1

−1
. . .

∫ xt|t|

−1
Dtf(xt;−1) dxt1 . . . dxt|t| , x ∈ Ω̄, (2.17)

where [d] is the set of ordered tuples of length at most d with entries in {1, . . . , d}, [d]∗ =
[d] ∪ {∅}, Dt = ∂xt1 . . . ∂xt|t| for t = (t1, . . . , t|t|) ∈ [d] and (xt;−1) ∈ Ω̄ has jth entry xj if

j ∈ t and −1 otherwise.

Proof. We use induction on d. For d = 1 we have f(x) =
∫ x
−1 f

′(x) dx+ f(−1), so the result
holds. Now assume that (2.17) is valid for d− 1. Then

f(x) =

∫ xd

−1
∂xdf(x) dxd + f(x1, . . . , xd−1,−1)

=
∑

t∈[d−1]∗

[∫ xt1

−1
. . .

∫ xt|t|

−1

∫ xd

−1
∂xdDtf(x(t,d),−1) dxt1 . . . dxt|t| dxd

+

∫ xt1

−1
. . .

∫ xt|t|

−1
Dtf(xt,−1) dxt1 . . . dxt|t|

]
.

Since the set [d]∗ consists of elements t, (t, d) = (t1, . . . , t|t|, d), where t ∈ [d − 1]∗, this
expression reduces to (2.17).

Proof of Lemma 2.6. For |β|∞ ≤ r, we have Dβf ∈ H1
mix(Ω). Hence it suffices to derive the

result for r = 0. To prove this result we first demonstrate that the inequality

‖f‖∞ ≤ c‖f‖1,mix, (2.18)

holds for all f ∈ C∞(Ω̄) and some positive constant c independent of f . To do so, we note
that

f(xt,−1) =

∫ 1

−1
. . .

∫ 1

−1
Dt̄

f(x)
∏
j /∈t

xj − 1

2

 dxt̄1 . . . dxt̄|t̄| , ∀t ∈ [d]∗,

where t̄ ∈ [d]∗ = [d]∪{∅} is the tuple of length d−|t| of elements not in t. After an application
of Lemma 2.7, we obtain

f(x) =
∑
t∈[d]∗

∫ 1

−1
. . .

∫ 1

−1

∫ xt1

−1
. . .

∫ xt|t|

−1
D

f(x)
∏
j /∈t

xj − 1

2

 dxt dxt̄. (2.19)
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Each integrand involves terms of the form Dβf for some |β|∞ ≤ 1. Hence, using the Cauchy–
Schwarz inequality and replacing suitable upper limits of integration by 1, we obtain (2.18)
for f ∈ C∞(Ω̄).

We now proceed in the standard manner. If f ∈ H1
mix(Ω) then f is the limit in H1

mix(Ω)
of a sequence of functions belonging to C∞(Ω̄). Since (2.18) holds for all g ∈ C∞(Ω̄), this
sequence converges uniformly on Ω̄ to f̃ ∈ C(Ω̄). Since f = f̃ a.e. the result follows.

In fact, it turns out that a stronger result can also be established:

Theorem 2.8. We have the continuous imbedding Hr+1
mix (Ω) ↪→ Cr, 1

2 (Ω̄) for r ∈ N0.

Proof. Once more it is sufficient to prove this result for r = 0. In view of Lemma 2.6, we may
assume that f ∈ C(Ω̄). Therefore, it suffices to establish that

sup
x,y∈Ω
x 6=y

|f(x)− f(y)|
|x− y|

1
2

≤ c‖f‖1,mix, (2.20)

for some positive constant c independent of f , where |x| = |x1| + . . . |xd| for x ∈ Rd. By
standard arguments, we may assume that f ∈ C∞(Ω̄). We have

f(x)− f(y) =f(x1, . . . , xd)− f(y1, x2, . . . , xd)

+
d∑
j=2

(−1)j {f(y1, . . . , yj−1, xj , . . . , xd)− f(y1, . . . , yj , xj+1, . . . , xd)}

=

∫ x1

y1

∂x1f(x1, . . . , xd) dx1 +
d∑
j=2

(−1)j
∫ xj

yj

∂xjf(y1, . . . , yj−1, xj , . . . , xd) dxj .

Hence, using the Cauchy–Schwarz inequality and the result of Lemma 2.6 for d−1, we obtain

|f(x)− f(y)| ≤ c‖f‖1,mix

d∑
j=1

|xj − yj |
1
2 ≤ c‖f‖1,mix|x− y|

1
2 .

This yields (2.20).

2.6 Convergence of Laplace eigenseries

We are now in a position to assess the convergence of Laplace–Neumann and Laplace–Dirichlet
expansions in various norms. Concerning convergence in the classical Sobolev norms, we have
the following result:

Lemma 2.9. Suppose that f ∈ H2k+l(Ω), l = 0, 1, obeys the first k ∈ N0 Neumann derivative
conditions (2.12) and that FN [f ] is the truncated expansion of f in Laplace–Neumann eigen-
functions. Then, for r = 0, . . . , 2k + l, FN [f ] is the best approximation to f from SN in the
Hr(Ω) norm, ‖f −FN [f ]‖r → 0 and we have the characterisation

‖f‖2r =
∑

i∈{0,1}d

∑
n∈Nd0

∑
|β|≤r

d∏
j=1

(µ
[ij ]
nj )βj

 |f̂ [i]
n |2, r = 0, . . . , 2k + l.
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If f ∈ H2k+l−1(Ω) obeys the first k Dirichlet derivative conditions (2.14) and FN [f ] is its
truncated expansion in Laplace–Dirichlet eigenfunctions, then FN [f ] is the best approximation
to f in the Hr(Ω) norm for r = 0, . . . , 2k + l − 1, ‖f −FN [f ]‖r → 0 and

‖f‖2r =
∑

i∈{0,1}d

∑
n∈Nd

∑
|β|≤r

d∏
j=1

(µ
[ij ]
nj )βj

 |f̌ [i]
n |2, r = 0, . . . , 2k + l − 1.

Proof. Consider the Neumann case. By Lemma 2.5, for each |β| ≤ 2k + l, DβFN [f ] is the
truncated expansion of Dβf in an orthonormal basis of L2(Ω). Hence, by a version of Parseval’s
theorem for such basis, we have

‖Dβ(f −FN [f ])‖2 =
∑

i∈{0,1}d

∑
n∈Nd0

d∏
j=1

(µ
[ij ]
nj )βj |f̂ [i]

n |2.

Summing over |β| ≤ r now gives the result. The Dirichlet case is identical.

Using an identical method of proof, we also obtain an analogous result for the mixed
Sobolev norms:

Lemma 2.10. Suppose that f ∈ H2k+l
mix (Ω), l = 0, 1, obeys the first k ∈ N0 Neumann deriva-

tive conditions (2.12) and that FN [f ] is the truncated expansion of f in Laplace–Neumann
eigenfunctions. Then, for r = 0, . . . , 2k + l, FN [f ] is the best approximation to f from SN in
the Hr

mix(Ω) norm, ‖f −FN [f ]‖r,mix → 0 and we have the characterisation

‖f‖2r,mix =
∑

i∈{0,1}d

∑
n∈Nd0

 ∑
|β|∞≤r

d∏
j=1

(µ
[ij ]
nj )βj

 |f̂ [i]
n |2, r = 0, . . . , 2k + l.

If f ∈ H2+l−1
mix (Ω), l = 0, 1, obeys the first k Dirichlet derivative conditions (2.14) and FN [f ]

is its truncated expansion in Laplace–Dirichlet eigenfunctions, then FN [f ] is the best approx-
imation to f in the Hr

mix(Ω) norm for r = 0, . . . , 2k + l − 1, ‖f −FN [f ]‖r,mix → 0 and

‖f‖2r,mix =
∑

i∈{0,1}d

∑
n∈Nd

 ∑
|β|∞≤r

d∏
j=1

(µ
[ij ]
nj )βj

 |f̌ [i]
n |2, r = 0, . . . , 2k + l − 1.

When k = 0, Lemmas 2.9 and 2.10 establish the convergence of the expansion FN [f ] of
a general function f that satisfies no derivative conditions. For Laplace–Neumann eigenfunc-

tions these results may be restated more succinctly: the set {φ[i]
n : n ∈ Nd0, i ∈ {0, 1}d} is

an orthogonal basis of not just L2(Ω), but also of H1(Ω) and H1
mix(Ω). The advantage of

modified Fourier expansions over both classical Fourier and Laplace–Dirichlet expansions is
now evident.

An identical method of proof to that given in Lemma 2.9 can be used to characterise
the classical and mixed Sobolev semi-norms7. For the sake of brevity we consider only the

7In fact, it is easily confirmed that such characterisations exist for any finite collection of derivatives of f .
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Neumann case:

|f |2r =
∑
|β|=r

‖Dβf‖2 =
∑

i∈{0,1}d

∑
n∈Nd0

∑
|β|=r

d∏
j=1

(µ
[ij ]
nj )βj

 |f̂ [i]
n |2,

|f |2r,mix =
∑
|β|∞=r

‖Dβf‖2 =
∑

i∈{0,1}d

∑
n∈Nd0

 ∑
|β|∞=r

d∏
j=1

(µ
[ij ]
nj )βj

 |f̂ [i]
n |2, r = 0, . . . , 2k + l. (2.21)

Such characterisations, along with those given in Lemmas 2.9 and 2.10, can be greatly sim-
plified with a standard tool of Fourier analysis. We first recall the multinomial formula

(y1 + . . .+ yd)
r =

∑
|β|=r

r!

β1! . . . βd!

d∏
j=1

y
βj
j , ∀y ∈ Rd, r ∈ N0.

Using this we deduce that there are positive constants c1 and c2 depending only on r such
that

c1

(
y2

1 + . . .+ y2
d

)r ≤ ∑
|β|=r

d∏
j=1

y
2βj
j ≤ c2

(
y2

1 + . . .+ y2
d

)r
, ∀y ∈ Rd.

If we now consider the subspace of functions f ∈ H2k+l(Ω) that satisfy the first k ∈ N0

Neumann derivative conditions, then an equivalent norm to ‖·‖r on this space is given by

(‖f‖′r)2 =
∑

i∈{0,1}d

∑
n∈Nd0

(
1 + µ[i]

n

)r
|f̂ [i]
n |2, r = 0, . . . , 2k + l. (2.22)

The semi-norm | · |r also has the following equivalent:

(|f |′r)2 =
∑

i∈{0,1}d

∑
n∈Nd0

(
µ[i]
n

)r
|f̂ [i]
n |2, r = 0, . . . , 2k + l.

In an identical manner, since there exist constants c1, c2 depending only on r such that

c1

d∏
j=1

(1 + y2
j )
r ≤

∑
|β|∞=r

d∏
j=1

y
2βj
j ≤ c2

d∏
j=1

(1 + y2
j )
r, ∀y ∈ Rd,

we may attain a similar result for the mixed norms. An equivalent norm to ‖·‖r,mix
on the

subspace of functions f ∈ H2k+l
mix (Ω) that have vanishing Neumann derivative conditions is

therefore given by

(‖f‖′r,mix)2 =
∑

i∈{0,1}d

∑
n∈Nd0

d∏
j=1

(
1 + µ

[ij ]
nj

)r
|f̂ [i]
n |2, r = 0, . . . , 2k + l. (2.23)

Likewise, an equivalent semi-norm is given by

(|f |′r,mix)2 =
∑

i∈{0,1}d

∑
n∈Nd0

d∏
j=1

(
µ

[ij ]
nj

)r
|f̂ [i]
n |2, r = 0, . . . , 2k + l.

One immediate consequence of such norm equivalences is the following simple version of
Bernstein’s inequality:
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Corollary 2.11 (Bernstein). Suppose that φ ∈ SN , where SN consists of either Laplace–
Dirichlet or Laplace–Neumann eigenfunctions. Then

‖φ‖r ≤ max
n∈IN

{
(1 + µ[0]

n )
r
2
}
‖φ‖, ‖φ‖r,mix ≤ max

n∈IN

{
d∏
j=1

(1 + µ[0]
nj )

r
2

}
‖φ‖, r ∈ N0.

Proof. Note that µ
[i]
n ≤ µ[0]

n for n ∈ N0 and i ∈ {0, 1}. Since φ ∈ SN automatically satisfies all
derivative conditions, the characterisations (2.22) and (2.23) now provide the result.

We complete this section by scrutinising the uniform convergence of Laplace eigenfunction
expansions:

Theorem 2.12. Suppose that f ∈ H2k+l
mix (Ω), k ∈ N0, l = 0, 1 (l = 1 when k = 0), obeys the

first k Neumann derivative conditions (2.12) and that FN [f ] is its truncated Laplace–Neumann
expansion. Then for |β|∞ ≤ 2k + l − 1, ‖Dβ(f −FN [f ])‖∞ → 0 as N →∞.

If f ∈ H2k+l−1
mix (Ω), k ∈ N, l = 0, 1, obeys the first k Dirichlet derivative conditions

(2.14) and FN [f ] is its truncated Laplace–Dirichlet expansion, then ‖Dβ(f − FN [f ])‖∞ → 0
as N →∞ for |β|∞ ≤ 2(k − 1) + l.

Proof. Setting g = Dβ(f −FN [f ]) in (2.18) and applying Lemma 2.10 gives the result.

When k = 0 we surmise that the modified Fourier expansion of an arbitrary f ∈ H1
mix(Ω)

converges uniformly on Ω̄. In particular, there is no apparent Gibbs phenomenon. However,
the Laplace–Dirichlet expansion—whose convergence mirrors that of a classical Fourier ex-
pansion of a nonperiodic function—does exhibit such a phenomenon, unless the function f
vanishes on the boundary.

The results of Lemmas 2.9, 2.10 and Theorem 2.12 demonstrate that, for equal number of
derivative conditions satisfied, the expansion in Laplace–Neumann eigenfunctions converges
in higher-order norms. This equates to faster convergence of the expansion, which we subse-
quently demonstrate.

No stipulations are made on the index set IN for the results proved in this section, aside
from the mild conditions (2.8). The choice of index set determines the rate of convergence of
the expansion, which we consider in the sequel. To do so, we first need to develop bounds for

the coefficients f̂
[i]
n , f̌

[i]
n . This is the content of the next two sections. Such bounds will also

be used to obtain hyperbolic cross index sets in Section 2.10.

Returning to Theorem 2.12 briefly, we mention that the classical means to establish uni-
form convergence of Fourier series is by means of the Féjer and de la Vallée Poussin theorems
[107]. A similar approach can be applied for univariate modified Fourier expansions [94]. How-
ever, such techniques cannot be used in two or more dimensions unless the index set employed
is particularly simple.8 Conversely, Theorem 2.12 is essentially independent of the index set.
Nonetheless, the result requires H1

mix(Ω) smoothness, which is slightly more regularity than
that imposed in the classical Fourier result: when d = 1, the conditions f ∈ C(T) and f being
of bounded variation ensure uniform convergence of the Fourier series of f (see [103, p. 53]).

8Essentially it needs to be either a hypercube in Nd0 or a sum of hypercubes.
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2.7 Asymptotic expansion of coefficients

The aim of this section is to extend the univariate expansions (2.11) and (2.13) to expansions

for the multivariate coefficients f̂
[i]
n in inverse powers of n1, . . . , nd.

9 Such expansions not only
realise robust bounds for the coefficients, they are also used in Chapter 5 as the starting point
for constructing methods to accelerate convergence. From this point onwards, our primary
focus is the Neumann case.

To express such expansions we first need some additional notation. Given j = 1, . . . , d,

rj ∈ N0 and ij ∈ {0, 1} we define B[ij ]
rj [f ] by

(−1)rjB[ij ]
rj [f ](x1, . . . , xj−1,xj+1, . . . , xd) = ∂

2rj+1
xj f(x1, . . . , xj−1, 1, xj+1, . . . , xd)

+ (−1)ij+1∂
2rj+1
xj f(x1, . . . , xj−1,−1, xj+1, . . . , xd). (2.24)

For t ∈ [d]∗ = [d] ∪ {∅}, rt = (rt1 , . . . , rt|t|) ∈ N|t|0 and it = (it1 , . . . , it|t|) ∈ {0, 1}|t| we define

B[it]
rt [f ] as the composition

B[it]
rt [f ](xt̄) = B[it1 ]

rt1

[
B[it2 ]
rt2

[
. . .

[
B

[it|t| ]
rt|t|

[f ]

]
. . .

]]
(xt̄), (2.25)

with the understanding that when t = ∅, B[it]
rt [f ] = f . Note that the operators B[ij ]

rj , j ∈ t,
operators commute with each other and with differentiation in the variable xt̄. Finally, given

i ∈ {0, 1}d, t ∈ [d]∗, rt ∈ N|t|0 with |rt|∞ ≤ k − 1 and nt̄ = (nt̄1 , . . . , nt̄|t̄|) ∈ N|t̄| we define

A[i]
rt,nt̄ [f ] ∈ R by

A[i]
rt,nt̄

[f ] = (−1)k|t̄|
∏
j /∈t

(
µ

[ij ]
nj

)−k ∫
B[it]
rt [D2k

t̄ f ](xt̄)φ
[it̄]
nt̄

(xt̄) dxt̄. (2.26)

Observe that the integral is nothing more than the Laplace–Neumann coefficient of the func-

tion B[it]
rt [D2k

t̄ f ] corresponding to indices it̄ and nt̄. Moreover, the value A[i]
rt,nt̄ [f ] also depends

on k, d and t ∈ [d]. However, to simplify notation we will not make this dependence explicit.

Concerning the expansion of the coefficients f̂
[i]
n , we have the following result10:

Lemma 2.13. Suppose that f ∈ H2k
mix(Ω), k ∈ N, and that n ∈ Nd. Then

f̂ [i]
n =

∑
t∈[d]∗

k−1∑
|rt|∞=0

A[i]
rt,nt̄

[f ](−1)|nt|+|it|
∏
j∈t

(
µ

[ij ]
nj

)−(rj+1)
, (2.27)

where A[i]
rt,nt̄ [f ] is given by (2.26). Suppose further that f obeys the first k Neumann derivative

conditions (2.12). Then the only non-zero term in (2.27) corresponds to t = ∅. In other words,

f̂ [i]
n = A[i]

k−1,n[f ] = (−1)k
d∏
j=1

(µ
[ij ]
nj )−kD̂2kf

[i]

n .

9In the context of Fourier series, such an expansion is occasionally referred to as the Fourier Coefficient
Asymptotic Expansion (FCAE), a terminology introduced by Lyness [117, 118, 119].

10The bivariate version of this expansion is relatively well known in the context of Fourier series. See, for
example [17].
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Proof. To prove (2.27) it suffices to consider f ∈ C∞(Ω̄). To cover the general case we use

density, linearity and the bound |A[i]
rt,nt̄ [f ]| ≤ c‖f‖2k,mix, ∀f ∈ H2k

mix(Ω), for some positive
constant c independent of f ,nt̄, rt and i (see Lemma 2.16).

We proceed by induction on d. Recalling (2.11) we confirm that the result is valid for
d = 1. Now suppose that the result holds for d− 1. Then

f̂ [i]
n = ĥ

[id]
nd

[i′]

n′ ,

where h
[id]
nd (x′) =

∫ 1
−1 f(x)φ

[id]
nd dxd and i′, n′ and x′ are the first (d − 1) entries of i, n and x

respectively. Using the induction hypothesis we obtain

f̂ [i]
n =

∑
u∈[d−1]∗

k−1∑
|ru|∞=0

A[i′]
ru,nū

[
h[id]
nd

]
(−1)|nu|+|iu|

∏
j∈u

(
µ

[ij ]
nj

)−(rj+1)
.

Applying the result for d = 1 to h
[id]
nd gives

f̂ [i]
n =

∑
u∈[d−1]∗

k−1∑
|ru|∞=0

{
k−1∑
rd=0

(−1)nd+id
(
µ[id]
nd

)−(rd+1)
A[i′]
ru,nū

[
B[id]
rd

[f ]
]

+ (−1)k
(
µ[id]
nd

)−k
A[i′]
ru,nū

[∫ 1

−1
∂2k
xd
f(x)φ[id]

nd
(xd) dxd

]}
(−1)|nu|+|iu|

∏
j∈u

(
µ

[ij ]
nj

)−(rj+1)
.

Suppose now that t = (u, d) ∈ [d], where u ∈ [d − 1]∗. Then A[i′]
ru,nū

[
B[id]
rd [f ]

]
= A[i]

rt,nt̄ [f ].

Furthermore

(−1)k
(
µ[id]
nd

)−k
A[i′]
ru,nū

[
∂̂2k
xd
f

[id]

nd

]
= A[i]

ru,nū [f ],

where we consider u as an element of [d]∗ on the right-hand side of this expression. Hence

f̂ [i]
n =

∑
u∈[d−1]∗

k−1∑
|ru|∞=0

{
k−1∑
rd=0

A[i]
rt,nt̄

[f ](−1)|nt|+|it|
∏
j∈t

(
µ

[ij ]
nj

)−(rj+1)

+A[i]
ru,nū [f ](−1)|nu|+|iu|

∏
j∈u

(
µ

[ij ]
nj

)−(rj+1)
}
.

If t ∈ [d]∗ then either t = (u, d) or t = u for some u ∈ [d − 1]∗. The two terms in the above
expression correspond to these two possibilities. Hence we obtain (2.27).

Now suppose that f obeys the first k derivative conditions: in other words, B[ij ]
rj [f ] = 0

for all ij ∈ {0, 1}, rj = 0, . . . , k − 1 and j = 1, . . . , d. According to (2.26), any term A[i]
rt,nt̄ [f ]

with t 6= ∅ will vanish. This completes the proof.

As mentioned, the expansion (2.27) has a number of uses. However, it is certainly not

unique: provided f is sufficiently smooth, the values A[i]
rt,nt̄ [f ] can be re-expanded in inverse

powers of nt̄. If f ∈ C∞(Ω̄), this results in a formal asymptotic expansion involving only
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inverse powers of n1, . . . , nd and values of the function and its partial derivatives at the
vertices (see also [95]):

f̂ [i]
n ∼ (−1)|n|+|i|

∑
r∈Nd0

B[i]
r [f ]

d∏
j=1

(
µ

[ij ]
nj

)−(rj+1)
, n� 1. (2.28)

Note, however, that this expansion is valid only in an asymptotic sense: in general, the right-
hand side will not converge for fixed n ∈ Nd.

Lemma 2.13 does not include those coefficients f̂
[i]
n where nj = 0 for some j = 1, . . . , d.

However, these can be easily handled. Given n ∈ Nd0, suppose that nt ≡ 0 for some t ∈ [d]. If

ft(xt̄) =

∫ 1

−1
. . .

∫ 1

−1
f(x) dxt, (2.29)

then f̂
[i]
n = f̂t

[it̄]

nt̄
. Moreover, if f ∈ H2k

mix(−1, 1)d then ft ∈ H2k
mix(−1, 1)|t̄|. Hence, we may now

apply Lemma 2.13 to f̂t
[it̄]

nt̄
to give the asymptotic expansion in this case.

As an example, consider the univariate function f(x) = xex. A simple calculation yields

f̂
[0]
0 =

√
2

e
,

f̂ [0]
n =

2(−1)n(1 + e2n2π2)

e(1 + n2π2)2
=

(−1)n

(nπ)2

{
2e− 2(2e− e−1)

(nπ)2

}
+O

(
n−6

)
,

f̂ [1]
n =

2(−1)n+1(−1 + e2(n− 1
2)2π2)

e(1 + (n− 1
2)2π2)2

=
(−1)n+1

(n− 1
2)2π2

{
2e− 2(2e + e−1)

(n− 1
2)2π2

}
+O

(
n−6

)
, (2.30)

from which we immediately deduce that f̂
[i]
n = O

(
n−2

)
. Now suppose that we replace f by

g(x) = xex− e(x+ 1
2x

2). The polynomial term here acts to interpolate the derivatives f ′(±1).
Another calculation gives

ĝ
[0]
0 =

6− e2

3
√

2e
,

ĝ[0]
n =

2(−1)n
(
e2(2n2π2 + 1)− n2π2

)
en2π2(n2π2 + 1)2

=
2(2e− e−1)(−1)n+1

(nπ)4
+O

(
n−6

)
,

ĝ[1]
n =

2(−1)n
(
(n− 1

2)2π2 + e2(2(n− 1
2)2π2 + 1)

)
e(n− 1

2)2π2
(
(n− 1

2)2π2 + 1
)2 =

2(2e + e−1)(−1)n

(n− 1
2)4π4

+O
(
n−6

)
.

As predicted, the coefficients ĝ
[i]
n are O

(
n−4

)
for large n.

Now suppose that f(x1, x2) = e3(x2−x1). The absolute values of the coefficients f̂
[i1,i2]
n1,n2 are

illustrated in Figure 2.2, which highlights the O
(
n−2

1 n−2
2

)
decay. Note that a curve of fixed

absolute value (i.e. a curve on which n1n2 is constant), is referred to as a hyperbolic cross
[13], an object we consider in greater detail in the sequel.

Suppose now that we replace f by g = f − p0, where p0 interpolates the Neumann data
of f on the boundary. As predicted by Lemma 2.13 and verified in Figure 2.2, faster decay of
the coefficients occurs. If h = f − p1, where p1 interpolates both the first and second order
Neumann data of f on the boundary, then we witness even faster decay.
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Figure 2.2: Contour plots of the coefficients f̂
[0,0]
n1,n2 , ĝ

[0,0]
n1,n2 and ĥ

[0,0]
n1,n2 (left to right) for n1, n2 =

0, . . . , 100 with contour lines at 10−j for j = −2, 1, 0, 1, . . . , 10.

Similar expansions to (2.27) and (2.28) are obtained in exactly the same manner for the

Laplace–Dirichlet coefficients f̌
[i]
n . If we re-define

(−1)rjB[ij ]
rj [f ](x1, . . . , xj−1, xj+1, . . . , xd) =∂

2rj
xj f(x1, . . . , xj−1, 1, xj+1, . . . , xd)

+ (−1)ij∂
2rj
xj f(x1, . . . , xj−1,−1, xj+1, . . . , xd),

and

A[i]
rt,nt̄

[f ] = (−1)k|t̄|
∏
j /∈t

(
µ

[ij ]
nj

)−k+ 1
2

∫
B[it]
rt [D2k−1

t̄
f ](xt̄)φ

[it̄]
nt̄

(xt̄) dxt̄, (2.31)

then we have

Lemma 2.14. Suppose that f ∈ H2k−1
mix (Ω), k ∈ N, and that n ∈ Nd. Then

f̌ [i]
n =

∑
t∈[d]∗

k−1∑
|rt|∞=0

A[i]
rt,nt̄

[f ](−1)|nt|
∏
j∈t

(
µ

[ij ]
nj

)−rj− 1
2
, (2.32)

where A[i]
rt,nt̄ [f ] is given by (2.31). Suppose further that f obeys the first k Dirichlet derivative

conditions (2.14). Then the only non-zero term in (2.32) corresponds to t = ∅. In particular,

f̌ [i]
n = A[i]

k−1,n[f ] = (−1)k
d∏
j=1

(µ
[ij ]
nj )−k+ 1

2 D̂2k−1f
[i]

n .

By means of example, we consider the function f(x) = xex once more. In this case,

f̌ [0]
n =

2(−1)n+1(n− 1
2)π

(
(e2 − 1)(n− 1

2)2π2 + (3 + e2)
)

2e
(
(n− 1

2)2π2 + 1
) =

2(−1)n+1 sinh 1

(n− 1
2)π

+O
(
n−3

)
,

f̌ [1]
n =

(−1)n+1nπ
(
(1 + e2)n2π2 + 3− e2

)
e(n2π2 + 1)2

=
2(−1)n cosh 1

nπ
+O

(
n−3

)
.

It follows immediately that f̌
[i]
n = O

(
n−1

)
. This, upon comparison with (2.30), demonstrates

the slower decay of such coefficients in comparison to their Laplace–Neumann counterparts.
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2.8 Bounds for coefficients

We now seek robust bounds for the coefficients f̂
[i]
n and f̌

[i]
n . To do so, it is first useful to

define the alternative mixed Sobolev spaces Gr
mix(Ω) =

{
f : Dαf ∈ L1(Ω), ∀ α : |α|∞ ≤ r}

with associated norm |||f |||r,mix
=
∑
|α|∞≤r ‖D

αf‖L1(Ω), where ‖g‖L1(Ω) =
∫

Ω |g(x)|dx.
In the sequel we make use of the following imbedding result:

Lemma 2.15. The spaces Gr
mix(Ω), Hr

mix(Ω) satisfy Hr
mix(Ω) ↪→ Gr

mix(Ω) with imbedding con-

stant11 c = (2r + 2)
d
2 .12

Proof. The existence of an imbedding is a direct consequence of L2(Ω) ↪→ L1(Ω). Furthermore,
by the Cauchy–Schwarz inequality,

|||f |||r,mix
≤ 2

d
2

∑
|α|∞≤r

‖Dαf‖ ≤ 2
d
2

( ∑
|α|∞≤r

1

) 1
2

‖f‖r,mix.

Since there are (r + 1)d choices of α ∈ Nd0 with |α|∞ ≤ r, we obtain the result.

Once more, we focus on the modified Fourier coefficients f̂
[i]
n . To derive a coefficient bound

in this case we first require the following lemma:

Lemma 2.16. Suppose that f ∈ H2k
mix(Ω), i ∈ {0, 1}d, t ∈ [d]∗, rt ∈ N|t|0 with |rt|∞ ≤ k − 1,

nt̄ ∈ Nt̄ and that A[i]
rt,nt̄ [f ] is given by (2.26). Then∣∣∣A[i]

rt,nt̄
[f ]
∣∣∣ ≤∏

j /∈t

(
µ

[ij ]
nj

)−k
|||f |||2k,mix

.

Proof. If B[ij ]
rj [f ] is as in (2.24) then B[ij ]

rj [f ] =
∫ 1
−1 ∂xj

(
x
ij
j ∂

2rj+1
xj f(x)

)
dxj . Hence, the com-

position B[it]
rt [f ] defined in (2.25) has integral representation

B[it]
rt [f ] =

∫ 1

−1
. . .

∫ 1

−1
Dt

(∏
j∈t

x
ij
j D2rt+1

t f(x)

)
dxt.

Substituting this into the expression (2.26) for A[i]
rt,nt̄ [f ] gives

A[i]
rt,nt̄

[f ] = (−1)k|t̄|
∏
j /∈t

(
µ

[ij ]
nj

)−k ∫
Ω

Dt

(∏
j∈t

x
ij
j D2rt+1

t D2k
t̄ f(x)

)
φ[it̄]
nt̄

(xt̄) dx.

We deduce that∣∣∣A[i]
rt,nt̄

[f ]
∣∣∣ ≤∏

j /∈t

(
µ

[ij ]
nj

)−k ∫
Ω

∣∣∣∣∣∣Dt

(∏
j∈t

x
ij
j D2rt+1

t D2k
t̄ f(x)

)∣∣∣∣∣∣ dx ≤
∏
j /∈t

(
µ

[ij ]
nj

)−k
|||f |||2k,mix

.

Here the final inequality holds since the integral is a sum over derivatives Dβf with |β|∞ ≤ 2k
each multiplied by xγ1

1 . . . xγdd for some suitable multi-index |γ|∞ ≤ 1.

11By this we mean the constant c > 0 such that |||f |||r,mix ≤ c‖f‖r,mix for all f ∈ Hr
mix(Ω).

12This result is essentially independent of Ω (provided Ω is Lipschitz), in which case c = |Ω|
1
2 (r + 1)

d
2 .
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Using this lemma we deduce

Theorem 2.17. Suppose that f ∈ H2k+2
mix (Ω) obeys the first k ∈ N0 Neumann derivative

conditions (2.12). Then∣∣f̂ [i]
n

∣∣ ≤ 2χ(n)
∏

j:nj>0

(
µ

[ij ]
nj

)−(k+1)
|||f |||2k+2,mix

, n ∈ Nd0,

where χ(n), the grade of n, is the number of non-zero entries and the product is taken over
those j = 1, . . . , d with corresponding value nj > 0.

Proof. Suppose first that n ∈ Nd. Then, using Lemma 2.13 (with k replaced by k + 1) and
the fact that f obeys the first k derivative conditions, we obtain

f̂ [i]
n =

∑
t∈[d]∗

A[i]
kt,nt̄

[f ](−1)|nt|+|it|
∏
j∈t

(
µ

[ij ]
nj

)−(k+1)
,

where kt = (k, k, . . . , k) ∈ N|t|0 . Using the bound for A[i]
kt,nt̄

[f ] from Lemma 2.16 we obtain

∣∣∣f̂ [i]
n

∣∣∣ ≤ d∏
j=1

(
µ

[ij ]
nj

)−(k+1)
|||f |||2k+2,mix

∑
t∈[d]∗

1.

Since |[d]∗| = 2d, this gives the result for n ∈ Nd. Now suppose that nt ≡ 0 for some t ∈ [d].
Then, using the previous result,

|f̂ [i]
n | =

∣∣∣f̂t[it̄]nt̄

∣∣∣ ≤ 2χ(n)
∏

j:nj>0

(
µ

[ij ]
nj

)−(k+1)
|||ft|||2k+2,mix

,

where ft is defined in (2.29). Moreover,

|||ft|||2k+2,mix
=

∑
|β|∞≤2k+2

β∈Nχ(n)

∫
(−1,1)χ(n)

∣∣Dβft(x)
∣∣dx ≤ ∑

|β|∞≤2k+2

β∈Nχ(n)

∫
(−1,1)d

∣∣Dβf(x)
∣∣ dx,

and the final term is bounded above by |||f |||2k+2,mix
. This completes the proof.

Using Lemma 2.15 we may also derive a bound for f̂
[i]
n in terms of ‖f‖2k+2,mix:

Corollary 2.18. Suppose that f ∈ H2k+2
mix (Ω) obeys the first k Neumann derivative conditions

(2.12). Then∣∣f̂ [i]
n

∣∣ ≤ 2χ(n)+ d
2 (2k + 3)

χ(n)
2

∏
j:nj>0

(
µ

[ij ]
nj

)−(k+1)
‖f‖2k+2,mix, n ∈ Nd0.

Proof. If χ(n) = d the result follows immediately from Theorem 2.17 and Lemma 2.15. Now
suppose that χ(n) < d. We have

|f̂ [i]
n | ≤ 2χ(n)

∏
j:nj>0

(
µ

[ij ]
nj

)−(k+1)
|||ft|||2k+2,mix

.
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Furthermore, |||ft|||2k+2,mix
≤ (4k + 6)

χ(n)
2 ‖ft‖2k+2,mix and it is simple to show that

‖Dβft‖ ≤ 2
d
2
−χ(n)

2 ‖Dβf‖, β ∈ Nχ(n)
0 .

Combining these observations we obtain |||ft|||2k+2,mix
≤ 2

d
2 (2k+ 3)

χ(n)
2 ‖f‖2k+2,mix, completing

the proof.

In the sequel the following corollary will in fact be of greater use:

Corollary 2.19. Suppose that f ∈ H2k+2
mix (Ω) obeys the first k Neumann derivative conditions

(2.12). Then∣∣f̂ [i]
n

∣∣ ≤ 2χ(n)+ d
2 (2k + 3)

χ(n)
2 (2|i|π−χ(n))2(k+1)(n̄1 . . . n̄d)

−2(k+1)‖f‖2k+2,mix, n ∈ Nd0,

where m̄ = max{m, 1} for m ∈ N0.

Proof. For n ∈ N and i ∈ {0, 1} it is easily shown that µ
[i]
n ≥ (2|i|π−1)−2n2. The result now

follows immediately from Corollary 2.18.

In particular, Corollary 2.19 provides the aforementioned estimate f̂
[i]
n = O(n−2

1 . . . n−2
d )

for an arbitrary function f . The Dirichlet case may be addressed in a similar manner. If
f ∈ H2k+1

mix (Ω) satisfies the first k Dirichlet derivative conditions (2.14), then

|f̌ [i]
n | ≤ 2(2k+3)dπ−(2k+1)d(k + 1)

d
2 (n1 . . . nd)

−2k−1‖f‖2k+1,mix, n ∈ Nd, i ∈ {0, 1}d.

When no derivative conditions are satisfied this figure is O
(
n−1

1 . . . n−1
d

)
, hence verifying the

slower decay of Laplace–Dirichlet coefficients.

2.9 Full index sets

Thus far we have made no stipulation as regards the index set IN (aside from the mild condi-
tions (2.8)). The choice of index set determines the computational cost of both forming and
evaluating the approximation. As we shall see, the O (|IN |) coefficients of the approxima-
tion FN [f ] can be constructed in O (|IN |) operations using numerical quadrature (see Section
2.12). Moreover, such schemes are adaptive, making it possible to utilise any index set we
choose.

Standard intuition leads to the full index set

IN =
{
n ∈ Nd0 : |n|∞ ≤ N

}
, (2.33)

which is just the hypercube of length N + 1 in Nd0. Indeed, the prevalence of this index set in
applications is due to the fact that the method of choice for evaluating Fourier or Chebyshev
coefficients, namely the Fast Fourier Transform (FFT) [37], computes all the coefficients in
IN in a non-adaptive manner.

For univariate expansions, (2.33) is the only obvious choice. However, numerous choices
of index set are permissible in the multivariate setting, including the spherical index set

IN =
{
n ∈ Nd0 : n2

1 + . . . n2
d ≤ N

}
, (2.34)
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and various polyhedral index sets. Many properties of univariate Fourier expansions are either
untrue or unknown for multivariate expansions with coefficients from such index sets [58, 59].

Nonetheless, |IN | = O
(
Nd
)

for both (2.33) and (2.34). This figure grows exponentially
with dimension, making classical Fourier series unsuitable for higher dimensional problems.
To alleviate this problem, we employ various hyperbolic cross index sets in the sequel. Such
index sets are viable precisely because they do not deteriorate the convergence rate of the
approximation unduly, as we shall prove. To this end, for the purposes of comparison, we
consider the approximation properties of Laplace eigenfunction expansions based on (2.33) in
the remainder of this section.

Throughout the remainder of this chapter the bivariate case will serve as our primary
example. If (2.33) is employed, then, for a bivariate function f , the truncated expansion
FN [f ] is given by

FN [f ](x1, x2) =
1

2
f̂

[0,0]
0,0 +

1√
2

N−1∑
n1=1

{
f̂

[0,0]
n1,0

cosn1πx1 + f̂
[1,0]
n1,0

sin(n1 − 1
2)πx1

}

+
1√
2

N−1∑
n2=0

{
f̂

[0,0]
0,n2

cosn2πx2 + f̂
[0,1]
0,n2

sin(n2 − 1
2)πx2

}

+
N−1∑

n1,n2=1

{
f̂ [0,0]
n1,n2

cosn1πx1 cosn2πx2 + f̂ [0,1]
n1,n2

cosn1πx1 sin(n2 − 1
2)πx2

+ f̂ [1,0]
n1,n2

sin(n1 − 1
2)πx1 cosn2πx2 + f̂ [1,1]

n1,n2
sin(n1 − 1

2)πx1 sin(n2 − 1
2)πx2

}
.

2.9.1 Uniform and pointwise convergence rates

The modified Fourier expansion of a function f ∈ H1
mix(Ω) converges uniformly on Ω̄. We now

assess the rate of convergence:

Theorem 2.20. Suppose that f ∈ H2k+2
mix (Ω) satisfies the first k ∈ N0 derivative conditions.

Suppose further that IN is the full index set (2.33) and FN [f ] is the truncated modified Fourier
expansion of f . Then

‖f −FN [f ]‖∞ ≤ ‖f‖2k+2,mix

[
2

3
2 (1 + 4k+1)ck

]d
[(2k + 1)ck]

−1N−(2k+1),

where ck = 1 + 2(2k + 3)
1
2π−2(k+1)ζ(2(k + 1)) and ζ(·) is the zeta function [1].

Proof. We have

‖f −FN [f ]‖∞ ≤
∑

i∈{0,1}d

∑
n/∈IN

|f̂ [i]
n |

≤ ‖f‖2k+2,mix

∑
i∈{0,1}d

22(k+1)|i|
∑
t∈[d]

N∑
nj=0
j /∈t

∑
nj>N
j∈t

2χ(n)+ d
2 (2k + 3)

χ(n)
2 π−2(k+1)χ(n)(n̄1 . . . n̄d)

−2k−2

= ‖f‖2k+2,mix2
d
2 (1 + 4k+1)d

∑
t∈[d]

N∑
nj=0
j /∈t

∑
nj>N
j∈t

[
2(2k + 3)

1
2π−2(k+1)

]χ(n)
(n̄1 . . . n̄d)

−2k−2.
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Now
∑N

n=1 n
−2(k+1) ≤ ζ(2(k + 1)) and

∑
n>N n

−2(k+1) ≤ 1
2k+1N

−(2k+1). Hence

‖f −FN [f ]‖∞ ≤ ‖f‖2k+2,mix

[
2

1
2 (1 + 4k+1)ck

]d∑
t∈[d]

[(2k + 1)ck]
−|t|N−(2k+1)|t|.

It is easily shown that
∑

t∈[d] a
|t| ≤ 2da for any constant a ≤ 1. Setting a = [(2k +

1)ck]
−1N−(2k+1) and substituting into the previous expression now yields the result.

Though not immediately obvious, this result is quasi-optimal, in the sense that the uniform
error is not o(N−2k−1) for an arbitrary function f . We demonstrate this fact in the sequel.

For a general function f , Theorem 2.20 verifies the aforementioned O
(
N−1

)
uniform

convergence rate of FN [f ]. It turns out that this approximation converges at a rate one
power of N faster inside Ω than on the boundary Γ. Hence, O

(
N−2

)
for an arbitrary function

obeying no derivative conditions and O
(
N−2k−2

)
when the first k conditions are satisfied.

In fact, we may also determine the exact leading order asymptotic behaviour of the error
f(x)− FN [f ](x) at any point x ∈ Ω̄. The univariate case of this result was demonstrated by
S. Olver [134]; for the multivariate extension we generalise the technique used therein.

To do so, we first introduce the Lerch transcendental function [152], given by

Φ(z, s, a) =

∞∑
n=0

zn

(n+ a)s
, Re (a) > 0, Re (s) > 1, |z| ≤ 1. (2.35)

With this to hand, we have

Lemma 2.21. Suppose that f ∈ H2k+3+l
mix (Ω), l = 0, 1, obeys the first k ∈ N0 Neumann

derivative conditions. Suppose further that IN is the full index set (2.33) and FN [f ] is the
truncated modified Fourier expansion of f . Then

f(x)−FN [f ](x) =
d∑
j=1

1∑
ij=0

B[ij ]
k [f ](xj̄)Φ̃

[ij ](N, k + 1, xj) +O
(
N−2k−2−l

)
,

where j̄ ∈ [d] is the tuple (1, . . . , j − 1, j + 1, . . . , d),

Φ̃[i](N, k + 1, x) = Re
[
(−eiπx)N+1− 1

2
iπ−2(k+1)Φ(−eiπx, 2k + 2, N + 1− 1

2 i)
]
,

and i is the imaginary unit.

Proof. Since uniform convergence is guaranteed by Theorem 2.12, we may write

f(x)−FN [f ](x) =
∑
t∈[d]

∑
i∈{0,1}d

∑
nj>N
j∈t

∑
|nt̄|∞≤N

f̂ [i]
n φ

[i]
n (x).

Because f̂
[i]
n = O

(
n−2k−2

)
by Theorem 2.17, where n−2k−2 = (n1 . . . nd)

−2k−2, the largest
contribution occurs when |t| = 1. Hence

f(x)−FN [f ](x) =
d∑
j=1

∑
i∈{0,1}d

∑
nj>N

N∑
nl=0
l 6=j

f̂ [i]
n φ

[i]
n (x) +O

(
N−4k−4

)
.
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We now expand f̂
[i]
n in powers of nj as in Lemma 2.13. For each j, we obtain

f̂ [i]
n =

(−1)nj+ij

(µ
[ij ]
nj )k+1

B̂[ij ]
k [f ]

[ij̄ ]

nj̄
+O

(
n−2n−2k−1−l

j

)
.

Substituting this into the previous expression gives

f(x)−FN [f ](x) =

d∑
j=1

1∑
ij=0

FN
[
B[ij ]
k [f ]

]
(xj̄)

∑
nj>N

(−1)nj+ij

(µ
[ij ]
nj )k+1

φ
[ij ]
nj (xj) +O

(
N−2k−2−l

)

=

d∑
j=1

1∑
ij=0

B[ij ]
k [f ](xj̄)

∑
nj>N

(−1)nj+ij

(µ
[ij ]
nj )k+1

φ
[ij ]
nj (xj) +O

(
N−2k−2−l

)
.

Now

∑
n>N

(−1)n

(µ
[0]
n )k+1

φ[0]
n (x) = Re

[
(−eiπx)N+1π−2(k+1)

∞∑
m=0

(−1)m

(N + 1 +m)2(k+1)
(−eiπx)m

]
= Re

[
(−eiπx)N+1π−2(k+1)Φ(−eiπx, 2k + 2, N + 1)

]
= Φ̃[0](N, k + 1, x).

In an identical manner, we can also show that∑
n>N

(−1)n+1

(µ
[1]
n )k+1

φ[1]
n (x) = Φ̃[1](N, k + 1, x).

Substituting these results into the previous formula now completes the proof.

We are now able to determine the leading order asymptotic behaviour of f(x)−FN [f ](x).
This follows immediately from the observation

Φ(−eiπx, s, a) =
a−s

1 + eiπx
+O

(
a−(s+1)

)
, −1 < x < 1, a→∞.13 (2.36)

We deduce

Theorem 2.22. Suppose that f , k, IN and FN [f ] are as in Lemma 2.21. Then, for x ∈ Ω,

f(x)−FN [f ](x) = (Nπ)−2(k+1)
d∑
j=1

1∑
ij=0

B[ij ]
k (xj̄)Re

[
(−eiπxj )N+1− 1

2
ij

1 + eiπxj

]
+O

(
N−2k−2−l

)
.

In particular, f(x)−FN [f ](x) = O
(
N−2k−2

)
uniformly for x in compact subsets of Ω.

The main result of this theorem, faster convergence away from the boundary, is demon-
strated in Figure 2.3. The error at the endpoints is approximately 10−2, whereas in the
subinterval [−1

2 ,
1
2 ] this value is much smaller, roughly 10−4. In Figure 2.4 we consider the

bivariate case. Once more we observe that the error is much smaller away from the boundary.
This figure also highlights that the convergence rate is slower on the whole of the boundary,
not just the corners, as may be expected.
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Figure 2.3: Graph of |f(x)−F50[f ](x)| for −1 ≤ x ≤ 1 (left), − 3
4 ≤ x ≤

3
4 (middle) and − 1

2 ≤ x ≤
1
2

(right), where f(x) = Ai(−3x− 4) and Ai is the Airy function [1].
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Figure 2.4: Absolute error |f(x, y0) − F50[f ](x, y0)|, where f(x1, x2) = (x21 − x2 + 4) cos 2x2 sin 3x2,
for −1 ≤ x ≤ 1 (top row) and − 1

2 ≤ x ≤
1
2 (bottom row), where y0 = 1, 23 ,

1
3 (left to right).

As established in [134], the condition f ∈ H2k+3(−1, 1) (in the univariate case) can be
replaced with the slightly weaker conditions that f ∈ C2k+2[−1, 1] and f (2k+2) has bounded
variation. However, since our primary focus is on boundary value problems, we shall continue
to present conditions in specific Sobolev spaces.

The two results of this section, Theorems 2.20 and 2.22, can be readily generalised to
provide estimates for the error Dβ(f−FN [f ]), where |β|∞ ≤ 2k. The corresponding pointwise
and uniform convergence rates are O

(
N |β|∞−2k−1

)
and O

(
N |β|∞−2k−2

)
respectively. We may

also provide analogous versions of these theorems for expansions based on Laplace–Dirichlet
eigenfunctions. In this case the respective convergence rates are one power of N slower.

As mentioned, Lemma 2.21 may be used to deduce quasi-optimality of the uniform er-
ror estimate given in Theorem 2.20. As described in [134], for x = ±1 the Lerch func-
tion Φ(−eiπx, s, a) reduces to the Hurwitz zeta function ζ(s, a) [1], from which the estimate
Φ(1, s, a) = O

(
a−1
)

is easily deduced. This also verifies the previously made observation that
the convergence rate is O

(
N−1

)
on the whole of the boundary.

13All the terms in this asymptotic expansion can in fact be prescribed (see, for example, [134]).
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Figure 2.5: Graphs of f ′(x) and (F50[f ])′(x) for 0 ≤ x ≤ 1 (left), 1
2 ≤ x ≤ 1 (middle) and 3

4 ≤ x ≤ 1
(right), where f(x) = Ai(−3x− 4).

Modified Fourier expansions have no apparent Gibbs phenomenon. Nonetheless, for an
arbitrary function f , a weak Gibbs phenomenon occurs in the first partial derivative. The
error Dβf(x) − DβFN [f ](x), where |β|∞ = 1, converges pointwise away from the boundary
but not uniformly on Ω̄. This is verified in Figure 2.5, where O (1) Gibbs oscillations are
observed near the endpoint x = 1. Since DβFN [f ] is nothing more than the Laplace–Dirichlet
expansion of Dβf , this effect is equivalently stated as the presence of the Gibbs phenomenon
in Laplace–Dirichlet expansions.

Non-uniform convergence of Laplace–Dirichlet expansions is easily exhibited by example
(e.g. f(x) = 1). Much like the Fourier setting, a proof of pointwise convergence away from
the boundary can be obtained by developing Féjer and de la Vallée Poussin theorems for this
basis (see [107] for details of the Fourier case and [94] for the extension of such results to
this basis). However, a simple argument using Lerch functions is also easily provided. The
advantage of this approach, as we demonstrate in Chapter 3, is that it can be applied to
expansions where the above results are not readily available.

Lemma 2.23. Suppose that f ∈ H1
mix(Ω) and that FN [f ] is the Laplace–Dirichlet expansion

of f . Then FN [f ](x) converges to f(x) uniformly in compact subsets of Ω.

Proof. First suppose that f ∈ C∞(Ω̄). It is easily demonstrated using the method of Lemma
2.21 and Theorem 2.22 that FN [f ](x) converges uniformly in a compact subset Ω′ of Ω to a
function f̃ ∈ C(Ω′). Suppose that f(x0) 6= f̃(x0) for some x0 ∈ Ω′. Then f(x) 6= f̃(x) in the
closure of some neighbourhood U of x0. Hence

0 <

∫
U
|f(x)− f̃(x)|2 dx ≤ ‖f − f̃‖2 = lim

N→∞
‖f −FN [f ]‖2 = 0,

giving a contradiction. Thus f̃(x) = f(x) for x ∈ Ω′. Now suppose that f ∈ H1
mix(Ω). Given

ε > 0 there exists a function g ∈ C∞(Ω̄) with ‖f − g‖1,mix < ε. Hence

|f(x)−FN [f ](x)| ≤ ‖f − g‖∞ + ‖FN [f − g]‖∞ + |g(x)−FN [g](x)|.

Using Lemma 2.6 and Bessel’s inequality, we obtain |f(x)−FN [f ](x)| < 2cε+|g(x)−FN [g](x)|.
The full result now follows immediately from the previous arguments.

2.9.2 Convergence rates in other norms

We now turn our attention to providing error estimates for f − FN [f ] in various Sobolev
norms. We commence with the following lemma:
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Lemma 2.24. Suppose that f ∈ H2k+l(Ω), l = 0, 1 satisfies the first k ∈ N0 Neumann
derivative conditions (2.12). Then

‖f −FN [f ]‖s ≤ cr,sN s−r|f |r, r = s, . . . , 2k + l, s = 0, . . . , 2k + l, (2.37)

for some positive constant cr,s depending only on r and s.

Proof. An application of (2.22) gives

‖f −FN [f ]‖2s ≤ c2

∑
i∈{0,1}d

∑
n/∈IN

(1 + µ[i]
n )s|f̂ [i]

n |2

≤ 2sc2 max
n/∈IN
i∈{0,1}d

{(µ[i]
n )s−r}

∑
i∈{0,1}d

∑
n/∈IN

(µ[i]
n )r|f̂ [i]

n |2

≤ 2sc2 max
n/∈IN
i∈{0,1}d

{(µ[i]
n )s−r}|f |2r . (2.38)

For n /∈ IN , µ
[i]
n ≥ (Nπ)2. Using this and the previous expression we obtain the result.

Lemma 2.24 is an example of a standard type of estimate for approximations in Fourier-
like bases [42]. However, its conclusion may lead to the assertion that, for smooth f satisfying
the first k Neumann derivative conditions, ‖f − FN [f ]‖2k+1 = O (1), an estimate which, in

view of Lemma 2.9, is not optimal.14 However, it turns out that ‖f −FN [f ]‖2k+1 = O(N−
1
2 )

in this case, as we shall now prove. To show this, instead of using the above method of proof,
we utilise the coefficient bounds of Section 2.8.

Lemma 2.25. Suppose that f ∈ H2k+2
mix (Ω) satisfies the first k ∈ N0 Neumann derivative

conditions (2.12). Then, for s = 0, . . . , 2k + 1, we have

‖f −FN [f ]‖s ≤ cs,kN s−2k− 3
2 ‖f‖2k+2,mix, (2.39)

for some positive constant cs,k independent of N and f .

Proof. Using Lemma 2.9 we have

‖f −FN [f ]‖2s =
∑

i∈{0,1}d

∑
|β|≤s

∑
t∈[d]

∑
nj>N
j∈t

∑
|nt̄|∞≤N

|f̂ [i]
n |2

d∏
j=1

(µ
[ij ]
nj )βj .

Since f̂
[i]
n = O

(
n−2k−2

)
it follows that

‖f −FN [f ]‖2s ≤ cs
∑
|β|≤s

∑
t∈[d]

∑
nj>N
j∈t

∑
|nt̄|∞≤N

d∏
j=1

n2βj−4k−4

≤ cs
∑
|β|≤s

∑
t∈[d]

N |β|−(4k+3)|t| ≤ cs,kN s−(4k+3),

as required.

14This may be explained as follows: there is no characterisation of the norms ‖f‖2k+2, ‖f‖2k+2,mix in terms
of modified Fourier coefficients. Equivalently, the periodic extension of f (as in Section 2.3) has only H2k+1

mix (Ω)-
regularity.
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As in Theorem 2.20, it is possible to prescribe values for the constants appearing in
Lemmas 2.24 and 2.25. However, we shall not do this: numerical results indicate that such
constants are not excessively large.

2.10 Hyperbolic cross approximations

The modified Fourier approximation FN [f ] based on (2.33) satisfies ‖f −FN [f ]‖∞ ≤ cM−
1
d ,

where M = Nd. When the total number of terms M is fixed, this figure deteriorates expo-
nentially with dimension (equivalently |IN | = O

(
Nd
)

grows exponentially with dimension).
This observation is commonly referred to as the curse of dimensionality, a phrase attributed
to Bellman [22]. Such behaviour is typical of orthogonal expansions based on (2.33) [41].

Since Bellman’s observation, significant advances have been made in breaking the curse of
dimensionality. To achieve this, we first assume that the function f possesses mixed Sobolev
regularity. We next generate index sets by discarding any term in the approximation whose
absolute value is below a certain tolerance (using, for example, the bounds derived in Section
2.8). This leads to so-called hyperbolic cross index sets.15

We consider two types of hyperbolic cross index sets. The first, our starting point, amelio-
rates this exponential growth to just a logarithmic factor: |IN | = O

(
N(logN)d−1

)
. However,

with the introduction of so-called optimized hyperbolic cross index sets [75], we are able to
completely overcome the curse of dimensionality. One caveat is required: the various con-
stants involved exhibit exponential growth with d, thus limiting such an approach to only
moderate numbers of dimensions. This topic is discussed in greater detail in [41].16

Once more we shall not prescribe exact values to the various constants appearing in error
estimates. With a little effort, and the use of the coefficient bounds of Section 2.8, this can
be achieved.

2.10.1 Construction of hyperbolic cross index sets

A hyperbolic cross index set is obtained by including only those terms in the expansion∑
i∈{0,1}d

∑
n∈Nd

f̂ [i]
n φ

[i]
n (x),

whose absolute value in some norm is greater than a tolerance ε.17 To do so, we first

require appropriate bounds for the coefficients f̂
[i]
n and the functions φ

[i]
n . Given a norm

||| · |||, the coefficient bounds of Section 2.8 yield |||f̂ [i]
n φ

[i]
n ||| ≤ c‖f‖2,mixn̄

−2|||φ[i]
n |||. Next, we

define the tolerance ε as precisely this upper bound with n = (N, 0, . . . , 0). In other words

15This process is somewhat different to the sparse grids approach for (typically) finite element discretizations
[41]. However, the end result, the breaking of the curse of dimensionality, is the same. Sparse grids are discussed
further in Section 2.10.3.

16The state-of-the-art finite element methods described therein can tackle 18 dimensional problems. Nonethe-
less, the particular structure of high-dimensional functions (specifically, the concentration of measure phe-
nomenon [21]), offers a potential route to address such problems. In this sense the curse of high dimension is
somewhat of a misnomer, the curse of moderate dimension being perhaps more apt a phrase.

17Due to their faster convergence rate over expansions based on Laplace–Dirichlet eigenfunctions, we consider
only modified Fourier expansions throughout. Simple, standard adjustments can be made for the latter.
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Figure 2.6: Graphs of the index sets (2.33) (small dots) and (2.41) (larger dots) for N = 50 (left
diagram) and N = 75 (right diagram).

ε = c‖f‖2,mix|||φ[i]
(N,0,...,0)|||N

−2. Proceeding in this manner, including only those n for which

this bound exceeds ε, we obtain a hyperbolic cross [13, 158] index set:

IN = {n ∈ Nd : n̄2|||φ[i]
n |||
−1 ≤ N2|||φ[i]

(N,0,...,0)|||
−1}. (2.40)

This section is devoted to the study of such index sets for several choices of the norm ||| · |||.

2.10.2 The L2(Ω) norm hyperbolic cross index set

Our first consideration is the index set that originates from the L2(Ω) and uniform norms. In

this case ‖φ[i]
n ‖∞ = ‖φ[i]

n ‖ = 1. It follows that |||f̂ [i]
n φ

[i]
n ||| ≤ c‖f‖2,mixn̄

−2 and, therefore,

IN = {n ∈ Nd : |n|0 ≤ N}, (2.41)

where |n|0 = n̄1 . . . n̄d, n ∈ Nd0.18 Typical forms of this index set are shown in Figure 2.6.

In the remainder of this section we detail the benefit of this index set. There are two
aspects to this study: the reduced cost in forming the approximation—in other words, the
reduced size of the hyperbolic cross index set—and the retention of similar error estimates
compared to approximations based on the full index set (2.33). We commence with the former:

Lemma 2.26. Suppose that θd(t) is the number of terms n = (n1, . . . , nd) ∈ Nd0 such that
|n|0 ≤ t. Then

θd(t) =
t(log t)d−1

(d− 1)!
+O

(
t(log t)d−2

)
, t� 1.

For a proof of this in a more general setting, we refer to [48]. A simple inductive argument
appears in [87], which we now repeat here, since similar methods will be used in the sequel:

18Though | · |0 is not a norm on Nd0 we shall use this notation.
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Proof. For d = 1, θ1(t) = t as required. Suppose now that the result is true for d− 1. Then

θd(t) =

btc∑
n=1

θd−1

(
t

n

)
=

1

(d− 2)!

btc∑
n=1

t

n

[
log

(
t

n

)]d−2

+O
(
t(log t)d−2

)
=

1

(d− 2)!

∫ t

1

t

n

[
log

(
t

n

)]d−2

dn+O
(
t(log t)d−2

)
=

1

(d− 2)!
t

∫ t

1
x−1(log x)d−2 dx+O

(
t(log t)d−2

)
.

Evaluation of this integral completes the proof.

Corollary 2.27. The number of terms in the expansion FN [f ] based on the hyperbolic cross
(2.41) is

2d

(d− 1)!
N(logN)d−1 +O

(
N(logN)d−2

)
. (2.42)

Proof. For any n with strictly positive entries there are 2d choices of i ∈ {0, 1}d. The total

number of coefficients f̂
[i]
n where at least one entry of n is zero is O

(
N(logN)d−2

)
.

We mention in passing that an upper bound for the number of terms in IN is also readily
established [87]. However, for our purposes, (2.42) will suffice.

We now consider the approximation error f −FN [f ], where FN [f ] is based on the hyper-
bolic cross index set (2.41). As in the case of the full index set, there are two components
to this study: estimates based on the characterisations given in Lemmas 2.9 and 2.10 and
estimates using the coefficient bounds of Section 2.8. We commence with the former:

Lemma 2.28. Suppose that f ∈ H2k+l(Ω), l = 0, 1, satisfies the first k ∈ N0 Neumann
derivative conditions (2.12) and that IN is the hyperbolic cross index set (2.41). Then, for
some positive constant cr,s independent of f and N ,

‖f −FN [f ]‖s ≤ cr,sN
s−r
d |f |r, r = s, . . . , 2k + l, s = 0, . . . , 2k + l. (2.43)

If, additionally, f ∈ H2k+l
mix (Ω), then, for s = 0, . . . , 2k + l,

‖f −FN [f ]‖s ≤cr,sN s−r|f |r,mix, r = s, . . . , 2k + l. (2.44)

Proof. By a standard inequality 1 +µ
[i]
n ≥ cn̄

2
d , and for n /∈ IN we have 1 +µ

[i]
n ≥ N

2
d . Hence,

using (2.38), we obtain

‖f −FN [f ]‖2s ≤ cr,sN
2(s−r)
d

∑
i∈{0,1}d

∑
n∈Nd

|f̂ [i]
n |2(µ[i]

n )r ≤ cr,sN
2(s−r)
d |f |2r ,

which gives (2.43). Next we consider (2.44). Clearly ‖f − FN [f ]‖s ≤ ‖f − FN [f ]‖s,mix.
Furthermore

‖f −FN [f ]‖2s,mix ≤
∑

i∈{0,1}d

∑
n/∈IN

|f̂ [i]
n |2

d∏
j=1

(1 + µ
[ij ]
nj )s

≤ cr,sN2(s−r)
∑

i∈{0,1}d

∑
n∈Nd0

|f̂ [i]
n |2

d∏
j=1

(µ
[ij ]
nj )r ≤ cr,sN2(s−r)|f |2r,mix,

which yields (2.44).
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We now provide estimates using the coefficient bounds of Section 2.8:

Theorem 2.29. Suppose that f ∈ H2k+2
mix (Ω) obeys the first k ∈ N0 Neumann derivative

conditions and IN is the hyperbolic cross index set (2.41). Then, for s = 1, . . . , 2k + 1,

‖f −FN [f ]‖∞ ≤ ck‖f‖2k+2,mixN
−2k−1(logN)d−1,

‖f −FN [f ]‖ ≤ ck,0,‖f‖2k+2,mixN
−2k− 3

2 (logN)
d−1

2 ,

‖f −FN [f ]‖s ≤ ck,s‖f‖2k+2,mixN
s−2k− 3

2 ,

where the constants ck, ck,s > 0 are independent of f and N .

To prove this theorem we require the following lemma:

Lemma 2.30. Suppose that γr,d(t) =
∑

n̄>t n̄
−r−1 and r > 0. Then

γr,d(t) =
t−r(log t)d−1

r(d− 1)!
+O

(
t−r(log t)d−2

)
, t� 1. (2.45)

Furthermore, if δr,s,d(t) =
∑

n̄>t n̄
−r−1n̄sj for r > s > 0 and j = 1, . . . , d, then

δr,s,d(t) =
1

r − s
{1 + ζ(s+ 1)}d−1 ts−r +

{
O
(
t−r(log t)d−1

)
0 < s ≤ 1

O
(
ts−r−1

)
s > 1.

(2.46)

Proof. We use induction on d. For d = 1 we have γr,1(t) =
∑

n>t n
−r−1 = t−r

r +O
(
t−r−1

)
for

large t, as required. Now assume that the result is true up to d. Then

γr,d(t) = γr,d−1(t) +
t∑

n=1

n−r−1γr,d−1

(
t

n

)
+
∑
n>t

n−r−1γr,d−1(1)

=
t∑

n=1

n−r−1γr,d−1

(
t

n

)
+O

(
t−r(log t)d−2

)
=

t−r−1

r(d− 2)!

t∑
n=1

t

n

[
log

(
t

n

)]d−2

+O
(
t−r(log t)d−2

)
=
t−r−1

r
θd(t) =

t−r(log t)d−1

r(d− 1)!
+O

(
t−r(log t)d−2

)
,

where θd is as in Lemma 2.26. Thus we obtain (2.45). Next we consider δr,s,d(t):

δr,s,d(t) = δr,s,d−1(t) +

t∑
n=1

n−r−1δr,s,d−1

(
t

n

)
+ δr,s,d−1(1)

∑
n>t

n−r−1

= δr,s,d−1(t) +

t∑
n=1

n−r−1δr,s,d−1

(
t

n

)
+O

(
t−r
)
.

By the induction hypothesis, the first term is

δr,s,d−1(t) =
1

r − s
{1 + ζ(s+ 1)}d−2 ts−r +

{
O
(
t−r(log t)d−2

)
0 < s ≤ 1

O
(
ts−r−1

)
s > 1.
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For the second term, we have

t∑
n=1

n−r−1δr,s,d−1

(
t

n

)
=

1

r − s
{1 + ζ(s+ 1)}d−2

t∑
n=1

n−r−1

(
t

n

)s−r
+

{
O
(
t−r(log t)d−2

∑t
n=1 n

−1
)

0 < s ≤ 1

O
(
ts−r−1

∑t
n=1 n

−s) s > 1.

=
1

r − s
{1 + ζ(s+ 1)}d−2 ζ(s+ 1)ts−r

+

{
O
(
t−r(log t)d−1

)
0 < s ≤ 1

O
(
ts−r−1

)
s > 1.

Combining this and the previous result completes the proof.

Proof of Theorem 2.29. This follows immediately from Corollary 2.19 and Lemma 2.30.

Theorem 2.29 reveals that the convergence rate of the modified Fourier expansion based on
the hyperbolic cross (2.41) is comparable to that of the approximation based on the full index
set (2.33). Indeed, for the L2(Ω) and uniform rates, we only lose factors of O

(
(logN)d−1

)
and O((logN)

d−1
2 ) respectively. The Hs(Ω) rate, s ≥ 1, remains the same. In an iden-

tical manner, we can also show that the uniform error of the derivative Dβ(f − FN [f ]) is
O
(
N |β|∞−2k−1(logN)d−1

)
for |β|∞ ≤ 2k. Once more, this is comparable to the estimate for

the full index set approximation.

As is necessary for hyperbolic cross approximations, additional (mixed) smoothness is
required for the estimates of Lemma 2.28 in comparison to those of Lemma 2.24. If only
Hr(Ω) regularity is imposed, the hyperbolic cross approximation will converge more slowly
than its counterpart based on the full index set (or at a comparable rate if the number of
terms M = |IN | is fixed). However, for approximations based on either the full or hyperbolic
cross index set, the minimal regularity required to obtain an optimal convergence rate is the
same (see Lemma 2.25 and Theorem 2.29 respectively).

It is also of interest to examine the effect of the hyperbolic cross on the pointwise conver-
gence rate. As we shall see in the sequel, this also only degrades by a factor of O

(
(logN)d−1

)
.

Moreover, the smoothness requirement remains the same. To investigate this, we need to in-
troduce a related concept, the so-called step hyperbolic cross.

2.10.3 Step hyperbolic cross index sets

Step hyperbolic cross index sets are closely related to the sparse grid technique [41]. The idea
is to construct the approximation FN [f ] from hierarchical bases or subspaces. To this end,
we define hypercubes ρ(β) ⊆ Nd0 by

ρ(β) = {n ∈ Nd0 : b2βj−1c ≤ nj < 2βj , j = 1, . . . , d}, β ∈ Nd0,

and corresponding basis elements

Fβ[f ](x) =
∑

i∈{0,1}d

∑
n∈ρ(β)

f̂ [i]
n φ

[i]
n (x), x ∈ Ω̄, β ∈ Nd0. (2.47)
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Clearly, ∪β∈Nd0ρ(β) = Nd0. Hence, for f ∈ L2(Ω), we may write f =
∑

β∈Nd0
Fβ[f ], with

identification in the L2(Ω) sense. Suppose now that N = 2m. We seek a new approximation
FN [f ] based on this decomposition. To this end, we introduce the finite set Wm ⊆ Nd0 and
define

FN [f ](x) =
∑
β∈Wm

Fβ[f ](x) =
∑

i∈{0,1}d

∑
n∈Qm

f̂ [i]
n φ

[i]
n (x), (2.48)

where Qm = ∪β∈Wmρ(β). Note that the approximation FN [f ] based on the full index set
(2.33) is readily recovered by setting Wm = {β ∈ Nd0 : |β|∞ ≤ m}.

To reduce the number of approximation terms, we now wish to specify Wm by including
only those basis elements Fβ[f ] that have significant contribution to FN [f ]. To do so, we follow
the standard approach of [41]. Suppose that c(β), the local cost function, is proportional to
the cost of forming Fβ[f ]. In other words, c(β) = |ρ(β)|. Suppose further that b(β), the
local benefit function, is proportional to an upper bound for |||Fβ[f ]|||2, where ||| · ||| is some
arbitrary norm. If we introduce the cost benefit ratio cbr(β) = c(β)b(β)−1, then Wm is given
by {β ∈ Nd0 : cbr(β) ≤ cbr(m, 0, . . . , 0)}. This set is referred to as a sparse grid index set [41].

In the context of Fourier series, sparse grids are usually used as a computational tool
[110]. Indeed, as we discuss further later, a version of FFT, the so-called Sparse Grid Fast
Fourier Transform (SGFFT), can be designed (with considerable effort) for use with such
index sets [18, 60]. Somewhat conversely, however, we shall use the sparse grid framework to
answer analytical questions regarding hyperbolic cross index sets, namely, the rate of pointwise
convergence.

We now return to explicit construction of Wm. First notice that |ρ(β)| = 2|β|−χ(β) ≤ 2|β|,
where χ(β) is the grade of β. Turning our attention to Fβ[f ], suppose that we consider the
uniform norm ‖·‖∞. Using Corollary 2.19, we have

‖Fβ[f ]‖∞ ≤
∑

i∈{0,1}d

∑
n∈ρ(β)

|f̂ [i]
n | ≤ c‖f‖2k+2,mix

∑
n∈ρ(β)

n̄−2k−2

= c‖f‖2k+2,mix

d∏
j=1

2βj−1∑
nj=b2βj−1c

n̄−2k−2
j ≤ c‖f‖2k+2,mix2−(2k+1)|β|,

for some constant c independent of f and β. If we now define c(β) = 2|β| and b(β) = 2−(4k+2)|β|,
then cbr(β) = 2(4k+3)|β| and we obtain

Wm = {β ∈ Nd0 : |β| ≤ m}.19 (2.49)

As expected, the resultant step hyperbolic cross index set Qm = ∪β∈Wmρ(β) is closely related
to the hyperbolic cross index set (2.41). The following result is well known (see, for example
[110]):

Lemma 2.31. Suppose that N = 2m, IN is the hyperbolic cross index set (2.41) and Qm =
∪β∈Wmρ(β) is the step hyperbolic cross index set, where Wm is given by (2.49). Then

Qm ⊆ IN ⊆ Qm+d. (2.50)

19As with the hyperbolic cross (2.41), the same set is obtained upon consideration of the L2(Ω) norm.
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Figure 2.7: Graphs of the hyperbolic cross index set I64 (2.41) and step hyperbolic cross index sets
Q6 (left) and Q8 (right) based on (2.49).

Proof. Suppose that n ∈ Qm. Then nj < 2βj for j = 1, . . . , d and some |β| ≤ m. Hence
|n|0 = n̄1 . . . n̄d < 2|β| ≤ 2m = N , so n ∈ IN as required. Now suppose that n ∈ IN . Then
b2βj−1c ≤ nj < 2βj for j = 1, . . . , d and some β ∈ Nd0. Hence 2|β|−d ≤ n̄1 . . . n̄d = |n|0 ≤ N .
In particular |β| ≤ m+ d and so n ∈ Qm+d.

In Figure 2.7 we demonstrate these inclusions. The step hyperbolic cross index set Qm
allows us to scrutinise the pointwise convergence rate of the approximation FN [f ]. Indeed,
we have:

Theorem 2.32. Suppose that Qm = ∪β∈Wmρ(β) is the step hyperbolic cross index set, where
Wm is given by (2.49), and that FN [f ] is given by (2.48). Suppose further that f ∈ H2k+3

mix (Ω)
obeys the first k ∈ N0 derivative conditions. Then f(x)− FN [f ](x) = O

(
N−2k−2(logN)d−1

)
uniformly for x in compact subsets of Ω.

Proof. We first claim that the term Fβ[f ] defined by (2.47) satisfies Fβ[f ](x) = O
(
2−2(k+1)|β|),

|β| → ∞. We prove this result by induction on d. For d = 1, this follows immediately from
known properties of univariate expansions. Suppose now that the result holds for all functions

f of at most (d− 1) variables. Consider the asymptotic expansion of f̂
[i]
n . Since f obeys the

first k derivative conditions, Lemma 2.13 gives

f̂ [i]
n =

∑
t∈[d]

A[i]
kt,nt̄

[f ]
∏
j∈t

p̂k
[ij ]
nj +O

(
n−2k−3

)
.

Here p̂k
[i]
n is the modified Fourier coefficient of the univariate polynomial p

[i]
k of degree 2k + 2

that satisfies B[i]
r [f ] = δr,k, r ∈ N0, where B[i]

r is the quantity defined in (2.24). Note that
existence of such a polynomial is guaranteed (see Section 5.2.1 of Chapter 5).

The quantity A[i]
kt,nt̄

[f ] is the modified Fourier coefficient of a function H[i]
t̄

[f ](xt̄) that
satisfies the first k derivative conditions in the variables xt̄. Hence

Fβ[f ](x) =
∑
t∈[d]

∑
i∈{0,1}d

∑
n∈ρ(β)

A[i]
kt,nt̄

[f ]
∏
j∈t

p̂k
[ij ]
nj φ

[i]
n (x) +O

(
2−2(k+1)|β|

)

=
∑
t∈[d]

Fβt̄
[
H[i]
t̄

]
(xt̄)

∏
j∈t

2βj−1∑
nj=b2βj−1c

p̂k
[ij ]
nj φ

[ij ]
nj (xj) +O

(
2−2(k+1)|β|

)
.
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Since p
[ij ]
k obeys the first k derivative conditions, an application of the univariate result gives

2βj−1∑
nj=b2βj−1c

p̂k
[ij ]
nj φ

[ij ]
nj (xj) = O

(
2−2(k+1)βj

)
, j = 1, . . . , d.

Substituting this into the previous expression and using the induction hypothesis on the term

Fβt̄
[
H[i]
t̄

]
(xt̄) (note that |t̄| < d) now yields

Fβ[f ](x) = O

∑
t∈[d]

2−2(k+1)|βt̄|
∏
j∈t

2−2(k+1)βj

 = O
(

2−2(k+1)|β|
)
,

which completes the first step of the proof.
Since the main result has already been proved in Theorem 2.22 for the approximation

FN [f ] based on the full index set (2.33), it suffices to consider the difference between this and
the approximation based on the step hyperbolic cross Qm. This difference is precisely

∑
|β|>m
|β|∞≤m

Fβ[f ](x) =
m∑

|β′|∞=0

m∑
βd=m−|β′|

Fβ[f ](x),

where β′ = (β1, . . . , βd−1) contains the first (d − 1) entries of β. Hence, using the previous
result, it follows that

∑
|β|>m
|β|∞≤m

Fβ[f ](x) = O

 m∑
|β′|∞=0

2−2(k+1)|β′|
m∑

βd=m−|β′|

2−2(k+1)βd



= O

 m∑
|β′|∞=0

2−2(k+1)|β′|2−2(k+1)(m−|β′|)

 = O
(
md−12−2(k+1)m

)
,

which completes the proof.

The inclusion (2.50) indicates that an analogous result holds for the approximation based
on the hyperbolic cross (2.41). A numerical example, demonstrating this faster pointwise rate
of convergence, is given in Figure 2.8. We mention in passing that Lemma 2.23, concerning
the pointwise convergence of Laplace–Dirichlet expansions based on the full index set (2.33),
is also readily extended to this setting.

2.10.4 Optimized hyperbolic cross index sets

Thus far we have considered (step) hyperbolic cross index sets that arise from the uniform or
L2(Ω) norms. Such a construct mitigates the curse of dimensionality to a (logN)d−1 factor.
However, this effect can be completely removed by introducing so-called optimized hyperbolic
cross index sets [75, 76].20

20This approach is a generalisation of the so-called energy norm hyperbolic cross considered in [40, 41].
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Figure 2.8: Absolute error |f(x, y0) − F50[f ](x, y0)|, where f(x1, x2) = (x21 − x1 + 4) cos 2x2 sin 3x2
and F50[f ] is the Laplace–Neumann approximation based on the hyperbolic cross index set (2.41), for
−1 ≤ x ≤ 1 (top row) and − 1

2 ≤ x ≤
1
2 (bottom row) and y0 = 1, 23 ,

1
3 (left to right).

Such index sets arise from considerations of the Hr(Ω) norm for values r ∈ R (not neces-
sarily integer). Proceeding as in [75], we obtain the index set

IN,σ =
{
n ∈ Nd0 : |n|0|n̄|−σ∞ ≤ N1−σ

}
, (2.51)

where −∞ < σ ≤ 1 and n̄ = (n̄1, . . . , n̄d). Observe that IN,σ ⊆ IN,τ provided τ ≤ σ.
For σ = −∞ or σ = 0, IN,σ reduces to the full (2.33) or hyperbolic cross (2.41) index set

respectively. Our interest lies with values 0 < σ ≤ 1, for which |IN,σ| = O (N), as we shall
now demonstrate21:

Lemma 2.33. Suppose that θσ,d(t) is the number of terms n ∈ Nd0 such that |n|0|n̄|−σ∞ ≤ t1−σ.
Then, for 0 < σ < 1 we have

θσ,d(t) = d{ζ((1− σ)−1)}d−1t+ lower order terms.

When σ = 1, θ1,d(t) = dt.

Proof. The proof of this result is standard (see [75]). We first note that if n ∈ Nd0 with

|n|0|n̄|−σ∞ ≤ t1−σ, then |n|∞ ≤ t. Furthermore, if |n|∞ = nd then 1 ≤ nd ≤ t|n′|−(1−σ)−1

0 ,
where n′ = (n1, . . . , nd−1). Hence

θσ,d(t) =
∑
|n|∞≤t

|n|0|n̄|−σ∞ ≤t1−σ

1 = d
∑
|n′|∞≤t

t|n′|−(1−σ)−1

0∑
nd=1

1 + lower order terms

= dt

(
t∑

n=1

n−(1−σ)−1

)d−1

+ lower order terms.

21Estimates for −∞ < σ < 0 can also be established [75]. However, we shall not consider this.
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Figure 2.9: Graphs of the index sets (2.33) (small dots), (2.41) (larger dots) and (2.51) (largest dots)
for σ = 1

4 (left diagram), σ = 1
2 (right diagram) and N = 50.

d = 2 d = 3 d = 4
index set N = 102 N = 103 N = 102 N = 103 N = 102 N = 103

(2.33) 1.02× 104 1.02× 106 1.03× 106 1.00× 109 1.04× 108 1.00× 1012

(2.41) 6.83× 102 9.07× 103 3.22× 103 5.36× 104 1.28× 104 2.57× 105

σ = 1
4 5.60× 102 6.59× 103 2.26× 103 3.07× 104 7.86× 103 1.22× 105

σ = 1
2 4.69× 102 5.00× 103 1.62× 103 1.84× 104 4.94× 103 5.98× 104

Table 2.1: Comparison of the sizes of the index sets (2.33), (2.41) and (2.51) for d = 2, 3, 4 and
N = 102, 103. All values to three significant figures.

Since
∑t

n=1 n
−r−1 = ζ(r + 1) +O (t−r) for r > 0, the result follows immediately.

Typical forms of this index set are given in Figure 2.9. A comparison of the number of
terms in this and other index sets is given in Table 2.1. We note that, with σ = 1

2 and N = 100,
for example, the optimized hyperbolic cross (2.51) contains less than half the number of terms
of the hyperbolic cross (2.41).

Next, we address the convergence rate of approximations based on IN,σ. We have:

Lemma 2.34. Suppose that f ∈ H2k+l(Ω), l = 0, 1, obeys the first k ∈ N0 derivative conditions
and FN [f ] is based on the optimized hyperbolic cross (2.51). Then

‖f −FN [f ]‖s ≤ cr,sN
1−σ
d−σ (s−r)‖f‖r, r = s, . . . , 2k + l, s = 0, . . . , 2k + l,

for some positive constant cr,s independent of N and f . Moreover, if f ∈ H2k+l
mix (Ω), then

‖f −FN [f ]‖s ≤ cr,s‖f‖s,mix

{
N s−r σ ≤ s

r

N
1−σ
d−σ (s−dr) σ > s

r

.

Proof. As in Lemmas 2.24 and 2.28 we have

‖f −FN [f ]‖2s ≤ c
∑

i∈{0,1}d

∑
n/∈IN,σ

|f̂ [i]
n |2|n̄|2s∞ ≤ c max

n/∈IN,σ

{
|n̄|2(s−r)
∞

}
‖f‖2r .

Note that |n|0 ≤ |n̄|d∞. Hence, if n /∈ IN,σ then |n̄|d−σ∞ ≥ N1−σ. Substituting this into the
previous expression now gives the first result.
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Now suppose that f ∈ H2k+l
mix (Ω). Then, using standard characterisations and the corre-

sponding result for the full index set, we obtain

‖f −FN [f ]‖2s ≤ c
∑

i∈{0,1}d

∑
n/∈IN,σ
|n|∞≤N

|f̂ [i]
n |2|n̄|2s∞ +N2(s−r)‖f‖2r,mix

≤ c max
n/∈IN,σ
|n|∞≤N

{
|n̄|2s∞|n|−2r

0

}
‖f‖2r,mix +N2(s−r)‖f‖2r,mix.

For n /∈ IN,σ we have |n̄|s∞|n|−r0 = |n̄|s−σr∞ (|n|0|n̄|−σ∞ )
−r ≤ |n̄|s−σr∞ N−(1−σ)r. If σ ≤ s

r then the
observation that |n̄|∞ ≤ N immediately gives the result. Conversely, if σ > s

r then we use the
inequality |n̄|d−σ∞ ≥ N1−σ once more.

Observe that when σ = 0 and σ = −∞ we recover the results of Lemmas 2.24 and 2.28
respectively. Unsurprisingly, as in previous sections, Lemma 2.34 does not provide an optimal
estimate for the convergence rate when the function f has sufficient regularity. To address
this scenario, we first require the following lemma:

Lemma 2.35. Suppose that 0 < σ ≤ 1 and γr,σ,d(t) =
∑

n/∈Iσ,t n̄
−r−1 for r > 0. Then

γr,σ,d(t) = cr,σ,dt
− d(1−σ)

d−σ r (log t)d−2 + lower order terms,

for some positive constant cr,σ,d independent of f and N . Furthermore, if r > s > 0, j =
1, . . . , d and δr,s,σ,d(t) =

∑
n/∈Iσ,t n̄

−r−1n̄sj, then

δr,s,σ,d(t) = cr,s,σ,dt
s−r + lower order terms,

provided σ < s
r .

As in Lemma 2.30, it is possible to prescribe exact values to such constants. It is also
possible to assess δr,s,σ,d(t) when σ ≥ s

r . However, we shall not pursue this.

Proof. Consider first γr,σ,d(t). Without loss of generality we may assume that |n̄|∞ = n̄d.

Since n /∈ IN,σ we have nd ≥ t
1−σ
d−σ . Hence

γr,σ,d(t) = c
∑

nd≥t
1−σ
d−σ

n−r−1
d

∑
|n′|0≥(tn−1

d )1−σ

(n̄′)−r−1,

where n′ = (n1, . . . , nd−1). Using Lemma 2.30 we obtain

γr,σ,d(t) = ct−r(1−σ)(log t)d−2
∑

nd≥t
1−σ
d−σ

n−rσ−1
d + lower order terms

= cr,σ,dt
−r(1−σ)t

−rσ(1−σ)
(d−σ) (log t)d−2 + lower order terms

= cr,σ,dt
− d(1−σ)

d−σ r(log t)d−2 + lower order terms,

as required.
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Figure 2.10: Comparison of the hyperbolic cross (2.51) for σ = 0 (squares), σ = 1
4 (triangles) and

σ = 1
2 (circles). Log errors log10 ‖f − FN [f ]‖∞ (left), log10 ‖f − FN [f ]‖ (middle), log10 ‖f − FN [f ]‖1

(right) against number of terms, where f(x1, x2) = (4 + x21 − x2) cos 2x2 sin 3x2.

Next we consider δr,s,σ,d(t). Without loss of generality, j = d. In this case, it suffices to
consider only those n /∈ Iσ,t with |n|∞ ≤ t and |n|∞ = nd. For such n, we have |n′|0|n′|−σ∞ ≥
t1−σn−1

1 , where n′ = (n2, . . . , nd). We now assume that the result holds for d− 1. Then

γr,σ,d(t) = c
t∑

n1=1

n−r−1
1

∑
|n′|0|n′|−σ∞
≥t1−σn−1

1

|n′|−r−1
0 nsd + lower order terms

= c
t∑

n1=1

n−r−1
1

(
tn
−(1−σ)−1

1

)s−r
+ lower order terms

= cts−r
t∑

n1=1

n−(s−r)(1−σ)−1−r−1 + lower order terms

= cr,s,σ,dt
s−r + lower order terms,

as required.

Theorem 2.36. Suppose that f ∈ H2k+2
mix (Ω) obeys the first k Neumann derivative conditions

and IN,σ is the optimized hyperbolic cross index set (2.51). Then, for s = 1, . . . , 2k + 1,

‖f −FN [f ]‖∞ ≤ ck‖f‖2k+2,mixN
− d(1−σ)(2k+1)

d−σ (logN)d−2,

‖f −FN [f ]‖ ≤ ck,0‖f‖2k+2,mixN
− d(1−σ)(4k+3)

2(d−σ) (logN)
d−2

2 ,

‖f −FN [f ]‖s ≤ ck,s‖f‖2k+2,mixN
s−2k− 3

2 , provided σ < 2s
4k+3 ,

where ck, ck,s are positive constants independent of f and N .

In view of Theorem 2.29, the pertinent observation is that the convergence rate in certain
norms of the approximation based on the optimized hyperbolic cross (2.51) is slower than that
of the approximation based on the L2(Ω) norm hyperbolic cross (2.41). As described in [41],
this is unsurprising: the hyperbolic cross (2.41) is already optimized with respect to the L2(Ω)
and uniform norms, so any reduction in size will lead to a deterioration in the convergence
rate. Nonetheless, the convergence rate measured in the Hr(Ω) norm, r ∈ N, remains the
same, thus making such techniques viable in certain applications, including the discretisation
of partial differential equations.
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Figure 2.11: Comparison of the hyperbolic cross (2.51) for σ = 0 (squares), σ = 1
4 (triangles) and

σ = 1
2 (circles). Log errors log10 ‖f − FN [f ]‖∞ (left), log10 ‖f − FN [f ]‖ (middle), log10 ‖f − FN [f ]‖1

(right) against number of terms, where f(x1, x2, x3) = (x21 + 4) cosx2 sin 2x2e−
1
2x3 .
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Figure 2.12: Absolute error |f(x, y0) − F50[f ](x, y0)|, where f(x1, x2) = (x21 − x1 + 4) cos 2x2 sin 3x2
and F50[f ] is the modified Fourier approximation based on the hyperbolic cross (2.51) with σ = 1

2
(thick line), σ = 1

4 (thinner line) or σ = 0 (thinnest line), for −1 ≤ x ≤ 1 (top row), − 1
2 ≤ x ≤ 1

2
(bottom row) and y0 = 1, 23 ,

1
3 (left to right).

A comparison of the approximation error for various values of σ is given in Figures 2.10
and 2.11. As established in Theorem 2.29, the optimized hyperbolic cross approximation
offers a lower H1(Ω) norm error for the equal number of terms. Conversely, both the uniform
and L2(Ω) norm errors are larger.

The pointwise rate of convergence can also be assessed. As in previous scenarios, the con-
vergence rate inside the domain is exactly one power of N faster than on the boundary. This
is analysed in an identical manner to the L2(Ω) norm hyperbolic cross case, upon introduction
of a suitable step hyperbolic cross. We shall not pursue this further. Numerical results are
given in Figure 2.12.

This concludes our discussion of hyperbolic cross approximations. By the introduction of
suitable index sets, we have demonstrated how the curse of dimensionality can be broken to
a significant extent. We end this chapter with two brief sections. The first addresses Laplace
eigenfunctions expansions relating to other boundary conditions. In the second, we briefly
describe the numerical quadratures employed to calculate modified Fourier coefficients.



46 2. Laplace eigenfunction expansions

2.11 Other boundary conditions

The focus of this chapter has been the analysis of expansions in Laplace eigenfunctions subject
to either homogeneous Dirichlet or Neumann boundary conditions. The key to this study is
the duality enjoyed by these bases (see Lemmas 2.4 and 2.5).

Such techniques are applicable to other eigenfunction expansions. As we shall describe
in Chapter 3, there is a natural extension to certain higher, even-order differential opera-
tors accompanied by suitable boundary conditions. However, the Laplace operator itself can
be equipped with numerous other boundary conditions, some of which yield eigenfunction
expansions that can be studied in a virtually identical manner.

For example, the univariate eigenfunctions

φ[0]
n (x) = cos((n− 3

4)πx+ 1
4π), φ[1]

n (x) = cos((n− 1
4)πx− 1

4π), n ∈ N, (2.52)

that arise from the mixed boundary conditions φ(1) = φ′(−1) = 0 are amenable to such
techniques (naturally, so are their multivariate extension). Note that the dual functions in this
case are the eigenfunctions that arise from the mixed boundary conditions φ′(1) = φ(−1) = 0,
given by

φ[0]
n (x) = sin((n− 3

4)πx+ 1
4π), φ[1]

n (x) = sin((n− 1
4)πx− 1

4π), n ∈ N. (2.53)

Eigenfunctions arising from the Robin boundary conditions φ′(±1) + θφ(±1) = 0 can also be
studied. Here

φ
[0]
0 (x) = (θ−1 sinh(2θ))−

1
2 e−θx, φ[0]

n (x) = (n2π2 + θ2)−
1
2 (nπ cosnπx− θ sinnπx) , n ∈ N,

φ[1]
n (x) = ((n− 1

2)2π2 + θ2)−
1
2
(
(n− 1

2)π sin(n− 1
2)πx+ θ cos(n− 1

2)πx
)
, n ∈ N. (2.54)

Appropriate duality stems from the action of the operator ∂x + θI, where I is the identity
operator: if FN [f ] is the truncated expansion of f in Laplace–Robin eigenfunctions, then
(FN [f ])′ + θFN [f ] is the truncated expansion of f ′ + θf in Laplace–Dirichlet eigenfunctions.

For the purposes of function approximation, none of these bases will offer a faster conver-
gence rate than modified Fourier expansions. In fact, the expansion in mixed eigenfunctions
(2.52) or (2.53) converges at the same rate as the expansion in Laplace–Dirichlet eigenfunc-
tion: in other words, one power of N slower. Expansions in the Laplace–Robin eigenfunctions
(2.54) converge at the same rate as their Laplace–Neumann counterparts. Moreover, it can be
shown that no Laplace eigenfunction expansion will offer a faster convergence rate than the
modified Fourier case [38]. Nonetheless, as we demonstrate in Chapter 4, such eigenfunction
bases are each well suited to the spectral discretisation of boundary value problems subject
to the same boundary conditions.

Unfortunately, this duality technique appears limited to these types of boundary condi-
tions. Given general boundary conditions a±φ(±1) + b±φ(±1) = 0, of regular, separable type
[127], it is not clear how to adapt this approach for the case a− 6= a+, b− 6= b+.

We remark in passing that, in the multivariate setting, a great variety of nonseparable
boundary conditions can be prescribed to the Laplace operator. However, the corresponding
eigenfunctions are themselves nonseparable, rendering them unsuitable for practical purposes.
Handling such boundary conditions in, for example, the spectral approximation of partial
differential equations is typically a difficult task. We shall consider this briefly in Chapter 4.
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2.12 Computation of modified Fourier coefficients

The final issue we address in this chapter is the numerical computation of the modified

Fourier22 coefficients f̂
[i]
n . This topic was first considered (in the univariate setting) in [94], and

generalised to the d-variate cube in [95]. The cornerstone of the schemes developed therein is

the observation that the integrand f(x)φ
[i]
n (x) oscillates rapidly for large n. In recent years,

great progress has been made in the design of numerical methods for highly oscillatory inte-
grals [89]. Important examples include Filon-type methods [93], Levin-type methods [132] and
the method of numerical stationary phase [91]. Rather than high oscillation being a barrier
to effective computation, such methods exploit it: as the frequency ω (or in this case n) in-
creases, the error typically decreases. Furthermore, the number of coefficients involved in the
approximation is essentially independent of ω. The resulting method is adaptive: changing ω
does not require the recalculation of any coefficients. Such behaviour contrasts sharply with
classical quadrature schemes—for example, standard Gaussian quadrature—whose accuracy
declines with increasing ω.

In the context of modified Fourier coefficients, Filon-type methods have been most widely
studied (a Levin-type method is employed in [134]). We now describe this method in greater
detail.

2.12.1 Filon-type methods

Suppose first that d = 1. The basis for the Filon method is the asymptotic expansion

f̂ [i]
n = A

[i]
k,n[f ] +O

(
n−2k−2

)
=

k−1∑
r=0

(−1)n+i

(µ
[i]
n )r+1

B[i]
r [f ] +O

(
n−2k−2

)
. (2.55)

Truncating this expansion after k terms leads to the so-called asymptotic method f̂
[i]
n ≈ A[i]

k,n[f ].

The asymptotic order23 of this approximation is 2k+ 2 and, since f̂
[i]
n = O

(
n−2

)
, the relative

asymptotic order is O
(
n−2k

)
. Note that this approach requires explicit calculation of the

derivatives f (2r+1)(±1), r = 0, . . . , k− 1. However, as described in [92, 94], derivatives can be
replaced by finite differences in a straightforward manner.

Unfortunately, the asymptotic method can only be used when n is sufficiently large. In

practice, the approximation A
[i]
k,n[f ] is often unacceptable for realistic values of k and n.

Regardless, the expansion (2.55) is the starting point for Filon-type methods, which we now
describe.

The Filon-type method is very easily defined. Given nodes −1 = c1 < c2 < . . . < cν = 1
and multiplicities m1, . . . ,mν we first construct a polynomial φ such that

φ(2r)(cs) = f (2r+1)(cs), r = 0, . . . ,ms − 1, s = 1, 2, . . . , ν.

If p(x) = f(0) +
∫ x

0 φ(t) dt, then we refer to

Q[i]
m,n[f ] =

∫ 1

−1
p(x)φ[i]

n (x) dx,

22The techniques described in this section are equally applicable (with only minor modifications) to other
Laplace eigenfunctions. However, we shall focus on the modified Fourier case.

23If an approximation to f̂n commits an error of O
(
n−m

)
we say it is of asymptotic order m.
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as a Filon-type approximation based on nodes c1, . . . , cν and multiplicities m = (m1, . . . ,mν).
The asymptotic order of this approximation is 2k + 2, where k = min{m1,mν}.

To relate Q
[i]
m,n[f ] to the asymptotic method, we observe that

Q[i]
m,n[f ] = A

[i]
k,n[f ] + E[i]

m,n[f ], (2.56)

where the residual E
[i]
m,n[f ] isO

(
n−2k−4

)
. This interpretation explains the effect of the internal

nodes c2, . . . , cν−1 of the Filon-type method. Such nodes, whilst not increasing the asymptotic
order, act to approximate the higher-order terms in the asymptotic expansion (2.55).

In view of (2.56), we may expect the Filon-type method to behave in a similar manner

to the (k + 1)th asymptotic method A
[i]
k+1,n[f ]. However, Filon-type methods typically offer

greatly superior performance. Numerical examples attest to the fact that Filon-type methods
yield high accuracy even when n is small [94]. This can be explained as follows: for large n,
accuracy is assured by rapid decay of the asymptotic expansion, whereas for small n, the high
order of the underlying classical quadrature ensures precision.

The interpretation (2.56) also provides a compelling alternative means to devise Filon-type
schemes. If we make the ansatz

E
[i]
k,n[f ] =

(−1)n+i

(µ
[i]
n )k+1

ν∑
s=1

ms−1∑
r=0

b[i]r,sf
(2r+1)(cs),

with values b
[i]
r,s independent of n and f , then high accuracy will occur, provided such values

are chosen so that the approximation

ν∑
s=1

ms−1∑
r=0

br,sg
(2r+1)(cs) ≈ B[i]

k [g] = (−1)k
[
g(2k+1)(1) + (−1)i+1g(2k+1)(−1)

]
,

is exact for all polynomials f of maximal degree. Hence, the problem of designing Filon-
type quadratures is reduced to the approximation of derivatives by finite differences. This
methodology typically allows for easier design and construction of efficient schemes [95].

2.12.2 Exotic quadrature

Due to its asymptotic nature, the Filon-type method cannot be used for nonoscillatory inte-

grals, the most pertinent example of this being the coefficient f̂
[0]
0 . Moreover, for small n, the

Filon-type approximation will not offer sufficient precision. An alternative is to use Gaussian
quadrature in this setting. However, this action requires additional function evaluations and,
more importantly, the derivative values computed as part of the Filon-type quadrature are
wasted. The idea proposed in [94] is to reuse such values in classical quadrature schemes, an
approach termed exotic quadrature [8]. In this spirit, we define the quadrature rule

Q[h] = 2h(0) +
ν∑
r=1

mr−1∑
s=0

br,sh
(2s+1)(cr) ≈

∫ 1

−1
h(x) dx, (2.57)

with weights br,s chosen to maximise the order of the scheme. Depending on the coefficient

we wish to approximate, we set h(x) = f(x) or h(x) = f(x)φ
[i]
n (x).
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We remark in passing that both Filon and exotic quadratures use (Hermite) interpolation
at internal nodes. No general theory currently exists pertaining to the optimal location of
such nodes. However, numerical examples presented in [8, 94, 95] suggest that these values
should be chosen to maximise the order of (2.57), if possible.

2.12.3 Multivariate modified Fourier coefficients

The design of effective quadratures in the multivariate setting is complicated by the fact that,

for various values of n, the integrand f(x)φ
[i]
n (x) oscillates rapidly in some variables and not

in others.
For parameters n = (n1, . . . , nd) with min{nj} � 1, the multivariate asymptotic expansion

(2.28), suitably truncated, is once more the starting point. The construction of Filon-type
methods based on this expansion is affected by two further issues. First, since only the odd
derivatives are used as interpolation conditions, the interpolation problem (an example of
a Birkhoff–Hermite interpolation problem [115, 116]) may not be solvable. Further, for a
particular configuration of nodes, the corresponding interpolation polynomial need not exist.
However, both issues can be resolved in the modified Fourier setting. In [95] a Filon-type
method was introduced using a so-called tartan grid to cover the domain.24 To construct the
Filon-type approximant, the function f and certain partial derivatives are evaluated on this
grid.

Along the lines of [94], multivariable exotic quadratures can also be constructed to handle
nonoscillatory coefficients. A combination of exotic and Filon quadratures is then used for
those coefficients with corresponding high oscillation in only a subset of the variables n1, . . . , nd
[95]. As numerical examples demonstrate [87], the Filon-type method is used for the vast
majority of coefficients, with exotic quadrature (in one or more variables) used only for those
coefficients with at least one very small parameter n1, . . . , nd.

The approach outlined above is theoretically clear, but numerous issues remain. For exam-
ple, robust and accurate error bounds for both Filon-type and exotic quadratures are largely
lacking. Recently some advances have been made in the univariate setting [121], however
the general picture is far from apparent. On a closely related topic, the stability of such
methods is as of yet largely unexplored, and few criteria currently exist for the optimization
of quadrature parameters. Consequently, these methods require a great deal of future work
before they can be converted into effective algorithms. We refer the reader to [8, 94, 95] for a
more thorough discussion of the open problems relating to such schemes. Nonetheless, as we
now discuss, such approach provides a compelling alternative to more standard techniques.

2.12.4 Quadrature and the Fast Fourier Transform

Once derivative values are specified (or calculated), we may compute any M coefficients
in O (M) operations using the aforementioned quadratures. Furthermore, this approach is
adaptive: we may readily compute any M ′ additional coefficients inO (M ′) operations without
recomputing any existing values.25 This fact permits the use of the hyperbolic cross for
modified Fourier expansions, which, as demonstrated, offers significant computational savings.

24This particular approach is applicable to tensor-product domains only. Construction of quadratures in the
equilateral triangle has been studied in [88].

25Having said this, it may be advantageous in practice to recompute existing values to higher accuracy if the
truncation parameter N is increased, potentially resulting in a higher computational cost [87].
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This approach contrasts sharply with the FFT, which computes all values in the full index
set (2.33) in a non-adaptive manner. Moreover, the truncation parameter N must be highly
composite. Regardless, in view of Section 2.3, the FFT can be used in conjunction with
modified Fourier expansions, provided (2.33) is employed. In particular, the expansion FN [f ]
can be evaluated at N equally spaced nodes in O

(
Nd logN

)
operations. Moreover, products

and derivatives of modified Fourier sums can be evaluated with the same operational count.
As noted, the classical FFT is unsuitable for hyperbolic cross approximations. In this set-

ting, the SGFFT can be used (provided a step hyperbolic cross is employed) [18, 60]. However,
this approach is by no means simple nor straightforward to implement [87]. Nonetheless, in the
context of modified Fourier sums, this device can, in theory, be exploited to evaluate products
and derivatives, for example, with the resulting operational cost being O

(
N(logN)d

)
.

This concludes our study of modified Fourier expansions. We shall return to this theme in
Chapters 4 and 5 respectively, where we discuss their applications to boundary value problems
and their effective convergence acceleration. Before doing so, however, the next chapter
concerns the generalisation of the modified Fourier basis to bases consisting of eigenfunctions
of suitable higher-order differential operators.



Chapter 3

Expansions in polyharmonic
eigenfunctions

3.1 Introduction

Modified Fourier expansions give the fastest possible convergence rate amongst all Laplace
eigenfunction expansions. Had the individual eigenfunctions obeyed additional, higher-order
boundary conditions, this rate of convergence would have increased. The aim of this chap-
ter is to demonstrate that modified Fourier expansions and their theory can be successfully
generalised to expansions with convergence rates of arbitrary algebraic order. By a judicious
choice of both differential operator and boundary conditions, we introduce a one-parameter
family of expansions with a uniform convergence rate of O (N−q) for any fixed q ∈ N. The
corresponding coefficients decay like O

(
n−q−1

)
. Such expansions share many similar proper-

ties with the Laplace case, which corresponds to index q = 1. In particular, coefficients can
be calculated using similar quadrature methods to those introduced in Section 2.12.

The expansion of a function in Laplace eigenfunctions is one particular example of the
much larger field of so-called Birkhoff expansions [127]. This topic addresses the expansion of a
function in eigenfunctions of an arbitrary linear differential operator with prescribed boundary
conditions. The route to generalising modified Fourier expansions lies with first understanding
this general scenario. Motivated by such considerations as simplicity of the eigenvalues and
eigenfunctions and convergence rate of the expansion, we develop, in this chapter, a family
of Birkhoff expansions based on eigenfunctions of a particular class of differential operators
(polyharmonic operators) equipped with certain boundary conditions. As we subsequently
indicate, such eigenfunctions are optimized for practical computations.

Although Birkhoff expansions have been extensively studied from a theoretical standpoint,
few attempts have been made at practical computations (outside of the Fourier setting1).
Moreover, despite a well-established classical theory for univariate Birkhoff expansions [51,
127], the fundamental characteristics of the particular expansions introduced in this chapter
are insufficiently described by such theory. Hence, having described this shortfall in further
detail, we provide a full theory of such expansions in the unit interval.

1The Fourier basis functions can be viewed as eigenfunctions of the operator d
dx

equipped with periodic
boundary conditions φ(1) = φ(−1). We remark, however, that, aside from providing this example, this
viewpoint is largely superfluous.
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Very little literature currently exists pertaining to Birkhoff expansions for multivariate
functions. To this end, after detailing polyharmonic eigenfunction expansions in the unit
interval, we next demonstrate an appropriate extension to the d-variate cube. We then present
a complete analysis of convergence, thereby generalising the work of Chapter 2 to arbitrary
q ≥ 1 (in particular, the convergence results that we establish make no stipulations regarding
the index set employed).

We mention in passing that this topic—the generalisation of modified Fourier expansions
to polyharmonic expansions—was originally pursued in [8]. Part of this chapter will sum-
marise salient aspects of that study. The main content, however, builds on this work by both
presenting a full convergence theory for such expansions and establishing an extension to the
d-variate cube. Elements of this material have recently appeared in the author’s paper [6].

3.1.1 Birkhoff expansions

The natural starting point for the generalisation of modified Fourier expansions is the unit
interval. An extension to the d-variate cube can only be pursued with sufficient understanding
of this case. Our present goal is therefore to determine the univariate differential operator (of
fixed, even-order) and boundary conditions with the fastest decay of expansion coefficients
(and, correspondingly, the fastest uniform convergence rate). Such a form will not, in gen-
eral, be unique. Hence, practical considerations, notably simplicity of the eigenfunctions and
eigenvalues, will be exploited where possible.

To this end, suppose that L0 = (−1)q d2q

dx2q + . . . is a self-adjoint linear differential operator
of order 2q, q ∈ N, with smooth coefficients. We could, in theory, drop the assumption of
self-adjointness. However, since real eigenvalues are desirable for the purpose of practical com-
putations, it makes sense to enforce this condition. Nothing is gained in terms of convergence
or rate of decay of expansion coefficients by considering the non-self-adjoint case2. Suppose
further that B1[φ], . . . ,B2q[φ], φ ∈ C2q−1[−1, 1], are 2q linearly independent, linear functions
of the values φ(±1), φ′(±1), . . . , φ(2q−1)(±1), giving rise to homogeneous boundary conditions
Br[φ] = 0, r = 1, . . . , 2q. Such forms can be augmented to form a dual basis B1, . . . ,B4q of
the 4q-dimensional vector space{(

φ(−1), φ′(−1), . . . , φ(2q−1)(−1), φ(1), φ′(1), . . . , φ(2q−1)(1)
)

: φ ∈ C2q−1[−1, 1]
}
,

for which the condition∫ 1

−1
L0[φ](x)ψ(x) dx =

4q∑
r=1

Br[φ]B4q+1−r[ψ] +

∫ 1

−1
φ(x)L0[ψ](x) dx, (3.1)

holds for all φ, ψ ∈ C2q[−1, 1].

Under some mild assumptions, the spectrum of L0 equipped with boundary conditions
Br[φ] = 0, r = 1, . . . , 2q, is countable, with real eigenvalues µ1, µ2, . . . having no finite limit
point in R, and orthonormal eigenfunctions φ1, φ2, . . . [127]. This indicates that a function

2We hasten to add, however, that this situation changes dramatically if odd order operators are considered.
In this case, there are a number of prominent non-self-adjoint examples where the classical theory of Birkhoff

expansions does not hold. For example, the operator d3

dx3
when equipped with boundary conditions u(−1) =

u(1) = u′(1) = 0 does not possess a countable spectrum.
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f ∈ L2(−1, 1) may be expanded in such eigenfunctions:

f(x) ∼
∞∑
n=1

f̂nφn(x), where f̂n =

∫ 1

−1
f(x)φn(x) dx.

We wish to select an operator L0 and boundary conditions with both the fastest decay of
the expansion coefficients and the simplest eigenfunctions and eigenvalues. Considering the
first criterion, let φ be an eigenfunction of L0 with eigenvalue µ = α2q 6= 0. Using (3.1) and
applying the boundary conditions Br[φ] = 0, r = 1, . . . , 2q, gives∫ 1

−1
f(x)φ(x) dx =

1

µ

∫ 1

−1
f(x)L0[φ](x) dx

=
1

µ

4q∑
r=1

Br[φ]B4q+1−r[f ] +
1

µ

∫ 1

−1
L0[f ](x)φ(x) dx

=
1

µ

4q∑
r=2q+1

Br[φ]B4q+1−r[f ] +
1

µ

∫ 1

−1
L0[f ](x)φ(x) dx.

It is known that φ(r)(±1) = O (αr) and that the nth value αn = O (n) [127]. Hence∫ 1

−1
f(x)φ(x) dx = O

(
αm−2q

)
,

where m is the maximal order of derivative appearing in the forms B2q+1, . . . ,B4q. We now
seek to minimise m over all possible boundary conditions. Since the forms B1, . . . ,B4q are
linearly independent, simple arguments demonstrate that m = q − 1 is the minimal value. In
this case, the highest derivative in both Br and Bq+r is of order q+ r− 1 for r = 1, . . . q (after
a possible reordering). Though numerous different boundary conditions share this property,
practical considerations exhort us to choose the simplest. These are the Neumann boundary
conditions

Br[φ] = φ(q+r−1)(−1), Bq+r[φ] = φ(q+r−1)(1), r = 1, . . . , q.

It follows that f̂n = O
(
n−q−1

)
.

Having prescribed ‘optimal’ boundary conditions, we turn our attention to the operator
L0. Throughout this derivation, aside from the order q and imposition of self-adjointness,
L0 was arbitrary. Once again, given freedom to choose, we resort to simplicity. This leads
naturally to the polyharmonic operator (−1)q d2q

dx2q .

For these reasons, the remainder of this chapter is devoted to the study of expansions in
the polyharmonic–Neumann eigenfunctions:

(−1)qφ(2q) = α2qφ, φ(r)(±1) = 0, r = q, q + 1, . . . , 2q − 1. (3.2)

Observe that when q = 1 this reduces to the Laplace–Neumann case studied previously.

Incidentally, though considerations of simplicity naturally lead us to (3.2), there is also
sound theoretical justification. As described in [127], the spectrum of a general operator L0 is
well understood in the asymptotic regime |α| → ∞. Under some mild assumptions, both the
eigenvalues and eigenfunctions of a general 2qth order operator L0 are asymptotic to those of
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the polyharmonic operator (the highest order term in L0) with the same boundary conditions.
In other words, no advantage is gained from expansions based on eigenfunctions of a more
general operator.3

3.1.2 Background

Birkhoff expansions have been extensively studied since their introduction by George Birkhoff
[25, 26]. Consequently, they are well-developed theoretically [123]. Much is known about
both their convergence and the asymptotic behaviour of the eigenvalues and eigenfunctions
[23, 51, 127]. In particular, the phenomenon of equiconvergence—where a Birkhoff expansion
can be related to a model trigonometric expansion and hence studied with classical tools of
Fourier analysis—has been extensively explored [123, 154].

Nevertheless, a number of omissions exist. The apparently obvious statement that Neu-
mann boundary conditions yield uniformly convergent expansions and the fastest possible rate
of convergence seems to be lacking. Indeed, classical convergence results typically assume that
the function being approximated satisfies the same boundary conditions as those associated to
the linear operator [123, 157]. Additionally, the majority of studies pertaining to equiconver-
gence consider only convergence away from the endpoints. From a practical standpoint, such
results are of limited use. Furthermore, a significant proportion of existing theory addresses
only the worst case scenario, including, for example, the Dirichlet boundary conditions

φ(r)(±1) = 0, r = 0, . . . , q − 1, (3.3)

which, in contrast to the Neumann case, lack uniform convergence and possess the slowest
convergence rate amongst all possible Birkhoff expansions.

Outside of this context, polyharmonic–Neumann eigenfunctions have been notably con-
sidered by Krein [108] and Kolmogorov [105] in the theory of n-widths. As a result of these
and subsequent investigations, much is known about the zeros of such eigenfunctions [136].
Regardless, to the best of our knowledge, no attempts have been made outside of [8] to devise
practical approximation schemes based on such eigenfunctions.

There are two principal reasons for this omission: construction and computation of the
eigenvalues and eigenfunctions and numerical evaluation of the coefficients f̂n. Both problems
were addressed in [8], and we shall revisit the principal aspects of that study in the course of
this chapter.

3.1.3 Key results

The key results of this chapter are divided into two parts: results relating to the spectrum
of (3.2) and its eigenfunctions, and results pertaining to the convergence of eigenfunction
expansions. Specifically, as regards the former, we establish the following:

1. The eigenfunction of (3.2) corresponding to index α can be expressed as a finite sum
of products of trigonometric and hyperbolic functions with real coefficients given as a

3A similar statement can also be made regarding more complicated boundary conditions. Under some
rather general assumptions, the eigenfunctions corresponding to general boundary conditions Br[φ] = 0 are
asymptotic to those eigenfunctions corresponding to boundary conditions arising from only the highest order
derivative in Br[·] [127]. Thus we obtain a similar conclusion: there is no practical advantage gained from
equipping the polyharmonic operator with more general boundary conditions.
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solution of a q × q algebraic eigenproblem. The eigenfunctions occur in two cases: even
and odd.

2. The eigenvalues are non-negative and, aside from the q-fold zero eigenvalue, positive.
Eigenvalues lie in intervals of exponentially small width and the nth value αn satisfies

αn =
1

4
(2n+ q − 1)π +O

(
e−γqnπ

)
, n� 1, (3.4)

for some constant γq > 0 depending only on q.
3. The eigenfunctions φn are exponentially close to regular oscillators in compact subsets

of (−1, 1). Specifically, for −1 < x < 1 and n� 1,

φn(x) = cos
[

1
4(2n+ q − 1)πx+ 1

2(n+ q − 1)π
]

+O
(

e−
1
2
γq(1−|x|)nπ

)
. (3.5)

These results have important consequences for practical computation. Simple construction
of eigenfunctions and rapid numerical evaluation of eigenvalues (via standard iterative tech-
niques, e.g. Newton–Raphson) follows from 1 and 2. Result 3 asserts that the coefficients f̂n
can be calculated to high accuracy with highly oscillatory methods. We mention in passing
that (3.4) and (3.5) represent significant improvements of classical results for Birkhoff expan-
sions. In general, such estimates are known with only O

(
n−1

)
remainder terms [51, 127].

These improved estimates, however, are rather specific to the polyharmonic–Neumann case
(as we discuss further in Section 3.3.3), and this presents yet another compelling reason to
develop expansions in such eigenfunctions, as opposed to arbitrary Birkhoff expansions.

The presence of exponentially small error terms in (3.4) and (3.5) not only justifies state-
ments made previously about the computation of eigenvalues, it also allows for a more accurate
study of convergence—the second topic we address in this chapter. In particular, we establish
the following:

1. For all q ∈ N, the basis of polyharmonic–Neumann eigenfunctions is dense and orthog-
onal in Hq(−1, 1) with respect to the inner product

(f, g)q = (f, g) + (f (q), g(q)), ∀f, g ∈ Hq(−1, 1). (3.6)

2. For r = 0, . . . , q the truncated expansion of a function f ∈ Hr(−1, 1) converges to f in
the Hr(−1, 1) norm.

3. The coefficients f̂n of a function f ∈ Hq+1(−1, 1) are O
(
n−q−1

)
for large n.

4. The expansion of f ∈ H1(−1, 1) converges uniformly, and, provided f ∈ Hq+1(−1, 1),
the uniform error is O (N−q). If, additionally, f ∈ Hq+2(−1, 1) the rate of convergence
is O

(
N−q−1

)
in compact subsets of (−1, 1). Furthermore, a full asymptotic expansion

of the error at any point x ∈ [−1, 1] can be prescribed.
5. Derivative conditions completely determine the convergence rate. If a function f obeys

the conditions

f ((2r+1)q+s)(±1) = 0, r = 0, . . . , k − 1, s = 0, . . . , q − 1,

then all convergence rates increase by a factor of N2kq.
6. The theory of univariate polyharmonic–Neumann expansions can be scaled up to the
d-variate cube via tensor products. This leads to a family of approximation bases
corresponding to eigenfunctions of certain subpolyharmonic operators.
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Polyharmonic–Neumann eigenfunctions, in theory, facilitate the design of approximations with
convergence rates of arbitrary algebraic order. One caveat is required: as q increases, per-
forming practical computations with such eigenfunctions becomes increasingly cumbersome.
Moreover, the presence of round-off error also hampers computations. This is described in fur-
ther detail in Sections 3.2.4 and 3.7. It is not within the scope of this chapter to properly assess
the impact of such issues, nor shall we address the comparison of polyharmonic–Neumann ap-
proximations with more mature algorithms. Regardless, in view of the applications of modified
Fourier expansions, where such an approach have been found to convey a number of benefits,
this particular generalisation warrants further study.

3.2 Polyharmonic eigenfunction bases

The operator L0 = (−1)q d2q

dx2q equipped with homogeneous Neumann boundary conditions is
semi-positive definite: thus, all eigenvalues are nonnegative. Clearly L0[φ] = 0 if and only
if φ is a polynomial of degree q − 1, meaning that 0 is a q-fold eigenvalue. The correspond-
ing orthonormal eigenfunctions are φ0,n, n = 0, . . . , q − 1, where φ0,n is the nth Legendre
polynomial.

All other eigenvalues are positive, and it follows from elementary spectral theory that
such eigenvalues are simple, countable and have no finite limit point [114]. The corresponding
eigenfunctions φn, n ∈ N, in combination with φ0,n, n = 0, . . . , q−1, form a dense, orthonormal
subset of L2(−1, 1).

As we exhibit in Section 3.2.3, eigenfunctions occur in two flavours, even and odd. Hence,

we will occasionally use the notation φ
[i]
n , φ

[i]
0,n, thereby denoting the even (i = 0) and odd

(i = 1) cases explicitly. More frequently, however, we will write φ0,n, φn and ignore this fact.

3.2.1 Expansions in polyharmonic eigenfunctions

We define the truncated expansion of a function f ∈ L2(−1, 1) in polyharmonic–Neumann
eigenfunctions as

FN [f ](x) =

q−1∑
n=0

f̂0,nφ0,n(x) +
N∑
n=1

f̂nφn(x), x ∈ [−1, 1],

where f̂0,n =
∫ 1
−1 f(x)φ0,n(x) dx and f̂n =

∫ 1
−1 f(x)φn(x) dx. Due to L2(−1, 1) orthogonality

and density, FN [f ] converges to f in the L2(−1, 1) norm. Moreover, a Parseval-type charac-
terisation holds,

‖f‖2 =

q−1∑
n=0

|f̂0,n|2 +
∞∑
n=1

|f̂n|2, ∀f ∈ L2(−1, 1). (3.7)

Central to analysis of the approximation FN [f ] is the duality enjoyed by the polyharmonic
basis. For q = 1, as demonstrated in Lemmas 2.4 and 2.5, such duality is clear: the derivative
of a Laplace–Neumann eigenfunction is a Laplace–Dirichlet eigenfunction and the derivative
of FN [f ] is the truncated expansion of f ′ in Laplace–Dirichlet eigenfunctions. The following
lemma generalises this result to q ≥ 1:

Lemma 3.1. If we apply the operator dq

dxq to the set of polyharmonic–Neumann eigenfunctions
φn, we obtain, up to scalar multiples, the set of polyharmonic eigenfunctions that satisfy
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the Dirichlet boundary conditions (3.3). Such eigenfunctions are dense and orthogonal in
L2(−1, 1). Moreover, for f ∈ Hq(−1, 1), (FN [f ])(q) is the truncated expansion of f (q) in such
eigenfunctions.

Proof. It is clear that q-fold differentiation yields the set of polyharmonic–Dirichlet eigenfunc-
tions (note that the polyharmonic–Dirichlet operator has no zero eigenvalue). Density and
orthogonality now follow directly from standard spectral theory.

For the second result, we first note that, for f ∈ Hq(−1, 1),∫ 1

−1
f(x)φ(x) dx =

(−1)q+r

α2q

∫ 1

−1
f (r)(x)φ(2q−r)(x) dx, r = 0, . . . , q, (3.8)

where φ is a polyharmonic–Neumann eigenfunction with corresponding eigenvalue µ = α2q.
This follows from the equality φ(2q) = (−1)qα2qφ and repeated integration by parts. Now,
suppose that φ(q) = cψ, where ψ is the corresponding normalised polyharmonic–Dirichlet
eigenfunction and c is a constant. Using (3.8) with r = q gives

c2 = c2

∫ 1

−1
ψ(x)ψ(x) dx =

∫ 1

−1
φ(q)(x)φ(q)(x) dx = α2q.

Moreover, we have∫ 1

−1
f(x)φ(x) dx =

1

α2q

∫ 1

−1
f (q)(x)φ(q)(x) dx =

1

c

∫ 1

−1
f (q)(x)ψ(x) dx,

so that (f, φ)φ(q)(x) = (f (q), ψ)ψ(x). The result now follows immediately.

Straightaway this lemma provokes the following question: what is the corresponding du-
ality for the derivative operator dp

dxp , p = 1, . . . , q − 1? Unfortunately, we no longer obtain
an orthogonal basis. Instead, as we describe in the next section, we obtain polyharmonic
eigenfunctions subject to certain non-self-adjoint boundary conditions.

3.2.2 Biorthogonal pairs of polyharmonic eigenfunctions

To describe the case p = 1, . . . , q−1, we first recall some general theory of Birkhoff expansions
(see [127] for a more thorough exposition). Given an arbitrary linear differential operator
L0 (not necessarily self-adjoint) of order 2q equipped with boundary conditions Br[φ] = 0,
r = 1, . . . , 2q, we may define the adjoint operator L∗0 and boundary conditions B∗r [ψ] = 0 so
that the relation ∫ 1

−1
L0[φ](x)ψ(x) dx =

∫ 1

−1
φ(x)L∗0[ψ](x) dx

holds for all 2q-times continuously differentiable, complex-valued functions φ, ψ, where φ
satisfies the boundary conditions Br[φ] = 0 and ψ satisfies the dual boundary conditions
B∗r [ψ] = 0. Here z̄ denotes the complex conjugate of z ∈ C. We say that an operator is
self-adjoint if L0 = L∗0 and Br = B∗r , r = 1, . . . , 2q.

It is well known that if µ is an eigenvalue of L0 with the aforementioned boundary condi-
tions, then µ̄ is an eigenvalue of the adjoint problem. Moreover, if φ and ψ are eigenfunctions
of L0 and L∗0 respectively, with corresponding eigenvalues µ and ν, then φ and ψ are orthogonal
unless µ = ν̄.
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Under some mild assumptions, the spectrum of L0 is countable with eigenvalues {µn}
and eigenfunctions {φn} [127]. If {ψn} is the corresponding set of eigenfunctions of the
adjoint, then (φn, ψm) = δn,m (after appropriate renormalisation), and we refer to the pair
{φn, ψn} as a biorthogonal pair of eigenfunctions. This biorthogonality signals that a function
f ∈ L2(−1, 1) can be expanded in the formal series

f(x) ∼
∞∑
n=1

(f, ψn)φn(x). (3.9)

Note that we do not make any assumptions regarding the convergence of the right-hand side
of (3.9) at this point.

Our interest lies with the case of the polyharmonic operator L0 = (−1)q d2q

dx2q . It is evident

that, when prescribed either Neumann φ(q+r)(±1) = 0, r = 0, . . . , q−1, or Dirichlet φ(r)(±1) =
0 boundary conditions, this operator is self-adjoint. Nonetheless, to describe the duality
enjoyed by polyharmonic–Neumann expansions properly, we first need to catalogue the nature
of the polyharmonic operator under a variety of other boundary conditions:

Lemma 3.2. Suppose that p = 1, . . . , q−1 and that the polyharmonic operator L0 = (−1)q d2q

dx2q

is equipped with boundary conditions

φ(q+r−p)(±1) = 0, r = 0, . . . , q − 1. (3.10)

Then, the adjoint operator L∗0 = L0 = (−1)q d2q

dx2q and the adjoint boundary conditions are

ψ(r)(±1) = 0, r = 0, . . . , p− 1,

ψ(2q−r−1)(±1) = 0, r = 0, . . . , q − p− 1. (3.11)

In particular, the corresponding pair of polyharmonic eigenfunctions subject to boundary con-
ditions (3.10) and (3.11) are biorthogonal.

Proof. We have∫ 1

−1
L0[φ](x)ψ̄(x) dx = (−1)q

2q−1∑
r=0

(−1)r+1φ(r)(x)ψ̄(2q−r−1)(x)
∣∣1
−1

+

∫ 1

−1
φ(x)L0[ψ](x) dx.

If φ satisfies boundary conditions (3.10), then this sum vanishes for all ψ precisely when ψ
obeys the conditions (3.11).

Before detailing the duality exhibited by polyharmonic–Neumann eigenfunctions, it is in-
formative to describe the nature of the zero eigenvalue of the polyharmonic operator equipped
with boundary conditions (3.10) or (3.11). Recall that the polyharmonic–Neumann operator
has a zero eigenvalue of multiplicity q. The corresponding eigenspace is Pq−1, the space of
polynomials of degree q − 1, and we write {φ0,n : n = 0, . . . , q − 1} for the orthonormal basis

of polynomials of this space (note that φ0,n = (n+ 1
2)

1
2Pn, where Pn is the nth Legendre poly-

nomial). Trivial calculations verify that the polyharmonic operator with boundary conditions
(3.10) or (3.11) has a (q − p)-fold zero eigenvalue. The corresponding eigenspaces are Pq−p−1

and {
g ∈ Pq+p−1 : g(r)(±1) = 0, r = 0, . . . , p− 1

}
,

respectively.
With this to hand, we are now in a position to prove the main result of this section:
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Theorem 3.3. If we apply the differentiation operator dp

dxp , p = 1, . . . , q − 1, to the set of
polyharmonic–Neumann eigenfunctions, we obtain, up to scalar multiples, the set of poly-
harmonic eigenfunctions that satisfy the boundary conditions (3.10). Furthermore, for f ∈
Hp(−1, 1), (FN [f ])(p) is the truncated expansion of f (p) in the biorthogonal pair of polyhar-
monic eigenfunctions corresponding to boundary conditions (3.10) and (3.11).

Proof. The first result is trivial. For the second, we proceed exactly as in Lemma 3.1. Suppose
that φn is the nth polyharmonic–Neumann eigenfunction with eigenvalue µn = α2q

n 6= 0. Let

φ
(p)
n = cnψn and φ

(2q−p)
n = dnχn for constants cn, dn where {ψn, χn} is the biorthogonal pair

corresponding to boundary conditions (3.10) and (3.11). Assume that such eigenfunctions are
normalised so that (ψn, χm) = δn,m. Setting r = p, φ = φm and f = φn in (3.8) immediately
gives

δn,m =
(−1)q+p

α2q
m

cndm

∫ 1

−1
ψn(x)χm(x) dx.

In particular, cndn = (−1)q+pα2q
n . Moreover, using (3.8) once more,

f̂nφ
(p)
n (x) =

(−1)q+p

α2q
n

cndn

∫ 1

−1
f (p)(x)χn(x) dxψn(x) =

(
f (p), χn

)
ψn(x).

It follows that

dp

dxp

N∑
n=1

f̂nφn(x) =
N∑
n=1

(
f (p), χn

)
ψn(x), (3.12)

for any N ∈ N. To complete the proof, we need to assess the component of FN [f ] correspond-
ing to the q-fold zero eigenvalue. To this end, suppose that we write {ψ0,n : n = 0, . . . , q−p−1}
and {χ0,n : n = 0, . . . , q−p−1} for the sets of polyharmonic eigenfunctions subject to bound-
ary conditions (3.10) and (3.11) respectively and corresponding to the zero eigenvalue. To
prove the full result, it suffices to show that

dp

dxp

q−1∑
n=0

f̂0,nφ0,n(x) =

q−p−1∑
n=0

(
f (p), χ0,n

)
ψ0,n(x). (3.13)

Since {ψ0,n} is a basis for Pq−p−1, it follows that

dp

dxp

q−1∑
n=0

f̂0,nφ0,n(x) =

q−p−1∑
n=0

anψ0,n(x),

for some values an ∈ R. Due to the biorthogonality relation (ψ0,n, χ0,m) = δn,m, we have

an =

(
dp

dxp

q−1∑
m=0

f̂0,mφ0,m, χ0,n

)
.

In view of (3.12) and the fact that (ψn, χ0,m) = 0, we may write, for any N ∈ N,

an =

(
dp

dxp

{
q−1∑
m=0

f̂0,mφ0,m +
N∑
m=1

f̂nφm

}
, χ0,n

)
.
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We now note that, since χ
(r)
0,n(±1) = 0 for r = 0, . . . , p− 1, integration by parts p times gives

the relation (
g(p), χ0,n

)
=
(
g, χ

(p)
0,n

)
(3.14)

for any function g ∈ Hp(−1, 1). In particular,

an =

(
q−1∑
m=0

f̂0,mφ0,m +

N∑
m=1

f̂nφm, χ
(p)
0,n

)
=
(
FN [f ], χ

(p)
0,n

)
.

Since N was arbitrary and FN [f ] → f in the L2(−1, 1) norm, it follows that an = (f, χ
(p)
0,n).

An application of (3.14) now gives an = (f (p), χ0,n), hence verifying (3.13).

The properties of the biorthogonal pairs of polyharmonic eigenfunctions introduced in this
section are well understood within the general context of Birkhoff expansions [51]. Though
certain standard results—in particular, L2(−1, 1) convergence of the expansion (3.9)—could
be utilised in our study of polyharmonic expansions, we shall not do this. The reasons for
this are twofold. First, such general results insufficiently describe the polyharmonic–Neumann
case (as we shall consider in Section 3.3), and second, they do not easily generalise to the d-
variate cube. Instead, we develop alternative, simpler techniques to tackle the polyharmonic–
Neumann case directly. Incidentally, convergence of the expansion (3.9) will be a by-product
of these results.

3.2.3 Construction of polyharmonic eigenfunctions

In this section, we briefly describe the systematic approach developed in [8] for the construc-
tion of polyharmonic eigenfunctions. Let φ be a polyharmonic–Neumann eigenfunction with
eigenvalue µ = α2q. We first note that

φ(x) =

2q−1∑
r=0

cre
λrαx,

where the values λr ∈ C satisfy λ2q
r = (−1)q, r = 0, . . . , 2q − 1 and the parameters cr ∈ C are

determined by the boundary conditions. Simplification of this expression requires separately
addressing the two cases corresponding to even and odd q.

Even q

The values λr are roots of unity in this case, and the eigenfunction φ takes one of two possible
forms φ[i] which is even if i = 0 and odd if i = 1. These are given by

φ[0](x) =

q
2∑

r=0

c[0]
r cos

(
α[0]x sin

πr

q

)
cosh

(
α[0]x cos

πr

q

)

+

q
2
−1∑
r=1

d[0]
r sin

(
α[0]x sin

πr

q

)
sinh

(
α[0]x cos

πr

q

)
, (3.15)



3.2 Polyharmonic eigenfunction bases 61

and

φ[1](x) =

q
2
−1∑
r=0

c[1]
r cos

(
α[1]x sin

πr

q

)
sinh

(
α[1]x cos

πr

q

)

+

q
2∑

r=1

d[1]
r sin

(
α[1]x sin

πr

q

)
cosh

(
α[1]x cos

πr

q

)
, (3.16)

respectively. The parameters c
[i]
r , d

[i]
r and α[i] are specified by enforcing the boundary condi-

tions, which results in an algebraic q × q eigenproblem.

Odd q

The odd case is addressed in an identical manner, resulting in

φ[0](x) =

q−1
2∑

r=0

c[0]
r cos

(
α[0]x sin

π(r + 1
2)

q

)
cosh

(
α[0]x cos

π(r + 1
2)

q

)

+

q−3
2∑

r=0

d[0]
r sin

(
α[0]x sin

π(r + 1
2)

q

)
sinh

(
α[0]x cos

π(r + 1
2)

q

)
,

and

φ[1](x) =

q−3
2∑

r=0

c[1]
r cos

(
α[1]x sin

π(r + 1
2)

q

)
sinh

(
α[1]x cos

π(r + 1
2)

q

)

+

q−1
2∑

r=0

d[1]
r sin

(
α[1]x sin

π(r + 1
2)

q

)
cosh

(
α[1]x cos

π(r + 1
2)

q

)
.

We conclude the following: for arbitrary q ≥ 1, the eigenfunctions split into even and odd
functions, and in each case they can be expressed as sums of products of trigonometric and
hyperbolic functions.

The biharmonic (q = 2) case warrants further attention. It presents the first signifi-
cant extension beyond the modified Fourier case, and highlights several features of general
polyharmonic–Neumann expansions. In this setting, the eigenfunctions are given by

φ[0]
n (x) =

1√
2

(
cosα

[0]
n x

cosα
[0]
n

+
coshα

[0]
n x

coshα
[0]
n

)
, φ[1]

n (x) =
1√
2

(
sinα

[1]
n x

sinα
[1]
n

+
sinhα

[1]
n x

sinhα
[1]
n

)
, (3.17)

and the values α
[i]
n , i = 0, 1, n ∈ N, satisfy the nonlinear equations

tanhα[0]
n + tanα[0]

n = 0, tanhα[1]
n − tanα[1]

n = 0.

These values lie in intervals of exponentially small width in n. In fact,

α[0]
n ∈

(
(n− 1

4)π, (n− 1
4)π + ce−2(n− 1

4
)π
)
,

α[1]
n ∈

(
(n+ 1

4)π − ce−2(n+ 1
4

)π, (n+ 1
4)π
)
, (3.18)
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Figure 3.1: (left) the biharmonic eigenfunctions φn, n = 1, 2, 3, 4. (right) the function φ20.

where c = cos 1+sin 1
sin 1 . This establishes (3.4) in this setting. Likewise, the estimate (3.5) is also

easily demonstrated after a brief consideration of (3.17).4

In Figure 3.1(a), we plot the first four biharmonic eigenfunctions. Herein another property
of polyharmonic eigenfunctions is apparent: namely, the nth eigenfunction has precisely n
simple zeros in (−1, 1), and the zeros interlace.5 Simple arguments, along similar lines to
those already given, demonstrate that these observations are valid for all n when q = 2. Such
behaviour is characteristic of Sturm–Liouville eigenfunctions [114]. Moreover, it is known
to hold also for eigenfunctions corresponding to a wide variety of higher-order differential
operators, including the polyharmonic operator under current consideration. This result is a
by-product of the theory of n-widths [136, chpt. 3].

Figure 3.1(b) plots the eigenfunction φ20. From this we surmise that the zeros of polyhar-
monic eigenfunctions are, in addition, asymptotically uniformly distributed in [−1, 1], a result
we shall establish in the sequel. This figure also illustrates that the eigenfunction φn behaves
like a regular oscillator away from the endpoints x = ±1, as predicted by (3.5).

3.2.4 Computation of polyharmonic–Neumann eigenvalues

The eigenfunctions φn can be constructed in a systematic manner. Provided the values αn
have been computed, the coefficients of the eigenfunctions can be easily found by solving an
algebraic eigenproblem.

It remains to scrutinise the computation of such values. However, as we hypothesised in
(3.4) and will prove in the forthcoming section, such values lie in intervals of exponentially
small width. For this reason, computation can be carried out extremely easily by means of
Newton–Raphson iterations. Moreover, for even moderate n, we may use the approximation
αn ≈ 1

4(2n+ q − 1)π instead.

In Table 3.1, we demonstrate the effectiveness of this algorithm for computing the values
αn. For q = 2, 3, 4 no more than 4 iterations are required to obtain machine precision.
Furthermore, for n ≥ 16, the approximation αn ≈ 1

4(2n+q−1) can be used without resorting
to any iterations at all. We note in passing that, for q = 3, the values α2n−1 = nπ are known
explicitly [8].

4Note that, to relate (3.18) to the general case (3.4), we must reorder the eigenvalues α2n−1 = α
[0]
n and

α2n = α
[1]
n . Correspondingly, we reorder φ2n−1 = φ

[0]
n and φ2n = φ

[1]
n .

5In fact, φn appears to have n + 1 simple zeros in this figure. However, we need to augment the basis by

φ0,0(x) = 1√
2

and φ0,1(x) =
√

3√
2
x having 0 and 1 zeros respectively.
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n 1 2 3 4 5 10 15 20 25 30

q = 2
en 2.43 4.00 5.16 6.99 8.44 15.5 22.5 29.5 36.4 43.3
an 3 3 2 2 2 1 0 0 0 0

q = 3
en — 3.62 — 6.20 — 13.6 — 25.7 — 37.7
an 0 3 0 2 0 1 0 0 0 0

q = 4
en 2.35 4.63 4.42 5.44 6.97 11.6 16.8 21.5 26.5 31.4
an 4 3 3 2 2 1 1 0 0 0

Table 3.1: Numerical computation of αn for q = 2, 3, 4. The value en =
− log10

(
|αn − 1

4(2n+ q − 1)|/αn
)

measures the number of significant digits (a dash indicates
where αn = 1

4(2n + q − 1) exactly) and an is the number of Newton–Raphson iterations
required to obtain machine epsilon.

To connect this discussion to the narrative of Section 3.1.1, we remark that, by choos-
ing both the simplest operator and boundary conditions, we have greatly aided the task of
computing the values αn. If we were to choose a basis of eigenfunctions for which the nth

value αn is known to within only O
(
n−1

)
accuracy (as is the case for an overwhelming num-

ber of operators and boundary conditions), then computation would be considerably more
complicated.

Two further remarks regarding practical issues are worthy of mention. First, as q in-
creases, so does the computational cost of constructing and evaluating the eigenfunctions φn.
Moreover, it becomes extremely cumbersome to derive analytic expressions for the coefficients

c
[i]
r , d

[i]
r of such eigenfunctions. For q = 4, we resorted to a symbolic algebra package for this

task. Second, since the eigenfunctions involve increasing numbers of hyperbolic functions for
large q, there is increasing susceptibility to round-off error in calculations. As a result, it
appears inadvisable to use values of q much beyond q = 4. Regardless, the remainder of this
chapter will furnish analysis of the general case q ≥ 1.

3.3 Asymptotic character of polyharmonic–Neumann eigen-
values and eigenfunctions

The aim of this section is to establish the estimates (3.4) and (3.5). As stated, similar estimates
with onlyO

(
n−1

)
error terms are well known for Birkhoff expansions [51, 127]. Yet, to the best

of our knowledge, estimates for the polyharmonic case with exponentially small remainders
do not currently exist. Most likely, this is due to the fact that such estimates are only valid
under rather specific conditions, a point we discuss further in Section 3.3.3.

Proofs in this section will follow along the same lines as those given in [127]. However,
the greatly simplified nature of the linear operator and boundary conditions allows for a
more straightforward argument, and in turn, facilitates more precise results. For ease of
presentation, we work predominantly on the interval [0, 1], as opposed to [−1, 1], in this
section.
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3.3.1 Polyharmonic–Neumann eigenvalues

Consider an eigenfunction φ with eigenvalue µ = α2q 6= 0. We have

(−1)qφ(2q)(x) = α2qφ(x), φ(q)(0) = . . . = φ(2q−1)(0) = φ(q)(1) = . . . = φ(2q−1)(1) = 0.

Write φ(x) =
∑2q−1

s=0 cse
αλsx, where λ0, . . . , λ2q−1 are the solutions of λ2q = (−1)q and

c0, . . . , c2q−1 ∈ C are constants to be specified. Substituting the boundary conditions yields
the system of equations

2q−1∑
s=0

cs(αλs)
r+q =

2q−1∑
s=0

cs(αλs)
r+qeαλs = 0, r = 0, ..., q − 1.

Hence the values α are the solutions of the equation g(α) = 0, where

g(α) = det



eαλ0 eαλ1 · · · eαλ2q−1

λ0eαλ0 λ1eαλ1 · · · λ2q−1eαλ2q−1

...
...

. . .
...

λq−1
0 eαλ0 λq−1

1 eαλ1 · · · λq−1
2q−1eαλ2q−1

1 1 · · · 1
λ0 λ1 · · · λ2q−1
...

...
. . .

...

λq−1
0 λq−1

1 · · · λq−1
2q−1


. (3.19)

Using Cramer’s rule we obtain

g(α) =
∑

σ∈S2q−1

sgn(σ)eα
∑q−1
r=0 λσ(r)

q−1∏
r=0

(
λσ(r)λσ(q+r)

)r
, (3.20)

where S2q−1 is the set of permutations of the numbers {0, 1, . . . , 2q−1} and sgn(σ) takes value
+1 if σ is an even permutation and −1 otherwise.

To analyse the asymptotic behaviour α→∞, we must first scrutinise the sum
∑q−1

r=0 λσ(r)

(note that α is real and positive). To do so, we introduce the following ordering on the values

λ0, . . . , λ2q−1. We define λ0 = −i and λr = λ0λ
r, where λ = e

iπ
q . In particular, λq = i. For

such an ordering, observe that Reλr ≥ 0 for r = 0, . . . , q, and Reλr < 0 otherwise.

We now require the following lemma:

Lemma 3.4. We have maxσ∈S2q−1 Re
∑q−1

r=0 λσ(r) = cot π
2q = θq. This maximum is attained

precisely when σ ∈ T2q−1 = Uq ∪ Vq, where

Uq = {σ ∈ S2q−1 : {σ(r) : r = 0, . . . , q − 1} = {0, . . . , q − 1}} ,
Vq = {σ ∈ S2q−1 : {σ(r) : r = 0, . . . , q − 1} = {1, . . . , q}} .

Moreover, the sum
∑q−1

r=0 λσ(r) = θq − i for σ ∈ Uq and
∑q−1

r=0 λσ(r) = θq + i for σ ∈ Vq.

Conversely, if σ /∈ T2q−1 then Re
∑q−1

r=0 λσ(r) ≤ θq − γq, where γq = sin π
q .
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Proof. It is clear from the ordering of λ0, . . . , λ2q−1 that the maximum value is attained only
for σ ∈ T2q−1. Furthermore

q−1∑
r=0

λr = λ0

q−1∑
r=0

λr =
2i

e
iπ
q − 1

= θq − i,

and
∑q

r=1 λr = 2i +
∑q−1

r=0 λr. For the final part, we merely note that |Reλr| ≥ Reλ1 = γq for
r 6= 0, q.

With this lemma to hand, we may provide an estimate for the function g:

Lemma 3.5. The function g(α) defined by (3.19) satisfies

g(α) = eθqα detA0 detA1

(
e−iα − e−iπ(q−1)eiα

)
+O

(
e(θq−γq)α

)
, α→∞,

where A0, A1 ∈ Cq×q have (r, s)th entries λrs and λrq+s respectively for r, s = 0, . . . , q − 1.

Note that both A0 and A1 are Vandermonde matrices, hence their corresponding deter-
minants are known analytically [66]. However, since these exact values are of little relevance
to the present discussion, we shall not pursue this further.

Proof of Lemma 3.5. Applying the result of Lemma 3.4 to (3.20) gives

g(α) =e(θq−i)α
∑
σ∈Uq

sgn(σ)

q−1∏
r=0

(
λσ(r)λσ(q+r)

)r
+ e(θq+i)α

∑
σ∈Vq

sgn(σ)

q−1∏
r=0

(
λσ(r)λσ(q+r)

)r
+O

(
e(θq−γq)α

)
, α→∞. (3.21)

If σ ∈ Uq, we may write

σ(r) =

{
σ′(r) r = 0, . . . , q − 1
q + σ′′(r − q) r = q, . . . , 2q − 1,

where σ′, σ′′ ∈ Sq−1. In particular, sgn(σ) = sgn(σ′)sgn(σ′′). Hence

∑
σ∈Uq

sgn(σ)

q−1∏
r=0

(
λσ(r)λσ(q+r)

)r
=

∑
σ′,σ′′∈Sq−1

sgn(σ′)sgn(σ′′)

q−1∏
r=0

(
λσ′(r)λq+σ′′(r)

)r
and this is precisely detA0 detA1. Similar arguments can be applied to σ ∈ Vq. Noting that
λ2q = λ0, we write

σ(r) =

{
1 + σ′(r) r = 0, . . . , q − 1
q + 1 + σ′′(r − q) r = q, . . . , 2q − 1.

In this case sgn(σ) = −sgn(σ′)sgn(σ′′), hence

∑
σ∈Vq

sgn(σ)

q−1∏
r=0

(
λσ(r)λσ(q+r)

)r
= −detA2 detA3,
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where A2, A3 ∈ Cq×q have (r, s)th entries λr1+s and λrq+1+s respectively. Observe that A2 =

DA0, A3 = DA1, where D ∈ Cq×q is the diagonal matrix with rth entry λr. Hence

detA2 detA3 = (detD)2 detA0 detA1 = λq(q−1) detA0 detA1 = e−iπ(q−1) detA0 detA1,

Substituting this expression into (3.21) now completes the proof.

We are now in a position to establish the key result of this section:

Theorem 3.6. Suppose that µn = α2q
n , n ∈ N, is the nth eigenvalue of the polyharmonic

operator subject to homogeneous Neumann boundary conditions on [0, 1]. Then

αn =
1

2
(2n+ q − 1)π +O

(
e−nπγq

)
, n→∞.

Proof. For an eigenvalue µ = α2q we have g(α) = 0. Hence, e2iα = eiπ(q−1) +O (e−γqα).

Mapping this result to [−1, 1] divides the eigenvalue by 2, thus verifying (3.4). Note that,

when q = 2, this gives αn = 1
4(2n + 1)π + O(e−

1
2
nπγ2). Relabelling n by 2n − 1 or 2n, we

obtain the asymptotic estimates n ± 1
4 . This corresponds precisely to the known result for

biharmonic eigenvalues (see Section 3.2.3).

3.3.2 Polyharmonic–Neumann eigenfunctions

Next, we address the asymptotic nature of the eigenfunctions. We commence by noting that
an eigenfunction φ corresponding to eigenvalue µ = α2q 6= 0 can be written as

φ(x) = det



eαλ0x eαλ1x · · · eαλ2q−1x

λq0eαλ0 λq1eαλ1 · · · λq2q−1eαλ2q−1

λq+1
0 eαλ0 λq+1

1 eαλ1 · · · λq+1
2q−1eαλ2q−1

...
...

. . .
...

λ2q−1
0 eαλ0 λ2q−1

1 eαλ1 · · · λ2q−1
2q−1eαλ2q−1

λq0 λq1 · · · λq2q−1

λq+1
0 λq+1

1 · · · λq+1
2q−1

...
...

. . .
...

λ2q−2
0 λ2q−2

1 · · · λ2q−2
2q−1


=

2q−1∑
s=0

eαλsx(−1)s detA[s],

where A[s] is the corresponding minor

A[s] =



λq0eαλ0 · · · λqs−1eαλs−1 λqs+1eαλs+1 · · · λq2q−1eαλ2q−1

...
. . .

...
...

. . .
...

λ2q−1
0 eαλ0 · · · λ2q−1

s−1 eαλs−1 λ2q−1
s+1 eαλs+1 · · · λ2q−1

2q−1eαλ2q−1

λq0 · · · λqs−1 λqs+1 · · · λq2q−1
...

. . .
...

...
. . .

...

λ2q−2
0 · · · λ2q−2

s−1 λ2q−2
s+1 · · · λ2q−2

2q−1


.

We first need to assess the asymptotic behaviour of such values:
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Lemma 3.7. We have

(−1)s detA[s] =

{
cse

(θq−λs)α +O
(
e(θq−Reλs−γq)α

)
s = 0, . . . , q

cse
(θq−i)α + c′se

(θq+i)α +O
(
e(θq−γq)α

)
s = q + 1, . . . , 2q − 1,

where the values cs, s = 0, . . . , 2q−1, c′s, s = q, . . . , 2q−1, depend only on λ0, . . . , λ2q−1, and,
in particular,

c0 = e
(q−1)

2
iπcq. (3.22)

Proof. Observe first that

detA[s] =
∑

σ∈Ss,2q−1

sgn(σ)eα
∑q−1
r=0 λσ(r)

q−1∏
r=0

λr+qσ(r)

q−2∏
r=0

λr+qσ(r+q), (3.23)

where Ss,2q−1 is the set of permutations σ : {0, . . . , 2q− 2} → {0, . . . , s− 1, s+ 1, . . . , 2q− 1}.
We first consider the case s = 0, . . . , q. For such values, we have

max
σ∈Ss,2q−1

Re

q−1∑
r=0

λσ(r) = θq − Reλs,

and this is attained precisely when {σ(r) : r = 0, . . . , q − 1} = {0, . . . , s− 1, s+ 1, . . . , q}. We
write

σ(r) =

{
σ′(r) r = 0, . . . , q − 1

q + 1 + σ′′(r − q) r = q, . . . , 2q − 2,

for such σ, where σ′ ∈ Ss,q and σ′′ ∈ Sq−2 is a permutation of {0, . . . , q − 2}. Substituting
this into (3.23) now gives

detA[s] = e(θq−λs)α
∑

σ′∈Ss,q
σ′′∈Sq−2

sgn(σ′)sgn(σ′′)

q−1∏
r=0

λr+qσ′(r)

q−2∏
r=0

λr+qσ′′(r)+q+1 +O
(

e(θq−Reλs−γq)α
)

= e(θq−λs)α detB detC [s] +O
(

e(θq−Reλs−γq)α
)
,

where B ∈ C(q−1)×(q−1) has (r, s)th entry λr+qs+q+1 and

C [s] =


λq0 · · · λqs−1 λqs+1 · · · λqq
λq+1

0 · · · λq+1
s−1 λq+1

s+1 · · · λq+1
q

...
. . .

...
...

. . .
...

λ2q−1
0 · · · λ2q−1

s−1 λ2q−1
s+1 · · · λ2q−1

q

 .

This proves the result for s = 0, . . . , q. Note that C [0] = DC [q], where D ∈ Cq×q is the
diagonal matrix with rth entry λr+q. Therefore, detC [0] = λq

2+ 1
2
q(q−1) detC [q], and this yields

(3.22).
Next, we consider s = q + 1, . . . , 2q − 1. In this case

max
σ∈Ss,2q−1

Re

q−1∑
r=0

λσ(r) = θq
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and this is attained when {σ(r) : r = 0, . . . , q − 1} = {0, . . . , q − 1} or {1, . . . , q}. For the
former, we write

σ(r) =

{
σ′(r) r = 0, . . . , q − 1
σ′′(r) r = q, . . . , 2q − 2,

where σ′ ∈ Sq and σ′′ : {q, . . . , 2q − 2} → {q, . . . , s− 1, s+ 1, . . . , 2q − 1}. For the latter,

σ(r) =

{
σ′(r) + 1 r = 0, . . . , q − 1
σ′′(r) r = q, . . . , 2q − 2,

where σ′′ : {q, . . . , 2q − 2} → {q + 1, . . . , s− 1, s+ 1, . . . , 2q}. Hence

detA[s] = eθqα
{

e−iα detA0 detDs − eiα detA2 detD′s
}

+O
(

e(θq−γq)α
)
,

where A0, A2 are the matrices of Lemma 3.5 and Ds and D′s are given by
λqq · · · λqs−1 λqs+1 · · · λq2q−1

λq+1
q · · · λq+1

s−1 λq+1
s+1 · · · λq+1

2q−1
...

. . .
...

...
. . .

...

λ2q−1
q · · · λ2q−1

s−1 λ2q−1
s+1 · · · λ2q−1

2q−1

 ,


λqq+1 · · · λqs−1 λqs+1 · · · λq2q
λq+1
q+1 · · · λq+1

s−1 λq+1
s+1 · · · λq+1

2q
...

. . .
...

...
. . .

...

λ2q−1
q+1 · · · λ2q−1

s−1 λ2q−1
s+1 · · · λ2q−1

2q


respectively. This completes the proof.

In view of this lemma, we now renormalise the eigenfunction φ by dividing by eα(θq+i). It
follows immediately from Lemmas 3.5 and 3.7 that

φ(x) =cq

{
eiαx + e−

q−1
2

iπe−iαx
}

+

q−1∑
s=1

cse
λsα(x−1) +

2q−1∑
s=q+1

cse
αλsx +O

(
max{e−αγqx, e−αγq(1−x)}

)
. (3.24)

From this we deduce:

Lemma 3.8. Suppose that φ is the polyharmonic–Neumann eigenfunction on [0, 1] with cor-
responding eigenvalue µ = α2q 6= 0. Then

φ(x) = cq cos
[
αx+ 1

4(q − 1)π
]

+O
(

max{e−αγqx, e−αγq(1−x)}
)
,

where cq is independent of α and x.

Proof. Let q = 4t+ s, s = 0, 1, 2, 3. It suffices to show that φ(x) is asymptotic to cos(αx− π
4 ),

cosαx, cos(αx + π
4 ) or cos(αx + π

2 ) respectively. First, suppose that q = 2l + 1. Then

e−
q−1

2
iπ = (−1)l, and, from (3.24), we deduce that

φ(x) = cq

{
eiαx + (−1)le−iαx

}
+O

(
max{e−αγqx, e−αγq(1−x)}

)
= cq(1 + (−1)l) cosαx+ icq(1 + (−1)l+1) sinαx+O

(
max{e−αγqx, e−αγq(1−x)}

)
,
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Figure 3.2: Top row: the biharmonic eigenfunctions φn (thicker line) and approximations sin 1
4 (2n+

1)πx (thinner line) for n = 2, 6, 10 (left to right). Bottom row: the error log10 |φn(x)−sin 1
4 (2n+1)πx|.

which completes the proof for q = 4t + 1 and q = 4t + 3. Now suppose that q = 2l. Then

e−
q−1

2
iπ = (−1)li. Since

eiαx + (−1)lie−iαx =
(

i + (−1)l
)(

sinαx+ (−1)l cosαx
)

=
√

2
(

i + (−1)l
)

sin
(
αx+ (−1)l π4

)
,

we also obtain the result in this case.

Theorem 3.9. The nth polyharmonic–Neumann eigenfunction on [−1, 1] satisfies

φn(x) = cos
[

1
4(2n+ q − 1)πx+ 1

2(n+ q − 1)π
]

+O
(

e−
1
2
γq(1−|x|)nπ

)
.

Proof. This follows from Lemma 3.8 and the mapping [0, 1]→ [−1, 1], x 7→ −1 + 2x.

This theorem verifies (3.5): polyharmonic–Neumann eigenfunctions are exponentially close
to regular oscillators in (−1, 1). In Figures 3.2 and 3.3 we exhibit this result for q = 2, 3. Once
more, we observe the very rapid onset of the asymptotic behaviour away from the endpoints.
Moreover, the straight lines in the logarithmic error plot highlight the nature of the error term
in Theorem 3.9.

Theorem 3.9 also demonstrates the phenomenon of equiconvergence [123]. Polyharmonic–
Neumann eigenfunctions are asymptotic to trigonometric functions in (−1, 1). Hence, conver-
gence of polyharmonic expansions can be studied with standard tools of Fourier analysis. This
classical approach, however, is unsuitable for an accurate study of polyharmonic–Neumann
expansions. As we shall prove through alternative means, classical Fourier series converge
much more slowly than such expansions. Hence, relating polyharmonic–Neumann expansions
to trigonometric series does little to illuminate their convergence.

To connect Theorem 3.9 to the explicit example of biharmonic eigenfunctions, we note
that, when q = 2, this result gives

φ2n−1(x) = cos(n− 1
4)πx+O

(
e−(1−|x|)nπγ2

)
, φ2n(x) = sin(n+ 1

4)πx+O
(

e−(1−|x|)nπγ2

)
.
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Figure 3.3: Top row: the triharmonic eigenfunctions φn (thicker line) and approximations cos 1
2 (n+

1)πx (thinner line) for n = 6, 14, 20 (left to right). Bottom row: the error log10 |φn(x)−cos 1
2 (n+1)πx|.

A brief comparison with (3.17) verifies this result in the biharmonic case. Note that φ2n−1,

an even function, corresponds to φ
[0]
n . Likewise, φ2n coincides with the odd function φ

[1]
n .

Returning to the general case, and immediate consequence of Theorem 3.9 concerns the
distribution of the zeros of the eigenfunctions φn in the limit n→∞. We have:

Corollary 3.10. The zeros of φn are asymptotically uniformly distributed as n→∞.

Proof. Suppose that I = [a, b] ⊆ (−1, 1) is a closed interval. Let Zn(I) be the number of zeros
of φn in I. It follows from Theorem 3.9 that Zn(I) = 1

2(b− a)n+O (1) as n→∞. Since φn
has precisely n + q simple zeros in [−1, 1] (see [136]), it follows that the proportion of zeros
in I is 1

2 |I|+O
(
n−1

)
for large n (note that |I| = 2 for I = [−1, 1], which explains the factor

of 1
2).
It now remains to show that the same result holds for intervals I containing at least one of

the endpoints x = ±1. For this, we first note that φn is either even or odd: hence, it suffices
to consider I = [a, 1] ⊆ (−1, 1]. If a > 0, then

Z(I) =
1

2
Z ([−1,−a] ∪ [a, 1]) =

1

2
{Z([−1, 1])− Z([−a, a])} =

1

2
(1− a)n+O (1) ,

as required. If a < 0, then Z(I) = Z[−1, 1]− Z[−a, 1], and the result follows.

To complete this section, we present several results concerning the growth of the deriva-

tives of φn, both of which will be used later. The first concerns the uniform norm ‖φ(r)
n ‖∞.

Intuitively, it feels correct that ‖φ(r)
n ‖∞ = O (nr) for large n. This is indeed the case:

Lemma 3.11. Suppose that φ is the polyharmonic–Neumann eigenfunction corresponding to
eigenvalue µ = α2q. Then ‖φ(r)‖∞ = O (αr) for large α and any r ∈ N0.

Proof. We work on the interval [0, 1]. Recalling (3.24) and the fact that cs = O (1) indepen-
dently of α, it follows that

|φ(r)(x)| ≤ αr
{
q−1∑
s=0

|cs|
∣∣∣eλsα(x−1)

∣∣∣+

2q−1∑
s=q

|cs|
∣∣∣eλsαx∣∣∣} ≤ cαr,
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as required.

A particular consequence of this result is that ‖φ‖ ≤ ‖φ‖∞ = O (1) for large α. Hence,
the eigenfunction φ is L2(−1, 1) normalised independently of α. Next, we present our second
result, which gives a pointwise estimate for the derivative φ(r) evaluated at the endpoints
x = ±1:

Lemma 3.12. Suppose that φ is as in Lemma 3.11. Then φ(r)(1) = crα
re2iα +O (αre−γqα),

where cr is a constant independent of α.

Proof. Once more, we work on [0, 1]. In view of Lemma 3.7 and the normalisation introduced
previously, we have

φ(r)(1) = αr
2q−1∑
s=0

λrse
αλs(−1)s detA[s]e−α(θq+i)

= αr

e−iα
q∑
s=0

λrscs +

2q−1∑
s=q+1

λrse
αλscs

+O
(
αre−γqα

)
= αr

{
e−iα

q∑
s=0

λrscs

}
+O

(
αre−γqα

)
.

In view of Lemma 3.5, e−iα = (−1)qeiα+O (e−γqα). The result now follows immediately upon
recalling that the mapping [0, 1]→ [−1, 1] scales the value α by 1

2 .

Note that φ(−1) = ±φ(1) with sign depending on n, where α = αn. Hence, this lemma
also establishes the growth of derivatives at the endpoint x = −1.

3.3.3 Other boundary conditions

The results proved in this section, detailing the existence of exponentially small remainder
terms, are quite specific to the particular operator L0 and boundary conditions. A complete
categorisation of such operators and boundary conditions is beyond the scope of this chapter.
However, we now briefly indicate the type of restrictions necessary.

Certainly, such results are not, in general, valid once the operator has non-constant coef-
ficients. For example, the Mathieu eigenvalues and eigenfunctions [120], defined by

φ′′(x) + (µ− 2a cos 2πx)φ(x) = 0, x ∈ [−1, 1], φ′(±1) = 0,

where a is constant, are indeed asymptotic to the corresponding Laplace–Neumann eigenvalues
and eigenfunctions, but only with algebraically decaying remainder.6 Furthermore, it need
not be the case that a constant coefficient operator L0 with Neumann boundary conditions
possesses such a property. For example, if L0 = ∂4

x − a∂2
x, where a > 0 is constant, then it is

also easily seen that the remainder is only algebraically decaying.
Even within the simple realm of the polyharmonic operator, more complicated boundary

conditions may destroy such estimates. For example, with q = 2 and the boundary conditions

u(±1) + au′(±1) = 0, u′′(±1) = 0,

6In fact, a full asymptotic expansion in inverse powers of µ can be prescribed. Moreover, this asymptotic
expansion turns out to be convergent for all µ 6= 0 [120].
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where a 6= 0, the values α2n−1 are the roots of the equation tanhα − tanα = 2(aα)−1, and
therefore do not lie within intervals of exponentially small width.

The evidence of these examples indicates that the results of this section hold only in a
very restrictive set of cases.7 Thus far, we have not found another non-trivial operator—that
is, an operator without explicitly known eigenvalues and eigenfunctions—with this property.
The only generalisation that we have to date is for the polyharmonic operator with boundary
conditions u(lr)(±1) = 0, r = 0, . . . , q − 1, where 0 ≤ l0 < l1 < . . . < lq−1 ≤ 2q − 1. Note
that this includes the case of Neumann boundary conditions established in this section. The
proof of this more general statement follows along identical lines to that given previously.
We remark in passing that, though such boundary conditions yield eigenfunctions with the
same properties as the Neumann case, the related expansion coefficients decay more slowly
unless lr = q + r, r = 0, . . . , q − 1, in which case we recover Neumann boundary conditions.
Hence, such eigenfunctions, though of theoretical interest, are not best suited for practical
computations.

3.4 Analysis of polyharmonic–Neumann expansions

Having established a number of key properties of polyharmonic–Neumann eigenfunctions, we
now find ourselves in a position to provide a complete convergence analysis. For the remainder
of this chapter, we shall use the notation c (or cr, cr,s) for a positive constant, independent
of N and f (but dependent on r and s, where appropriate).

3.4.1 Density and convergence

As previously stated, the truncated expansion FN [f ] converges in the L2(−1, 1) norm. How-
ever, much like the Laplace (q = 1) case, a significantly stronger result holds concerning the
space Hq(−1, 1). To prove such a result, we must first establish that the bilinear form (3.6)
provides an equivalent inner product on this space:

Lemma 3.13. The bilinear form (3.6) is an inner product on Hq(−1, 1). The associated
norm ||| · |||q, given by |||f |||2q = ‖f‖2 + ‖f (q)‖2, is equivalent to ‖·‖q.

Proof. This result follows immediately from the additive interpolation inequality ‖f (r)‖ ≤
cr
(
‖f‖+ ‖f (q)‖

)
, r = 0, . . . , q, ∀f ∈ Hq(−1, 1) [2].

The first result of this section, the univariate generalisation of Lemma 2.9 to arbitrary
q ≥ 1, is a direct consequence of Lemmas 3.1 and 3.13:

Lemma 3.14. The set of polyharmonic–Neumann eigenfunctions is dense and orthogonal in
Hq(−1, 1) with respect to the inner product (3.6). In particular, for f ∈ Hq(−1, 1), FN [f ]

7Of course, there are many trivial cases with explicitly known eigenfunctions. For example, the eigen-
functions of the polyharmonic operator with boundary conditions φ(2r+1)(±1) = 0, r = 0, . . . , q − 1 are pre-
cisely the Laplace–Neumann eigenfunctions. Another example involves merely periodic boundary conditions
φ(r)(1) = φ(r)(−1), r = 0, . . . , 2q − 1 and any constant coefficient operator. In this case, eigenfunctions are
just the Fourier basis functions. The proper classification of operators and boundary conditions to accurately
reflect such examples requires deeper study, along the lines of [127].
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converges to f in this norm and we have the characterisation

|||f |||2q =

q−1∑
n=0

|f̂0,n|2 +
∞∑
n=1

(1 + µn)|f̂n|2.

This lemma immediately presents the following question: for f ∈ Hr(−1, 1), r = 1, . . . , q−
1, does FN [f ] converge to f in the Hr(−1, 1) norm? This question can be answered almost
immediately with standard results. We have established that (FN [f ])(r) is the truncated
expansion of f (r) in a certain biorthogonal pair of polyharmonic eigenfunctions (Theorem
3.3). Hence, the result follows directly from L2(−1, 1) convergence of this expansion—a well-
known fact [51]. However, such results are not readily scalable to higher dimensions with the
same level of generality pursued in Chapter 2 (i.e. arbitrary index sets). Therefore, we devote
the remainder of this section to providing an alternative, arguably simpler, proof, which can
be extended in this way (as we address in Section 3.5). Our method of proof will be based on
the known results for r = 0, q—consequences of self-adjoint spectral theory—and interpolation
therein for the intermediate values r = 1, . . . , q − 1.

To derive this result, we first need to establish a number of properties of the truncated
expansion FN [f ] of a function f in biorthogonal pairs of polyharmonic eigenfunctions corre-
sponding to boundary conditions (3.10) and (3.11). Namely, we shall prove a Bessel inequality
for such expansions, ‖FN [f ]‖ ≤ c‖f‖, and also demonstrate that the sequence {(f, ψn)}∞n=1,
where ψn is a polyharmonic eigenfunction with boundary conditions (3.10) or (3.11), is in
l2(N)—the space of square summable sequences—and has corresponding norm bounded by
c‖f‖.

We first require the following two lemmas:

Lemma 3.15. Suppose that an =
∫ 1

0 eznxf(x) dx, n ∈ N, f ∈ L2(0, 1), where z 6= 0 and
Re z ≤ 0. Then {an} ∈ l2(N) and

∑∞
n=1 |an|2 ≤ c‖f‖2.

Proof. Though this lemma is established in [51, p.2332], we shall repeat the proof, since a
d-variate generalisation will be obtained in the sequel.

Suppose first that z = 2πic with c ∈ R and, without loss of generality, c > 0. Let m ∈ N
be minimal such that m

c ≥ 1. Extend f to [0, mc ] by setting f(x) = 0 for 1 < x ≤ m
c . Then

an =

∫ m
c

0
e2πicnxf(x) dx =

m∑
i=1

∫ i
c

i−1
c

e2πicnxf(x) dx.

The ith integral corresponds to the nth Fourier coefficient of the restriction of the function f
to [ i−1

c ,
i
c ]. Hence, by Parseval’s lemma,

∞∑
n=1

|an|2 ≤ c
m∑
i=1

∫ i
c

i−1
c

|f(x)|2 dx ≤ c‖f‖2,

as required. Suppose now that Re z < 0. Then |an| ≤
∫ 1

0 eRe znx|f(x)|dx, and we may assume
that f is non-negative. Extending f by zero to a function f ∈ L2(0,∞), it suffices to show
that the sequence {bn}, where bn =

∫∞
0 e−nxf(x) dx, is in l2(N) for any f ∈ L2(0,∞), and has

norm bounded by ‖f‖. Since f is positive, bn is a decreasing sequence. We deduce that

|bn|2 ≤
∫ n

n−1
|bt|2 dt.
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It therefore suffices to prove that
∫∞

0 |bt|
2 dt ≤ c‖f‖2. However, by Fubini’s theorem,∫ ∞

0
|bt|2 dt =

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−txe−tyf(x)f(y) dx dy dt

=

∫ ∞
0

∫ ∞
0

f(x)f(y)

x+ y
dx dy =

∫ ∞
0

f(x)g(x) dx,

where g(x) =
∫∞

0
f(y)
x+y dy. Thus, the result is true, provided g ∈ L2(0,∞) with ‖g‖ ≤ c‖f‖.

Note that

g(x) =

∫ ∞
0

f(xy)

1 + y
dy.

Hence

‖g‖2 =

∫ ∞
0

g(z)2 dz =

∫ ∞
0

∫ ∞
0

∫ ∞
0

f(xz)f(yz)

(1 + x)(1 + y)
dy dx dz

≤
∫ ∞

0

∫ ∞
0

1

(1 + x)(1 + y)

[∫ ∞
0
|f(xz)|2 dz

] 1
2
[∫ ∞

0
|f(yz)|2 dz

] 1
2

dx dy

= ‖f‖2
∫ ∞

0

∫ ∞
0

1
√
xy(1 + x)(1 + y)

dx dy ≤ c‖f‖2,

as required.

Lemma 3.16. Suppose that {bn} ∈ l2(N). Then, for any Re z ≤ 0, z 6= 0, the family of all
finite sums of terms of the form bneznx is uniformly bounded in L2(0, 1) with norm bounded

by c
(∑∞

n=1 |bn|2
) 1

2 for some c > 0 independent of {bn}.

Proof. Let I ⊆ N be finite. By the standard duality pairing,

‖g‖ = sup
f∈L2(Ω)
f 6=0

(g, f)

‖f‖
, ∀g ∈ L2(Ω), (3.25)

it follows that ∥∥∥∥∥∑
n∈I

bneznx

∥∥∥∥∥ = sup
f∈L2(0,1)
f 6=0

1

‖f‖
∑
n∈I

bn

∫ 1

0
eznxf(x) dx.

By Lemma 3.15,
∑

n∈I bn
∫ 1

0 eznxf(x) dx ≤ c
(∑∞

n=1 |bn|2
) 1

2 ‖f‖ as required.

With these lemmas in hand, we now return to the polyharmonic problem:

Corollary 3.17. Suppose that {ψn} is the set of polyharmonic eigenfunctions subject to
boundary conditions (3.10) or (3.11). Then, for f ∈ L2(−1, 1), the sequence {(f, ψn)} ∈ l2(N)
with norm bounded by c‖f‖.

Proof. We work on [0, 1]. Using the result of Section 3.3.2, it follows that

ψ(x) =

q∑
s=0

eαλs(x−1)cs +

2q−1∑
s=q+1

eαλsxcs +O
(
e−γqα

)
, (3.26)
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where ψ(x) is the eigenfunction corresponding to the eigenvalue µ = α2q and the cs are
independent of α. Hence, ψn(x) is a sum exponentials of the form eznx with Re z ≤ 0, z 6= 0.
The result now follows immediately from Lemma 3.15.

Corollary 3.18. Suppose that {ψn} and {χn} are a biorthogonal pair of polyharmonic eigen-
functions subject to boundary conditions (3.10) and (3.11) respectively. Then, the family of
all finite sums of terms (f, χn)ψn is uniformly bounded in L2(−1, 1) with norm bounded by
c‖f‖.

Proof. By Corollary 3.17, (f, χn) ∈ l2(N) with norm bounded by c‖f‖. The result now follows
upon writing ψ in the form (3.26) once more and applying Lemma 3.16.

Corollary 3.18 immediately provides a Bessel-type inequality for expansions in polyhar-
monic eigenfunctions. We have:

Corollary 3.19. Suppose that f ∈ Hr(−1, 1), r = 0, . . . , q, and that FN [f ] is the truncated
expansion of f in polyharmonic–Neumann eigenfunctions. Then ‖FN [f ]‖r ≤ c‖f‖r.

Proof. The function (FN [f ])(r) is a finite sum of terms of the form (f (r), χn)ψn. Hence, an
application of Corollary 3.18 gives the result.

Having established these key properties of polyharmonic expansions, we may now prove
the main result of this section and thereby answer the question raised previously:

Theorem 3.20. Suppose that f ∈ Hr(−1, 1), r = 0, . . . , q, and that FN [f ] is the truncated
expansion of f in polyharmonic–Neumann eigenfunctions. Then FN [f ] converges to f in the
Hr(−1, 1) norm.

Proof. Since we have already proved the result for r = 0, q, we assume that r = 1, . . . , q − 1.
In this case, given ε > 0, there exists g ∈ Hq(−1, 1) with ‖f −g‖r < ε [2]. In view of Corollary
3.19, ‖FN [f − g]‖r < cε. Hence

‖f −FN [f ]‖r ≤ ‖g −FN [g]‖r + ‖f − g‖r + ‖FN [f − g]‖r < ‖g −FN [g]‖q + (1 + c)ε.

Since g ∈ Hq(−1, 1), ‖g −FN [g]‖q < ε for sufficiently large N , completing the proof.

An immediate consequence of this theorem is uniform convergence of polyharmonic–
Neumann expansions:

Corollary 3.21. Suppose that f ∈ Hr(−1, 1), r = 1, . . . , q, and that FN [f ] is the truncated ex-
pansion of f in polyharmonic–Neumann eigenfunctions. Then (FN [f ])(s) converges uniformly
to f (s) for s = 0, . . . , r − 1.

Proof. This follows immediately from the Sobolev imbedding Hs(−1, 1) ↪→ Cs−1[−1, 1], s ∈ N,
and Theorem 3.20.

In particular, FN [f ] converges uniformly to f ∈ H1(−1, 1). However, provided f ∈
Hq(−1, 1), the first q−1 derivatives of FN [f ] converge uniformly to the corresponding deriva-
tives of f . This observation succinctly expresses the advantage of increasing q: namely,
convergence in higher-order norms. Note that Theorem 3.20 and Corollary 3.21 generalise
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Lemma 2.9 and Theorem 2.12 respectively to q ≥ 1 when d = 1. We provide an extension to
both q ≥ 1 and d ≥ 1 in Section 3.5.

We mention in passing that a direct consequence of Theorem 3.20 is L2(−1, 1) norm con-
vergence of the expansion of a function f ∈ L2(−1, 1) in any biorthogonal pair of polyharmonic
eigenfunctions subject to boundary conditions (3.10) or (3.11). This result, as mentioned, is
well known in a much wider context. The proof presented above cannot be extended to other
differential operators and boundary conditions, aside from simple cases, since it relies both
on the particular duality of polyharmonic eigenfunctions8 (Theorem 3.3) and known results
for the Dirichlet and Neumann cases.

The analysis of this section also gives criteria for both the best and worst boundary condi-
tions to prescribe to the polyharmonic operator in terms of the convergence of the truncated
expansion FN [f ], as opposed to the arguments described in Section 3.1.1 based on the decay of
the coefficients. It is easily established that the expansion based on polyharmonic eigenfunc-
tions subject to boundary conditions (3.10) converges maximally in the Hq−p(−1, 1) norm,
p = 0, . . . , q. Correspondingly, for boundary conditions (3.11), only L2(−1, 1) convergence
occurs. Hence, choosing p = 0 for the highest possible degree of convergence, we once more
arrive at Neumann boundary conditions. Conversely, Dirichlet boundary conditions (p = q)
give the worst degree of convergence.

Estimates for the rate of convergence in various norms will be established in Section 3.5 for
the general case d ≥ 1. Our final topic concerning univariate expansions addresses pointwise
convergence. As in the q = 1 case (see Section 2.9.1), both a higher order and faster rate of
convergence occurs at the interior points x ∈ (−1, 1).

3.4.2 Pointwise convergence

To establish the degree of pointwise convergence of FN [f ], and to provide estimates for the
rate of convergence, we must first expand the coefficient f̂n in inverse powers of n. Starting
from (3.8) with r = q and integrating by parts, we obtain, for each p = 0, . . . , q,

f̂n =
1

α2q
n

p−1∑
s=0

(−1)s
[
f (q+s)(1)φ(q−s−1)

n (1)− f (q+s)(−1)φ(q−s−1)
n (−1)

]
+

(−1)p

α2q
n

∫ 1

−1
f (q+p)(x)φ(q−p)

n (x) dx, (3.27)

provided f ∈ Hq+p(−1, 1). Note that, if f ∈ Hq+1(−1, 1), this verifies that f̂n = O
(
n−q−1

)
for polyharmonic–Neumann expansion coefficients, as previously stated.

As demonstrated, FN [f ] and its first q−1 derivatives converge uniformly to f ∈ Hq(−1, 1).
However, as the following result verifies, the qth derivative of this expansion also converges
pointwise away from the endpoints:

Lemma 3.22. Suppose that f ∈ Hq+1(−1, 1). Then (FN [f ])(q) converges uniformly to f (q)

in compact subsets of (−1, 1).

8As discussed in Section 2.11, such duality arguments are only applicable in a small number of cases, even
when q = 1.
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Figure 3.4: The Gibbs phenomenon for polyharmonic–Dirichlet expansions. Graph of f(x) = 1 and
F50[f ](x) for −1 ≤ x ≤ 1, where q = 2 (left), q = 3 (right) and FN [f ] is the expansion of f in
polyharmonic–Dirichlet eigenfunctions.

Proof. Suppose first that f ∈ C∞[−1, 1]. Then, from (3.27), we have

f̂nφ
(q)
n (x) =

1

α2q
n

[
f (q)(1)φ(q−1)

n (1)− f (q)(−1)φ(q−1)
n (−1)

]
φ(q)
n (x) +O

(
n−2

)
, x ∈ [−1, 1].

Now suppose that I ⊆ (−1, 1) is a compact set. As we prove in the sequel, the partial sums∑N
n=1

φ(q−1)(±1)

α2q
n

φ
(q)
n (x) form a Cauchy sequence uniformly for x ∈ I. Hence, the truncated

sums (FN [f ])(q) converge uniformly on I to a continuous function g. Arguments as in Lemma
2.23 now complete the proof.

Equivalently, this lemma states that the expansion of a function f ∈ H1(−1, 1) in polyhar-
monic eigenfunctions subject to the Dirichlet boundary conditions (3.3) converges pointwise
in (−1, 1). The lack of convergence at the endpoints is also easily confirmed. Hence, a Gibbs
phenomenon occurs for such expansions (likewise, a Gibbs phenomenon occurs in the qth

derivative of polyharmonic–Neumann expansions). This is demonstrated in Figure 3.4 for
q = 2, 3.9

Returning to Neumann expansions, we now address the rate of pointwise convergence. In
doing so, we derive a full asymptotic expansion for the error f(x) − FN [f ](x) at any point
x ∈ [−1, 1]. To facilitate this, however, we must first digress and give a full expansion of the
coefficient f̂n in inverse powers of n. This is based on (3.27). Setting p = q in this formula
and iterating the result gives

=
k−1∑
r=0

(−1)rq

α
2(r+1)q
n

q−1∑
s=0

(−1)s
[
f ((2r+1)q+s)(1)φ(q−s−1)

n (1)− f ((2r+1)q+s)(−1)φ(q−s−1)
n (−1)

]
+

(−1)kq

α
2(k+1)q
n

p−1∑
s=0

(−1)s
[
f ((2k+1)q+s)(1)φ(q−s−1)

n (1)− f ((2k+1)q+s)(−1)φ(q−s−1)
n (−1)

]
+

(−1)kq+p

α
2(k+1)q
n

∫ 1

−1
f ((2k+1)q+p)(x)φ(q−p)

n (x) dx, (3.28)

9As in the classical Fourier case [107], the existence of O (1) oscillations follows from setting x = 1−N−1.
It is well known that the magnitude of the overshoot of a truncated Fourier sum can be explicitly calculated
(unsurprisingly, in view of Section 2.3, Laplace–Dirichlet expansions have precisely the same overshoot).
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for f ∈ H(2k+1)q+p(−1, 1), where p = 0, . . . , q − 1 and k ∈ N0. Observe that this expansion
generalises the q = 1 result, equation (2.11), to general q ≥ 1. Moreover, as in the q = 1 case,
when iterated, (3.28) provides an asymptotic expansion for the coefficients f̂n of a function
f ∈ C∞[−1, 1]:

f̂n ∼
∞∑
r=0

q−1∑
s=0

(−1)rq+s

α
2(r+1)q
n

[
f ((2r+1)q+s)(1)φ(q−s−1)

n (1)− f ((2r+1)q+s)(−1)φ(q−s−1)
n (−1)

]
. (3.29)

Upon recalling that αn = O (n) and φ
(q−s−1)
n (±1) = O

(
nq−s−1

)
, (3.29) is confirmed as an

asymptotic expansion for f̂n in powers of n−1. Note that a power n−l is only included in f̂n
if l = (2r + 1)q + s+ 1 for some r ∈ N0 and s = 0, . . . , q − 1.

In the particular case q = 2, simple algebra confirms that (3.29) reduces to

f̂ [i]
n ∼

√
2
∞∑
r=0

{
γ

[i]
n

(α
[i]
n )4r+3

[
f (4r+2)(1) + (−1)if (4r+2)(−1)

]
− 1

(α
[i]
n )4r+4

[
f (4r+3)(1) + (−1)i+1f (4r+3)(−1)

]}
,

where i = 0 corresponds to the even eigenfunction φ2n−1, i = 1 the odd eigenfunction φ2n,

and γ
[0]
n = − tanα

[0]
n , γ

[1]
n = cotα

[1]
n . By means of example, consider the function f(x) = ex.

In this case

f̂ [0]
n = −2

√
2
α

[0]
n tanα

[0]
n cosh 1 + sinh 1

(α
[0]
n )4 − 1

=
√

2

{
γ

[0]
n

(α
[0]
n )3

2 cosh 1− 1

(α
[0]
n )4

2 sinh 1

}
+O

(
n−7

)
,

f̂ [1]
n = 2

√
2
α

[1]
n cotα

[1]
n sinh 1− cosh 1

(α
[1]
n )4 − 1

=
√

2

{
γ

[1]
n

(α
[1]
n )3

2 sinh 1− 1

(α
[1]
n )4

2 cosh 1

}
+O

(
n−7

)
,

thus verifying (3.28). Though not important to our present discussion, we notice that the

coefficients f̂
[0]
0 and f̂

[1]
0 of the eigenfunctions 1√

2
and

√
3√
2
x corresponding to the double zero

eigenvalue are given by
√

2 sinh 1 and
√

6e−1 respectively.
The expansions (3.28) and (3.29) give a first insight into a topic we shall consider in

greater detail in Section 3.6: the appropriate derivative conditions for polyharmonic–Neumann
expansions. To this end, we now introduce some additional notation. We define the set
Nm ⊆ N0 by

Nm = {l ∈ N0 : l = (2r + 1)q + s < m, r ∈ N0, s = 0, . . . , q − 1} , m ∈ N0, (3.30)

and, for p = 0, . . . , q − 1 and k ∈ N0 (p 6= 0 when k = 0),

ρk,p =

{
2kq p = 0
(2k + 1)q + p p = 1, . . . , q − 1.

(3.31)

Note that ρk,p − 1 is equal to the highest-order derivative appearing in (3.28) and that the
value f (l)(±1) appears in (3.28) if and only if l ∈ Nρk,p . Additionally, if f (l)(±1) = 0 for

l ∈ Nρk,p then f̂n = O
(
n−(2k+1)q−p−1

)
.
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With this to hand, we now return to the rate of pointwise convergence. Our intention is to
demonstrate that the convergence rate is O (N−q) at x = ±1 and O

(
N−q−1

)
for x ∈ (−1, 1),

thereby generalising the q = 1 result (Theorem 2.22). To do this, we first use Corollary 3.21
to write f(x)−FN [f ](x) =

∑
n>N f̂nφn(x). In view of (3.28), it follows that

f(x)−FN [f ](x)

=

k−1∑
r=0

q−1∑
s=0

(−1)rq+s
{
f ((2r+1)q+s)(1)Φ+(r, s,N, x)− f ((2r+1)q+s)(−1)Φ−(r, s,N, x)

}
+

p−1∑
s=0

(−1)kq+s
{
f ((2k+1)q+s)(1)Φ+(k, s,N, x)− f ((2k+1)q+s)(−1)Φ−(k, s,N, x)

}
+O

(
N−(2k+1)q−p

)
, (3.32)

where the function Φ±(r, s,N, x) is defined by

Φ±(r, s,N, x) =
∑
n>N

φ
(q−s−1)
n (±1)

α
2(r+1)q
n

φn(x).

In particular, if f ∈ C∞[−1, 1], then

f(x)−FN [f ](x) ∼
∞∑
r=0

q−1∑
s=0

{
(−1)rq+sf ((2r+1)q+s)(1)Φ+(r, s,N, x)

+(−1)rq+s+1f ((2r+1)q+s)(−1)Φ−(r, s,N, x)
}
. (3.33)

Though not immediately apparent, (3.33) is an asymptotic expansion of the error in in-
verse powers of N . To demonstrate this, we must scrutinise the behaviour of the functions
Φ±(r, s,N, x) for large N . Intuition arising from the q = 1 case suggests that Φ±(r, s,N, x) is
O
(
N−((2r+1)q+s+1)

)
for x ∈ (−1, 1) and O

(
N−((2r+1)q+s)

)
for x = ±1, thus confirming (3.33)

as an asymptotic expansion. The following two lemmas verify these estimates:

Lemma 3.23. Suppose that x ∈ (−1, 1). Then, the function Φ±(r, s,N, x) satisfies

Φ±(r, s,N, x) =Re
[
c±1 (−eiπx)AN+ q−1

4 Φ
(
−eiπx, (2r + 1)q + s+ 1, AN + q−1

4

)]
+ Re

[
c±2 (−eiπx)AN+ q−3

4 Φ
(
−eiπx, (2r + 1)q + s+ 1, AN + q−3

4

)]
+O

(
N−(2r+1)q−se−

1
2
γq(1−|x|)Nπ

)
,

where AN = b1
2Nc, Φ is the Lerch transcendental function (2.35) and c±1 , c

±
2 ∈ C are constants

independent of N and x. In particular,

Φ±(r, s,N, x) =Re

{
(−eiπx)AN+ q−3

4

1 + eiπx

[
c±1 (−eiπx)

1
2 + c±2

]}
N−(2r+1)q−s−1

+O
(
N−(2r+1)q−s−2

)
.
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Proof. Since αn = 1
4(2n+q−1)π+O(e−

1
2
nπγq) (Theorem 3.6) it follows that e2iαn = c(−1)n+

O(e−
1
2
nπγq) for some constant c independent of n. Moreover, by Lemma 3.12,

φ(q−s−1)
n (±1) = cαq−s−1

n e2iαn +O
(
αq−s−1
n e−γqαn

)
.

= c
(

1
2nπ + q−1

4 π
)q−s−1

(−1)n +O
(
nq−s−1e−

1
2
γqnπ

)
.

It follows from Theorem 3.9 that

φn(x) = Re
[
ei 1

4
(2n+q−1)πx+i 1

2
(n+q−1)π

]
+O

(
e−

1
2
γq(1−|x|)nπ

)
= Re

[
cinei 1

4
(2n+q−1)πx

]
+O

(
e−

1
2
γq(1−|x|)nπ

)
.

Combining these results, we obtain

Φ±(r, s,N, x) =Re

[
cei q−1

4
πx
∑
n>N

(
1
2n+ q−1

4

)−(2r+1)q−s−1
(−i)nein

2
πx

]
+O

(
N−(2r+1)q−s−1e

1
2
γq(1−|x|)Nπ

)
.

Now, for any a ∈ R and b > 1, we have∑
n>N

(
1
2n+ a

)−b
(−i)nein

2
πx =

∑
n>AN

(n+ a)−b (−eiπx)n

+ ie−
1
2

iπx
∑
n>AN

(
n+ a− 1

2

)−b
(−eiπx)n.

Rewriting n as n+AN and using the definition of the Lerch function now gives the first result.
For the second we merely use the estimate (2.36).

In an identical manner, we may also derive an estimate for x = ±1:

Lemma 3.24. Suppose that x = ±1. Then

Φ±(r, s,N, x) = c±ζ
(
(2r + 1)q + s+ 1, N + 1

2(q + 1)
)

+O
(

e−
1
2
γqNπ

)
,

where ζ(·, ·) is the Hurwitz zeta function [1]. In particular, Φ±(r, s,N, x) = O
(
N−(2r+1)q−s)

for x = ±1.

With these two lemmas at hand, analysis of the pointwise convergence rate follows straight-
away from (3.32):

Theorem 3.25. Suppose that p = 0, . . . , q − 1, k ∈ N0 and that f ∈ H(2k+1)q+p+2(−1, 1)
satisfies f (l)(±1) = 0 whenever l ∈ Nρk,p. Then f(±1) − FN [f ](±1) = O

(
N−(2k+1)q−p) and

f(x)−FN [f ](x) = O
(
N−(2k+1)q−p−1

)
uniformly in compact subsets of (−1, 1).

In particular, for general functions f (i.e. k = p = 0), this theorem provides the stated
O
(
N−q−1

)
pointwise convergence rate estimate away from x = ±1. Additionally, it verifies

that the convergence rate is one power of N faster inside the interval than at the endpoints.
This effect is exhibited in Figure 3.5 for q = 2, 3 (compare with Figure 2.3 for q = 1).
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Figure 3.5: Graphs of |f(x)−F50[f ](x)| for −1 ≤ x ≤ 1 (left), − 3
4 ≤ x ≤

3
4 (middle) and − 1

2 ≤ x ≤
1
2

(right), where f(x) = Ai(−3x − 4) and Ai is the Airy function [1], with q = 2 (top row) and q = 3
(bottom row).

3.5 Many dimensions

The aim of this section is the generalisation of univariate polyharmonic–Neumann expansions
to the d-variate cube Ω = (−1, 1)d, along the same lines as Chapter 2. Immediately, we
are confronted by a problem. The obvious extension, via eigenfunctions of the multivariate
polyharmonic operator (−1)q4q, is completely unsuitable. Such eigenfunctions cannot be
expressed in terms of simple functions, and thus have limited practical use.

Ideally, we seek separable eigenfunctions, with underlying properties inherited from the
univariate case. An obvious approach is merely to form all Cartesian products of the univariate
polyharmonic eigenfunctions. Evidently, such functions are no longer eigenfunctions of the
polyharmonic operator itself, meaning that standard spectral theory does not immediately
apply. Nonetheless, progress can be made. As we shall prove, these functions turn out to be
precisely the eigenfunctions of the subpolyharmonic10 operator

L0 = (−1)q
q∑
j=1

∂2q
xj , (3.34)

subject to the homogeneous Neumann boundary conditions

∂q+rxj φ
∣∣
∂Γj

= 0, j = 1, . . . , d, r = 0, . . . , q − 1. (3.35)

Our intuition suggests that L0 ought to be spectrally equivalent to the polyharmonic operator,
and, as we will prove, this turns out to be the case. Hence, the eigenfunctions and eigenvalues

10This nomenclature stems from the fact that the subpolyharmonic operator contains fewer derivatives
than the multivariate polyharmonic operator (−1)q4q. Consequently, if T0 and T are the associated weak
forms, then T0(f, f) ≤ T (f, f) for all f ∈ Hq(Ω). The prefix ‘sub’ should not be confused with the notion of
subharmonic functions.
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of L0 subject to boundary conditions (3.35) inherit the spectral properties of the polyharmonic
operator, including, for example, L2(Ω) density. Therefore, the remainder of this chapter is
devoted to the construction and analysis of expansions in the eigenfunctions of L0 equipped
with Neumann boundary conditions. The results we prove extend the work of Chapter 2 and
Section 3.4 to the q ≥ 1 and d ≥ 1 setting.

To commence, we must first confirm that the eigenfunctions of L0 arise precisely from
Cartesian products:

Lemma 3.26. The eigenfunctions of (3.34) subject to boundary conditions (3.35) are precisely
the Cartesian products of the eigenfunctions of the univariate polyharmonic operator (3.2).

Proof. The d-variate eigenfunctions of (3.34) subject to boundary conditions (3.35) form an
orthonormal basis of L2(Ω) (see Theorem 3.29). We now proceed exactly as in the q = 1 case
(Lemma 2.2).

As in previous studies, duality is central to the convergence analysis of subpolyharmonic–
Neumann expansions. To properly address this notion, we first require a new family of Sobolev
norms. Such norms generalise the univariate norms ||| · |||q introduced in Section 3.4.

3.5.1 Modulo q norms

In the univariate setting, our analysis exploited the duality between the Neumann and Dirich-
let eigenfunctions under the action of the qth derivative operator (Lemma 3.1). In light of
this, we introduced a new norm ||| · |||q involving only the function and its qth derivative. In
the same spirit, we now introduce a family of multivariate norms involving only the function
and its qth order partial derivatives. We refer to such norms as modulo q norms.

Lemma 3.27. The bilinear form

(f, g)q = (f, g) +

d∑
j=1

(
∂qxjf, ∂

q
xjg
)
, f, g ∈ Hq(Ω),

is an inner product on Hq(Ω). The associated norm, given by |||f |||2q = ‖f‖2 +
∑d

j=1 ‖∂
q
xjf‖2,

is equivalent to ‖·‖q.

Proof. Trivially |||f |||q ≤ ‖f‖q. To demonstrate the other inequality, we need to show that

‖Dβf‖ ≤ c|||f |||q for |β| ≤ q. In view of the additive interpolation inequality [2],

‖∂rxjg‖ ≤ c
(
‖g‖+ ‖∂qxjg‖

)
, ∀g ∈ Hq(Ω), r = 0, . . . , q, (3.36)

it suffices to consider |β| = q. We now prove this result by induction on q. For q = 1, there
is nothing to prove, hence we assume that ‖Dβf‖ ≤ c|||f |||q−1 for all |β| ≤ q − 1. If |β| = q we
may write β = γ + δ with |γ| = q − 1 and |δ| = 1. Without loss of generality δ = (1, 0, ..., 0).
Therefore, by the result for q − 1

‖Dβf‖2 ≤ c|||Dδf |||q−1 ≤ c

‖∂x1f‖2 +

d∑
j=1

‖∂q−1
xj ∂x1f‖2

 ≤ c
‖f‖2 +

d∑
j=1

‖∂q−1
xj ∂x1f‖2

 .
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Here the second inequality follows from (3.36) with r = 1, j = 1 and g = f . Now, it can be
shown that (see [24, p.171])

‖∂q−1
xj ∂x1f‖ ≤ c

 d∑
j=1

‖∂qxjf‖+ ‖f‖

 , ∀f ∈ Hq(Ω), j = 1, ..., d, (3.37)

with constant c > 0 independent of f . Hence ‖Dβf‖ ≤ c|||f |||q as required.

The inequality (3.37) is a simple consequence of a rather extensive body of literature aimed
at determining equivalences of function spaces defined in terms of boundedness conditions on
various partial derivatives. Simply put, given a collection of partial derivatives of an arbitrary
function, which other partial derivatives can be bounded by a linear combination of norms of
derivatives from the collection? We shall not dwell on this topic, and refer the reader to [24]
for a thorough exposition.

Since the mixed Sobolev spaces Hq
mix(Ω) are important in the study of uniform convergence

of modified Fourier expansions, we also require so-called mixed modulo q norms. We have

Lemma 3.28. The bilinear form

(f, g)q,mix =
∑
|β|∞≤1

(
Dβqf,Dβqg

)
, f, g ∈ Hq

mix(Ω),

is an inner product on Hq
mix(Ω). Moreover, the associated norm ||| · |||q,mix

, given by |||f |||2q,mix
=∑

|β|∞≤1 ‖Dβqf‖2, is equivalent to ‖·‖q,mix
.

Proof. Once more |||f |||q,mix
≤ ‖f‖q,mix. To prove the other inequality, it suffices to show that

‖Dγf‖ ≤ c|||f |||q,mix
, where |γ|∞ ≤ q and γ 6= βq for any |β|∞ ≤ 1. For such a γ we write

γ = βq + δ, where δj = γj and βj = 0 if 0 ≤ γj ≤ q − 1 and δj = 0 and βj = 1 otherwise.
Since Dγf = DδDβqf , we first consider ‖Dδg‖ for some function g ∈ Hq

mix(Ω). It follows from
repeated application of the interpolation inequality (3.36), where necessary, that

‖Dδg‖2 ≤ c
∑
|θ|∞≤1

θj=0 ⇔ δj=0

‖Dθqg‖2.

Hence we obtain
‖Dγf‖2 ≤ c

∑
|θ|∞≤1

θj=0 ⇔ δj=0

‖D(β+θ)qf‖2 ≤ c|||f |||2q,mix
,

since |β + θ|∞ ≤ 1.

3.5.2 Density and convergence

In this section, we establish results pertaining to the convergence of subpolyharmonic eigen-
function expansions. Our first task is to establish L2(Ω) density of such eigenfunctions:

Theorem 3.29. The set of subpolyharmonic–Neumann eigenfunctions forms an orthonormal
basis of L2(Ω).
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Proof. In view of Lemma 3.27, the bilinear form (·, ·)q : Hq(Ω)×Hq(Ω)→ R is continuous and
coercive. Orthogonality and densitynow follow from standard arguments ([56, p.335]). The
inverse operator L−1

0 : L2(Ω) → L2(Ω) is bounded, linear, symmetric and compact; hence, it
has a countable orthonormal basis of eigenfunctions.

Given finite index sets IN ⊆ Nd0, N ∈ N, satisfying (2.8), we define the truncated expansion
FN [f ] of a function f ∈ L2(Ω) in the standard manner. Convergence of FN [f ] to f in L2(Ω)
follows immediately from Theorem 3.29.

For ease of notation, we henceforth relabel the univariate polyharmonic eigenfunctions
so that φn = φ0,n when n = 0, . . . , q − 1 and φn+q = φn otherwise. Since the multivariate
eigenfunctions are formed from Cartesian products, we write φn(x) = φn1(x1) . . . φnd(xd),
n ∈ Nd0, for a multivariate eigenfunction using this labelling. If the corresponding multivariate
coefficient is written as f̂n, then we readily obtain:

‖f‖2 =
∑
n∈Nd0

|f̂n|2, ∀f ∈ L2(Ω).

Not only can we characterise the L2(Ω) norm: by using multivariate duality arguments, we
may also characterise the modulo q-norms introduced in the previous section:

Theorem 3.30. The subpolyharmonic–Neumann eigenfunctions form an orthogonal basis of
the spaces Hq(Ω) and Hq

mix(Ω) with respect to the inner products (·, ·)q and (·, ·)q,mix. Further-
more

|||f |||2q =
∑
n∈Nd0

(1 + µn)|f̂n|2, ∀f ∈ Hq(Ω), (3.38)

|||f |||2q,mix
=
∑
n∈Nd0

 d∏
j=1

(
1 + µnj

) |f̂n|2, ∀f ∈ Hq
mix(Ω), (3.39)

respectively.

Proof. Using similar arguments to the q = 1, d ≥ 1 (Lemmas 2.9 and 2.10) and the q ≥ 1, d = 1
(Lemma 3.1) cases, it is easily confirmed that DqβFN [f ], |β|∞ ≤ 1, is precisely the truncated
expansion of Dqβf in subpolyharmonic eigenfunctions that obey Dirichlet boundary conditions
in the variables xj when βj = 1 and Neumann boundary conditions otherwise. Convergence of
DβqFN [f ] to Dβqf in the L2(Ω) norm now follows immediately from density and orthogonality
of such eigenfunctions.

As in the univariate setting (Section 3.4.1), the question of convergence of FN [f ] to f
in the intermediate cases Hr(Ω), Hr

mix(Ω), r = 1, . . . , q − 1, naturally arises. We devote the
remainder of this section to this topic. To answer this question, we pursue a similar approach
to the d = 1 case, our first task being the generalisation of Lemma 3.15 to the d-variate cube:

Lemma 3.31. Suppose that n ∈ Nd, f ∈ L2(0, 1)d and that an =
∫

Ω

∏d
j=1 ezjnjxjf(x) dx,

where zj 6= 0 and Re zj ≤ 0, j = 1, . . . , d. Then {an} ∈ l2(Nd) and
∑

n∈Nd |an|2 ≤ c‖f‖2.
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Proof. We first assume that zj = 2πicj , j = 1, . . . , d. Let mj ∈ N be minimal such that
mj/cj ≥ 1. Extending f by zero to [0, m1

c1
]× . . .× [0, mdcd ], we have

an =

m1∑
i1=1

. . .

md∑
id=1

∫ i1
c1

i1−1
c1

. . .

∫ id
cd

id−1

cd

d∏
j=1

e2πicjnjxjf(x) dx.

Each integral is the Fourier coefficient of the restriction of f to the corresponding hypercube.
Hence, using Parseval’s lemma, we immediately obtain the result.

Next we consider the case Re zj < 0, j = 1, . . . , d. As in the univariate setting, it suffices
to show that

∑
n∈Nd |bn|2 ≤ c‖f‖2 for all non-negative functions f ∈ L2(Rd+), where

bn =

∫
Rd+

e−n.xf(x) dx.

Since |bn| ≤ |bm| when mj ≤ nj , j = 1, . . . , d, the result holds, provided
∫
Rd+
|bt|2 dt ≤ c‖f‖2.

Now ∫
Rd+
|bt|2 dt =

∫
Rd+

∫
Rd+

∫
Rd+
f(x)f(y)e−t.(x+y) dtdx dy

=

∫
Rd+

∫
Rd+
f(x)f(y)

d∏
j=1

(xj + yj)
−1 dx dy.

Hence, as in the univariate case, it suffices to prove that g ∈ L2(Rd+) with ‖g‖ ≤ c‖f‖, where

g(x) =

∫
Rd+
f(x1y1, . . . , xdyd)

d∏
j=1

(1 + yj)
−1 dy.

We have

‖g‖2 =

∫
Rd+

∫
Rd+

∫
Rd+
f(x1w1, . . . , xdwd)f(y1w1, . . . , ydwd)

d∏
j=1

(1 + xj)
−1(1 + yj)

−1 dw dx dy

≤ ‖f‖2
∫
Rd+

∫
Rd+

d∏
j=1

(1 + xj)
−1(1 + yj)

−1x
− 1

2
j y

− 1
2

j dx dy ≤ c‖f‖2,

as required.
Now suppose that Re zj = 0 for j = 1, . . . , l and Re zj < 0 otherwise. We set zj = 2πicj ,

j = 1, . . . , l and define mj as before. Extending f by zero to [0, m1
c1

] × . . . × [0, mlcl ] × [0, 1] ×
. . .× [0, 1] gives

an =

m1∑
i1=1

. . .

ml∑
il=1

∫ i1
c1

i1−1
c1

. . .

∫ il
cl

il−1

cl

l∏
j=1

e2πicjnjxjgnl+1,...,nd(x1, . . . , xl) dx1 . . . dxl,

where

gnl+1,...,nd(x1, . . . , xl) =

∫ 1

0
. . .

∫ 1

0

d∏
j=l+1

ezjnjxjf(x) dxl+1 . . . dxd.
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Hence, using the first result proved, we have

∑
n∈Nd

|an|2 ≤ c
∞∑

nl+1=1

. . .

∞∑
nd=1

‖gnl+1,...,nd‖
2

= c

∫ 1

0
. . .

∫ 1

0

∞∑
nl+1=1

. . .
∞∑

nd=1

|gnl+1,...,nd(x1, . . . , xl)|2 dx1 . . . dxl.

From the second result, it follows that

∞∑
nl+1=1

. . .
∞∑

nd=1

|gnl+1,...,nd(x1, . . . , xl)|2 ≤ c
∫ 1

0
. . .

∫ 1

0
|f(x)|2 dxl+1 . . . dxd.

Combining these observations now completes the proof.

With this result to hand, generalisations of Lemma 3.16 and Corollaries 3.17, 3.18 and
3.19 now follow immediately. Since the proofs are identical, they are omitted.

Lemma 3.32. Suppose that {bn} ∈ l2(Nd). Then, for any Re zj ≤ 0, zj 6= 0, j = 1, . . . , d, the

family of finite sums of functions bn
∏d
j=1 ezjnjxj , n ∈ Nd, is uniformly bounded in L2(0, 1)

with norm bounded by c
(∑

n∈Nd |bn|2
) 1

2 for some c > 0 independent of {bn}.

Corollary 3.33. Suppose that {ψn} is the set of Cartesian products of the univariate polyhar-
monic eigenfunctions subject to boundary conditions (3.10) or (3.11) (with p not necessarily
the same for each variable). Then, for f ∈ L2(Ω), the sequence {(f, ψn)} ∈ l2(Nd) with norm
bounded by c‖f‖.

Corollary 3.34. Suppose that {ψn} and {χn} are sets of Cartesian products of biorthogonal
pairs of univariate polyharmonic eigenfunctions subject to boundary conditions (3.10) and
(3.11), respectively. Then the family of all finite sums of terms (f, χn)ψn is uniformly bounded
in L2(Ω) with norm bounded by c‖f‖.

Corollary 3.35. Suppose that f ∈ Hr(Ω) or f ∈ Hr
mix(Ω), r = 0, . . . , q, and that FN [f ] is

the truncated expansion of f in subpolyharmonic–Neumann eigenfunctions. Then ‖FN [f ]‖r ≤
c‖f‖r and ‖FN [f ]‖r,mix ≤ c‖f‖r,mix respectively.

With these results to hand, we immediately deduce the key result of this section—the
extension of Theorem 3.20 and Corollary 3.21. This is proved in an identical manner:

Theorem 3.36. Suppose that f ∈ Hr(Ω), r = 0, . . . , q. Then FN [f ] converges to f in the
Hr(Ω) norm. Moreover, if f ∈ Hr

mix(Ω), then FN [f ] converges to f in the Hr
mix(Ω) norm and

DβFN [f ] converges uniformly to Dβf for |β|∞ ≤ r − 1.

In particular, FN [f ] converges uniformly to f ∈ H1
mix(Ω), as in the q = 1 case. Theorem

3.36 therefore extends the modified Fourier result (Theorem 2.12) to arbitrary q ≥ 1. This
result completes our study of convergence of multivariate expansions. Next, we scrutinise
the rate of convergence in various norms. In doing so, we highlight the central advantage
of (sub)polyharmonic expansions over modified Fourier expansions: specifically, their faster
convergence rate.
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3.5.3 Rate of convergence

As in the modified Fourier case, we pursue two approaches: estimates based on the norm
characterisations (3.38) and (3.39), and estimates which use the coefficient bound |f̂n| ≤
c‖f‖q+1,mix(n̄1 . . . n̄d)

−q−1.11 For both techniques, we will make use of the following multi-
plicative interpolation inequality for Sobolev norms (see, for example [2]):

‖f‖r ≤ cr,s‖f‖1−
r
s ‖f‖

r
s
s , ∀f ∈ Hs(Ω). (3.40)

Lemma 3.37. Suppose that f ∈ Hr(Ω) or f ∈ Hr
mix(Ω) for r = 0, . . . , q. Then

‖f −FN [f ]‖r ≤ cmax
n/∈IN

{µn}
r−s
2q ‖f‖s, s = r, . . . , q,

and

‖f −FN [f ]‖r ≤ cmax
n/∈IN

{
d∏
j=1

(
1 + µnj

)} r−s
2q

‖f‖s,mix, s = r, . . . , q,

respectively.

Proof. We first prove this result for r = 0. By (3.38), we have ‖f − FN [f ]‖2 =
∑

n/∈IN |f̂n|
2.

Observe that
d∑
j=1

α2s
nj |f̂n|

2 =

d∑
j=1

(
∂sxjf,Ψj,n

)2
,

where Ψj,n(x) = φn1(x1) . . . φnj−1(xj−1)ψnj (xj)φnj+1(xj+1) . . . φnd(xd), ψnj is the univariate
polyharmonic eigenfunction equipped with boundary conditions (3.11), and p = q − s. It
follows from Corollary 3.33 that

∑
n/∈IN

d∑
j=1

(
∂sxjf,Ψj,n

)2
≤ c

d∑
j=1

‖∂sxjf‖
2 ≤ c‖f‖2s.

We next note that
∑d

j=1 α
2s
nj ≥ c(µn)

s
q . Using this and the previous assertion, we deduce that

‖f −FN [f ]‖2s ≤ cmax
n/∈IN
{µn}−

s
q

∑
n/∈IN

d∑
j=1

α2s
nj |f̂n|

2 ≤ cmax
n/∈IN
{µn}−

s
q ‖f‖2s,

which gives the result for r = 0. Now, suppose that r = 1, . . . , s. By (3.40) and the result for
r = 0, we have

‖f −FN [f ]‖r ≤ c‖f −FN [f ]‖1−
r
s ‖f −FN [f ]‖

r
s
s ≤ cmax

n/∈IN
{µn}

r−s
q ‖f‖1−

r
s

s ‖f −FN [f ]‖
r
s
s .

By Corollary 3.35, ‖f − FN [f ]‖s ≤ ‖f‖s + ‖FN [f ]‖s ≤ c‖f‖s, which completes the proof for
the classical Sobolev regularity case. The case of mixed smoothness is verified in an identical
manner.

11As in Section 2.7, an expansion of the multivariate subpolyharmonic coefficients can be found with few
conceptual difficulties. An immediate consequence of such expansion is this bound.



88 3. Expansions in polyharmonic eigenfunctions

20 40 60 80 100

0.5

1.0

1.5

2.0

2.5

3.0

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

1.2

20 40 60 80 100

1

2

3

4

5

6

Figure 3.6: Error in approximating f(x) = e2x by FN [f ](x) for q = 1 (squares), q = 2 (circles)
and q = 3 (crosses). Left: scaled error Nq‖f − FN [f ]‖∞ for N = 1, . . . , 100. Middle: scaled error

Nq+ 1
2 ‖f −FN [f ]‖. Right: scaled error Nq− 1

2 ‖f −FN [f ]‖1.

The estimates of this lemma, based on summation techniques, are independent of the
index set. Of course, to obtain bounds involving N , we need to specify IN . If we employ
either the full (2.33) or hyperbolic cross (2.41) index sets (or indeed, the optimized hyperbolic
cross (2.51)), then such bounds follow exactly as in the q = 1 case (see Sections 2.9 and 2.10).
Once more, we obtain a now familiar result: given sufficient mixed regularity, the hyperbolic
cross approximation converges at a rate comparable to its full counterpart.

Next, we obtain estimates based on coefficient bounds. In view of the advantage conveyed
by the hyperbolic cross, we shall not consider the full index set further. Moreover, for the sake
of simplicity, we will only consider the L2(−1, 1) norm hyperbolic cross (2.41), as opposed to
the optimized hyperbolic cross (2.51).

Theorem 3.38. Suppose that f ∈ Hq+1
mix (Ω) and that IN is the hyperbolic cross (2.41). Then

‖f −FN [f ]‖ ≤ c‖f‖q+1,mixN
−q− 1

2 (logN)
d−1

2 ,

‖f −FN [f ]‖r ≤ c‖f‖q+1,mixN
r−q− 1

2 , r = 1, . . . , q,

and ‖Dβ(f −FN [f ])‖∞ ≤ c‖f‖q+1,mixN
|β|∞−q(logN)d−1 for |β|∞ ≤ q − 1.

Proof. This follows immediately from the bound |f̂n| ≤ c‖f‖q+1,mix(n̄1 . . . n̄d)
−q−1, Lemma

2.30, the norm characterisation (3.38), and the interpolation inequality (3.40).

In Figure 3.6, we verify the results of Theorem 3.38 for the uniform, L2(Ω) and H1(Ω)
norms, and q = 1, 2, 3. We remark in passing that estimates for the pointwise convergence
rate away from the boundary ∂Ω can also be established along identical lines as Section 2.10.3.
The resulting convergence rate is O

(
N−q−1(logN)d−1

)
, provided f ∈ Hq+2

mix (Ω).
As we address in the next section, such rates of convergence increase, provided the function

f satisfies certain derivative conditions.

3.6 Derivative conditions

As in the q = 1 case, derivative conditions completely determine both the degree and rate
of convergence of expansions in (sub)polyharmonic eigenfunctions. An indication of such
derivative conditions was given in Section 3.4.2: the pointwise convergence rate was found to
increase, provided

f (l)(±1) = 0, ∀l ∈ Nρk,p , (3.41)
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where ρk,p and Nρk,p are given by (3.31) and (3.30) respectively. For this reason, we say that a
function f ∈ H1+ρk,p(−1, 1) obeys the first ρk,p derivative conditions, k, p ∈ N0, provided (3.41)
holds.12 A multivariate analogue is easily established. For f ∈ H1+ρk,p(Ω), the appropriate
derivative conditions are given by

∂lxjf
∣∣
Γj

= 0, j = 1, . . . , d, ∀l ∈ Nρk,p . (3.42)

To determine the effect of such derivative conditions on the convergence of FN [f ] to f , we
first need to extend the modulo q norms of Section 3.5.1 to include higher-order derivatives
Dβ, where each component of β is an arbitrary multiple of q. We have

Lemma 3.39. Suppose that k ∈ N. Then the bilinear forms

(f, g)k,q =
∑
|β|≤k

(
Dβqf,Dβqg

)
, f, g ∈ Hkq(Ω),

(f, g)k,q,mix =
∑
|β|∞≤k

(
Dβqf,Dβqg

)
, f, g ∈ Hkq

mix(Ω),

are inner products on the spaces Hkq(Ω) and Hkq
mix(Ω) respectively. The associated norms |||·|||k,q

and ||| · |||k,q,mix
equivalent to ‖·‖kq and ‖·‖kq,mix

respectively.

Proof. The case k = 1 has been established in Lemma 3.27 (note that ||| · |||1,q is just ||| · |||q).
Assume now that the result holds for k − 1. In view of (3.36), it suffices to prove that
‖Dβf‖ ≤ c‖f‖k,q for all |β| = kq. For such β, we write β = γ + δ, where |γ| = (k − 1)q and
|δ| = q. Then, using the induction hypothesis, we have ‖Dβf‖ ≤ c|||Dδ|||k−1,q. By the result
for k = 1, we obtain

|||Dδ|||2k−1,q =
∑
|β|≤k−1

‖DδDβqf‖2 ≤ c
∑
|β|≤k−1

d∑
j=1

(
‖∂qxjD

βqf‖2 + ‖Dβqf‖2
)
≤ c|||f |||2k,q,

as required. The result for the mixed norms is verified in an identical manner to the proof of
Lemma 3.28.

Our first convergence result generalises Theorem 3.30:

Theorem 3.40. Suppose that k ∈ N, l = 0, 1, and that f ∈ H(2k+l)q(Ω) or H
(2k+l)q
mix (Ω)

obeys the first ρk,0 derivative conditions. Then FN [f ] converges to f in the H(2k+l)q(Ω) and

H
(2k+l)q
mix (Ω) norms respectively. Moreover, for r = 0, . . . , 2k + l, we have

|||f |||2r,q =
∑
n∈Nd0

∑
|β|≤q

d∏
j=1

(µnj )
βj

 |f̂n|2,
|||f |||2r,q,mix

=
∑
n∈Nd0

 ∑
|β|∞≤q

d∏
j=1

(µnj )
βj

 |f̂n|2,
respectively.

12There is a slight contradiction in terminology here with the definition (2.12) given in Chapter 2: namely,
when q = 1, ρk,p = 2k as opposed to k. However, it is convenient to define ρk,p in this manner, so we shall
proceed with this definition.



90 3. Expansions in polyharmonic eigenfunctions

Proof. This follows immediately from now standard techniques. Repeated integration by parts
and substitution of the boundary conditions give that DβqFN [f ] is the truncated expansion
of Dβqf in subpolyharmonic eigenfunctions that obey either Dirichlet or Neumann boundary
conditions in each variable xj .

As in Section 3.5.2, the result for the modulo q norms forms the basis of the argument
in the general case. To obtain such a result, we first require a suitable extension of Bessel’s
inequality (Corollary 3.35) to arbitrary index r ∈ N0 (as opposed to just r = 0, . . . , q):

Corollary 3.41. Suppose that f obeys the first ρk,p derivative conditions and f ∈ Hρk,p(Ω),
p 6= 0, or f ∈ H2kq+l(Ω), p = 0, where l = 0, . . . , q. Then ‖FN [f ]‖r ≤ c‖f‖r for r = 0, . . . , ρk,p
or r = 0, . . . , 2kq + l respectively. The same result holds for the mixed spaces.

Proof. For such a function f , the derivative DβFN [f ], where |β| ≤ ρk,p or |β| ≤ 2kq +
l respectively, is the truncated expansion of Dβf in Cartesian products of polyharmonic
eigenfunctions subject to boundary conditions (3.10) or (3.11) in each variable. The result
now follows immediately from Corollary 3.34.

We are now in a position to derive a full convergence result for polyharmonic functions
obeying the derivative conditions (3.42). This result generalises Theorem 3.36, and its proof
is identical:

Theorem 3.42. Suppose that f is as in Corollary 3.41. Then FN [f ] converges to f in the
Hr(Ω) (respectively Hr

mix(Ω)) norm for r = 0, . . . , ρk,p or r = 0, . . . , 2kq + l.

Analogously, convergence in the uniform norm can also be established along identical lines
to Theorem 3.36. We shall not give a full discussion as regards the rate of convergence, aside
from mentioning that all convergence rates (given sufficient regularity) increase by factors of
N2kq+p over the general case, provided the function satisfies the first ρk,p derivative conditions.
For both the pointwise and uniform convergence rates, this fact was established in Theorem
3.25. Other cases can be proved along the same lines as Lemma 3.5.3 and Theorem 3.38.

This completes our study of convergence of (sub)polyharmonic–Neumann expansions. To
finish this chapter, we next briefly detail the computation of polyharmonic–Neumann coef-
ficients, using similar methods to those described in Section 2.12 for the modified Fourier
case.

3.7 Quadrature

As discussed, a central reason why Birkhoff expansions have not been more extensively used is
the lack of availability of robust means to compute the coefficients f̂n. In particular, unlike the
modified Fourier case, the FFT cannot be used to compute polyharmonic–Neumann expansion
coefficients. Nonetheless, the quadratures exhibited in Section 2.12 for the q = 1 case offer
a compelling means to such perform such computations. This topic was pursued in greater
detail in [8]. In this section, we describe a number of conspicuous aspects of that study. In
particular, we demonstrate how the quadratures of Section 2.12 are successfully generalised.
For the sake of simplicity, we focus on the univariate setting throughout.

As ever, our starting point is the asymptotic expansion (3.28). Immediately, it is apparent
that only certain derivatives appear in this expansion: namely, those values l ∈ Nρk,p , where
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Nρk,p is given by (3.30). Any Filon-type quadrature scheme ought to reflect this fact. Hence,
to this end, we let −1 = c1 < c2 < . . . cν = 1 be given quadrature nodes and m1, . . . ,mν be
their multiplicities. Moreover, we assume that each mj = ρkj ,pj for some suitable kj and pj
and that m1 = mν = ρk,p.

If p is a polynomial such that

p(l)(cs) = f (l)(cs), ∀l ∈ Nms , s = 1, . . . , ν,

we define the Filon-type quadrature by

Qm,n[f ] =

∫ 1

−1
p(x)φn(x) ≈ f̂n,

where m = (m1, . . . ,mν) is the vector of multiplicities. Upon comparison with (3.28), we note
that the asymptotic order of this scheme is (2k+ 1)q + p+ 1, and, since f̂n = O

(
n−q−1

)
, the

relative asymptotic order is 2kq + p.
As in Section 2.12, Filon-type methods for polyharmonic coefficients can be more easily

designed as a combination of a truncated asymptotic expansion and a scaled approximation
of certain derivatives [8]. However, for the sake of brevity, we shall not dwell on this issue.

Instead, we now briefly mention the design of appropriate exotic quadratures for the lower
order coefficients. As in the q = 1 setting, the goal is to reuse derivative information in a
classical quadrature scheme. In this spirit, we define

Qm[g] =
ν∑
r=1

∑
l∈Nmr

br,lg
(l)(cr) ≈

∫ 1

−1
g(x) dx, (3.43)

where the coefficients br,l are chosen to maximise order. Explicit numerical examples of both
exotic and Filon-type quadratures for polyharmonic–Neumann coefficients are given in [8].

We mention in passing that (3.43) is a special case of Birkhoff quadrature [29]. Nonethe-
less, little theory currently exists pertaining to the maximal attainable order and the optimal
location of quadrature nodes. As in the q = 1 case, a whole raft of questions remain re-
garding the design and implementation of both Filon and exotic quadratures for calculating
polyharmonic–Neumann expansion coefficients.

This concludes our assessment of polyharmonic eigenfunction expansions. In the follow-
ing two chapters we return primarily to the modified Fourier case. First, we consider the
application of such expansions to the numerical solution of boundary value problems.





Chapter 4

Boundary value problems

4.1 Introduction

Orthogonal bases commonly find application in the numerical solution of partial differential
equations. In this chapter, we describe in detail the application of Laplace eigenfunction
expansions to the boundary value problem

L[u](x) = f(x), x ∈ Ω, B[u] = 0, (4.1)

where L is a linear, even-order differential operator, B[u] = 0 are prescribed (nonperiodic)
boundary conditions and Ω = (−1, 1)d is the d-variate cube. In particular, the primary
concern of this chapter is the linear, second-order advection-diffusion problem, where L =
−4+a ·∇+bI and I is the identity operator (higher-order problems are addressed in Section
4.4.5).

Our approach to discretise (4.1) is a spectral–Galerkin technique: the solution u is ex-
panded in a rapidly convergent series of basis functions, whose coefficients ensure that the
residual L[u] − f is orthogonal to this basis. Standard spectral methods for (4.1) employ
orthogonal polynomials (of typically Chebyshev or Legendre type) or, in the special case of
periodic boundary conditions, Fourier series. Their principal benefit is so-called spectral con-
vergence (faster than any algebraic power of N), thereby ensuring high accuracy at relatively
low computational cost [31, 42].

In contrast, finite element methods—where the solution is expanded in low-order piecewise
polynomials—converge only algebraically [45]. However, they are endowed with a number
of important advantages over spectral methods, not least their flexibility and adaptability.
Whilst high-order orthogonal polynomials and Fourier series are usually restricted to hyper-
cubes, finite elements can be constructed in a wide variety of non-tensor-product domains,
thus making such schemes applicable to complex geometries. Moreover, as we henceforth
describe, finite elements schemes are more readily applicable to higher-dimensional problems
than standard spectral approximations.

A central motivating factor in the development of modified Fourier expansions, as de-
scribed in Chapter 1, is the design of spectral methods that offer both rapid convergence and
flexibility. We defer a discussion of modified Fourier expansions in the equilateral triangle to
Chapter 6. As considered in Chapter 2, modified Fourier expansions, when equipped with a
hyperbolic cross index set, are well suited to problems in higher dimensions. For this reason,
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the focus of this chapter is the discretisation of the boundary value problem (4.1), where
Ω = (−1, 1)d is the d-variate cube and d ≥ 1 is arbitrary.

A primary concern in the development of spectral approximations is the question of sat-
isfying boundary conditions. Since modified Fourier basis functions naturally obey homoge-
neous Neumann boundary conditions, they are most suitable for problems (4.1) endowed with
the same boundary conditions. Conversely, given Dirichlet boundary conditions, we employ
Laplace–Dirichlet eigenfunctions. Other boundary conditions are thus tackled by Laplace
eigenfunctions subject to the same boundary conditions. The result is a family of methods for
boundary value problems, each adapted to the particular boundary conditions. As in Chapter
2, the Dirichlet and Neumann problems will be our principal consideration. Other boundary
conditions are considered towards the end of the chapter.

There are many alternative means to satisfy boundary conditions. Forming suitable linear
combinations of basis functions is an approach commonly employed in Chebyshev or Leg-
endre polynomial discretisations [146, 147]. However, this scheme typically leads to a loss
of accuracy for Laplace eigenfunction approximations. Other techniques, based on either
interpolating boundary conditions exactly or using so-called penalty schemes [81], become in-
creasingly complicated in two or more dimensions. Instead, we pursue arguably the simplest
approach: selecting basis functions that inherently satisfy the prescribed boundary conditions.
We mention in passing that, since the solution u of (4.1) obeys the boundary conditions (in
the language of Chapter 2, the first derivative condition), the approximation to a Dirichlet
problem, for example, will converge uniformly throughout the domain.

The numerical solution of higher-dimensional problems has received significant attention of
late. Such problems are a recurrent theme in a wide variety of applications, including fluid dy-
namics (the Navier–Stokes equations), quantum mechanics and computational chemistry (the
Schrödinger equation) [41]. The main stumbling block towards effective discretisation of such
problems is the previously mentioned exponential growth in computational cost with dimen-
sion (the curse of dimensionality, see Chapter 2). Though the design of so-called sparse grid
finite element methods, where the numerical approximation consists of only O

(
N(logN)d−1

)
or even O (N) terms, is a mature field, few spectral methods currently exist that exhibit this
property.1 As described in Chapter 2, this shortfall can be attributed to the difficulty in
rapidly computing only those coefficients of a function with indices from a hyperbolic cross.
Classical spectral approximation schemes for (4.1) based on orthogonal polynomials (typically
of Chebyshev or Legendre type [42]) are thus restricted in practice to d = 1, 2, 3, 4.

Nevertheless, as documented in Chapter 2, Laplace eigenfunction expansions may, in gen-
eral, converge slowly. This translates into only algebraic convergence of the corresponding
spectral approximation to the solution u of (4.1). However, the reduced computational cost
of forming the approximation means that such an approach offers an advantage over more
standard polynomial-based methods, as we shall confirm by numerical example. Unrelated to
cost considerations, Laplace eigenfunction methods are also endowed with several beneficial
features pertaining to the conditioning of the various matrices present, and the ease at which
resulting linear systems can be solved. Such attributes are also chronicled in the sequel.

Needless to say, accelerating convergence of Laplace eigenfunction methods for boundary
value problems, thereby increasing their effectiveness, is of singular importance. This topic is
discussed further in Chapters 5 and 6. First, however, we must assess the methods in their

1Aside from the periodic case: the numerical solution of periodic partial differential equations by the so-
called sparse grid Fourier method has been documented in [110].
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most basic forms. This chapter is devoted to this topic.

The key results of the present chapter are as follows:

1. Spectral-Galerkin approximations to second order Neumann boundary value problems
based on modified Fourier expansions exhibit O(N−

5
2 ) errors in the H1(Ω) norm. An

analogous result, albeit one power of N slower, holds for Laplace–Dirichlet approxima-
tions of Dirichlet problems.

2. Much like the Fourier method for periodic problems, methods based on Laplace eigen-
functions are reasonably well conditioned. In particular, discretisation matrices have
O
(
N2
)

condition numbers, and there exist optimal, diagonal preconditioners.
3. Provided a hyperbolic cross index set is used, Laplace eigenfunction approximations can

be constructed in O
(
N2
)

operations, regardless of d, using standard iterative methods.
Due to this greatly reduced figure over the standard O

(
Nd+1

)
estimate for approxima-

tions based on full index sets, Laplace eigenfunction methods convey an advantage over
standard polynomial-based spectral methods for moderate values of the parameter N .

4. Approximations based on Laplace eigenfunctions can be constructed for a variety of
other boundary value problems, including numerous fourth and higher-order problems,
for which they possess a number of advantages over more standard techniques.

The application of Laplace eigenfunctions to the numerical solution of boundary value prob-
lems was addressed in [3] (the univariate case) and [5] (the multivariate case). This chapter
is based on those studies.

We remark in passing that such methods are not restricted solely to boundary value
problems (4.1) in the d-variate cube. Other potential applications are outlined in Chapter 6.
However, (4.1) presents the first stepping stone towards the design of effective methods based
on Laplace eigenfunctions, and therefore remains our consideration throughout.

4.2 Spectral methods for boundary value problems

We commence with a brief review of the salient aspects of boundary value problems, specif-
ically existence and uniqueness of solutions, and their numerical discretisation by spectral–
Galerkin methods. There is an abundance of literature on this topic, and we refer the reader
to [42] or [142], for example, for further details.

Consider the boundary value problem (4.1), where f ∈ L2(Ω) and L is a linear, even-order
differential operator. We assume that the problem can be expressed in weak form as

find u ∈ H(Ω): T (u, v) = (f, v), ∀v ∈ H(Ω), (4.2)

where H(Ω) is some appropriate Hilbert space with norm ‖·‖H and T : H(Ω) × H(Ω) → R is
a bilinear form. Depending on their particular form, boundary conditions are either enforced
by the definition of the operator T (so-called natural boundary conditions) or the space H(Ω)
itself (essential boundary conditions). Typically, Neumann boundary conditions are enforced
in the former manner and Dirichlet boundary conditions by the latter.

Throughout, we assume that boundary conditions are homogeneous. If not, then, given
some function g that satisfies B[g] = B[u], we may decompose u = v + g, where the new
function v is the solution of the homogeneous boundary value problem L[v] = f − L[g],
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B[v] = 0. For the domains that we consider throughout this chapter, i.e. d-variate cubes,
construction of an appropriate function g is relatively simple.2

Returning to (4.2), we now suppose that the form T satisfies the continuity and coercivity
conditions

|T (u, v)| ≤ γ‖u‖H‖v‖H, T (u, u) ≥ ω‖u‖2H, ∀u, v ∈ H(Ω). (4.3)

In this setting, existence and uniqueness of a solution to (4.2) is guaranteed by the well-
renowned Lax–Milgram theorem:

Theorem 4.1 (Lax–Milgram). Suppose that H(Ω) is a Hilbert space, f ∈ L2(Ω) and that the
bilinear form T satisfies the continuity and coercivity conditions (4.3). Then there exists a
unique solution to (4.2) satisfying the stability condition ‖u‖H ≤ γω−1‖f‖.

With existence and uniqueness to hand, we now turn our attention to the numerical
solution of (4.1). A standard approach is to approximate the solution u in some finite-
dimensional space SN = span{φn : n ∈ IN}, where φn are appropriate basis functions.
Suppose that uN ∈ SN is the approximation to u. To specify uN , we seek to make the
residual L[uN ] − f small. There are numerous ways to realise this, but we will consider the
Galerkin approach throughout: enforce that L[uN ]− f is orthogonal to SN .3 In other words,

T (uN , v) = (f, v), ∀v ∈ SN . (4.4)

These are referred to as Galerkin’s equations. Since the approximation uN satisfies a discre-
tised version of (4.2), its existence and uniqueness are once more guaranteed by the Lax–
Milgram theorem. Moreover, uN also satisfies the stability estimate ‖uN‖H ≤ γω−1‖f‖, thus
ensuring that there is no blow-up in the numerical approximation, for example.

Convergence of the approximation uN is guaranteed by Céa’s Lemma:

Lemma 4.2 (Céa). Suppose that uN ∈ SN is the Galerkin approximation to (4.2). Then

‖u− uN‖H ≤
γ

ω
inf
φ∈SN

‖u− φ‖H.

Céa’s lemma reduces the question of convergence of the approximation uN to merely a
consideration of the approximation properties of the subspace SN . If SN consists of Laplace
eigenfunctions, for example, then convergence is therefore governed by the results of Chapter
2.

The Galerkin formulation encompasses both spectral and finite element methods. A key
component of the former is to choose a basis SN with a high degree of approximation. Basis
functions are typically global, thus leading to small, dense matrices. Conversely, finite element
basis functions are locally supported, thereby producing sparse, banded matrices. However,
as a payoff, slow convergence of finite element approximations necessitates the solution of
much larger linear systems to obtain reasonable accuracy [45].

2A subtraction function of the type subsequently considered in Chapter 5 can be used, for example.
3An alternative approach, leading to so-called collocation methods, is to enforce that the residual vanishes

at a set of nodes. Typically, node locations are related classical quadrature formulae derived from the particular
approximation basis. Collocation schemes are extremely effective in many situations (for example, nonlinear
problems). However, for linear problems, at least, Galerkin schemes typically yield simpler discretisations and
optimal error estimates [147].
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Outside of convergence, the second central facet of Galerkin approximations is the question
of computing the approximation uN . To this end, suppose that uN =

∑
n∈IN ūnφn has

coefficients ūn ∈ R. If ū ∈ R|IN | is the vector of coefficients and AG ∈ R|IN |×|IN | has (n,m)th

entry T (φm, φn), then Galerkin’s equations (4.4) can be expressed in matrix form as AGū = f̂ ,
where f̂ ∈ R|IN | has nth entry f̂n. We refer to AG as the Galerkin matrix.4

A number of numerical considerations are of great importance in the computation of the
spectral–Galerkin approximation uN . First, numerical schemes must be available to calculate
the entries of both the matrix AG and the vector f̂n. In some cases (for example, where L
has constant coefficients), the entries of the matrix AG may be known explicitly. However, in
the general case, they need to be approximated by numerical quadrature. If the quadrature
used for this task is dependent on the truncation parameter N (for example, if the FFT were
used), this leads to a so-called Galerkin with numerical integration (GNI) scheme [42]. We
shall not pursue this approach. Instead, we use the numerical quadrature outlined in Section
2.12, where necessary, the accuracy of which is not automatically coupled to N .

The second practical consideration is how to solve Galerkin’s equations efficiently. As
stated, the matrix AG is typically dense; hence, standard iterative methods can be expensive.
Furthermore, the matrix is often ill-conditioned, making the construction of effective precon-
ditioners paramount [42]. Nonetheless, AG frequently inherits much of the structure of the
continuous problem (4.2), thus commonly aiding both these tasks.

Having summarised the principal aspects of spectral–Galerkin schemes, we now address
the discretisation of second-order boundary value problems with Laplace eigenfunctions.

4.3 Discretisation of second order boundary value problems

Let

L[u](x) = −4u(x) + a · ∇u(x) + bu(x) = f(x), x ∈ Ω = (−1, 1)d, (4.5)

be a boundary value problem equipped with either homogeneous Neumann B[u] = ∂u
∂n |Γ or

Dirichlet B[u] = u|Γ boundary conditions (other boundary conditions are discussed in Section
4.4.4). For the sake of simplicity, we assume that a = (a1, . . . , ad)

> ∈ Rd and b ∈ R are
constant; in the sequel, we address the variable-coefficient case.

Both the Dirichlet and Neumann problems share the common bilinear form

T (u, v) = (∇u,∇v) + (a · ∇u, v) + (bu, v), (4.6)

where (∇u,∇v) =
∫

Ω∇u · ∇v. In the Neumann case, since the boundary conditions are
essential, we let H(Ω) = H1(Ω), so that T : H1(Ω)×H1(Ω)→ R. Conversely, in the Dirichlet
case T : H1

0(Ω) × H1
0(Ω) → R, where the space H1

0(Ω) is defined in the usual manner as the
closure of C∞0 (Ω) in H1(Ω).

Continuity and coercivity of these forms are readily established:

Lemma 4.3. Suppose that T is defined by (4.6). Then T is H1
0(Ω)-continuous and coercive

(in other words, the restriction of T to H1
0(Ω)×H1

0(Ω) is continuous and coercive in the H1
0(Ω)

4In general, n = (n1, . . . , nd) is a multi-index. Hence, for practical purposes, some ordering is given to the
index set IN . The choice of such ordering can impact upon the numerical behaviour of the matrix AG [42].
However, we shall not address this issue further.
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norm) if and only if b > −C−2, where C = 2d−
1
2π−1 is the constant of Poincaré’s inequality

[56]. Specifically,

|T (u, v)| ≤
(
1 + C‖a‖+ C2|b|

)
|u|1|v|1, T (u, u) ≥ min{1, 1 + bC2}|u|21, ∀u, v ∈ H1

0(Ω),

where | · |1 is the standard norm on H1
0(Ω) and ‖a‖2 =

∑d
j=1 a

2
j .

Proof. We first recall Poincaré’s inequality ‖u‖ ≤ C|u|1, ∀u ∈ H1
0(Ω). Note that the constant

in this inequality is sharp.5 We have

|T (u, v)| ≤ ‖∇u‖‖∇v‖+ ‖a‖‖∇u‖‖v‖+ |b|‖u‖‖v‖ ≤ |u|1|v|1 + C‖a‖|u|1|v|1 + C2|b||u|1|v|1,

which gives the first result. For the second, we first note that (a ·∇u, u) = u2a · n̂|Γ = 0, since
u|Γ = 0. Here n̂ is the unit outward normal vector.6 Hence

T (u, u) = |u|21 + b‖u‖2 ≥ min{1, 1 + bC2}|u|21,

as required. To show that the condition b > −C−2 = −1
4dπ

2 is also necessary, we consider

the function u(x) =
∏d
j=1 cos 1

2πxj . In this case ‖u‖2 = 1 and |u|21 = ‖∇u‖2 = 1
4dπ

2 = C−2,
which gives

T (u, u) = ‖∇u‖2 + b‖u‖2 =
(
1 + bC2

)
|u|21.

Hence T cannot be coercive if b ≤ −C−2.

Lemma 4.4. The bilinear T form defined by (4.6) is H1(Ω)-continuous and coercive if and
only if b− 1

4‖a‖
2 > 0. Specifically

|T (u, v)| ≤ 2 max{1, b, ‖a‖}‖u‖1‖v‖1, T (u, u) ≥
(
b− 1

4‖a‖
2
)

min
{(
b+ 1

4‖a‖
2
)−1

, 1
2

}
‖u‖21,

for all u, v ∈ H1(Ω).

Proof. The proof of continuity is virtually identical to that of the previous lemma. For
coercivity we use Young’s inequality7 to give

T (u, u) = ‖∇u‖2 + (a · ∇u, u) + b‖u‖2 ≥ ‖∇u‖2 −
(
ε‖∇u‖2 + 1

4ε‖a‖
2‖u‖2

)
+ b‖u‖2

= (1− ε)‖∇u‖2 +
(
b− 1

4ε‖a‖
2
)
‖u‖2,

for all ε > 0. If we set ε = ‖a‖2(2b+ 1
2‖a‖

2)−1 and substitute this into the above expression,
we obtain

|T (u, u)| ≥
b− 1

4‖a‖
2

b+ 1
4‖a‖2

‖∇u‖2 +
b− 1

4‖a‖
2

2
‖u‖2,

as required. To show that the condition b− 1
4‖a‖

2 > 0 is also necessary, consider the function

u(x) = e
1
2

(1+
√

2)x.a. In this case T (u, u) =
(
b− 1

4‖a‖
2
)
‖u‖2. Hence, no other lower bound is

permissible.

5This constant is precisely the square root of the reciprocal of the smallest eigenvalue of the Laplace operator
on Ω = (−1, 1)d subject to homogeneous Dirichlet boundary conditions. This is easily proved by expanding
an arbitrary function u ∈ H1

0(Ω) in Laplace–Dirichlet eigenfunctions. Incidentally, this result holds for any
bounded, convex domain [135]. Note that Poincaré’s inequality guarantees that the semi-norm | · |1 is in fact
a norm on H1

0(Ω).
6We write u|Γ with the understanding that this refers to the trace of u on Γ = ∂Ω. Further considerations

of trace operators are not necessary for this particular study, and we refer the reader to [56] for details.
7The algebraic inequality xy ≤ 1

4ε
x2 + εy2 for all ε > 0, x, y ∈ R, is referred to as Young’s inequality [124].



4.3 Discretisation of second order boundary value problems 99

Under the assumptions of Lemma 4.3 and Lemma 4.4 respectively, existence and unique-
ness of a weak solution to the homogeneous Dirichlet and Neumann problems are guaranteed
by the Lax–Milgram theorem.

We remark in passing that the Dirichlet problem may be reduced to a canonical form by
writing

u(x) = e
1
2

∑d
j=1 ajxjv(x).

The new function v ∈ H1
0(Ω) is the solution to the boundary value problem

−4v(x) +
(
b+ 1

4‖a‖
2
)
v(x) = e−

1
2

∑d
j=1 ajxjf(x), v

∣∣
∂Ω

= 0.

This equation, representing a Helmholtz problem, has no advection term and is therefore
simpler. In particular, the discretisation of this problem with Laplace–Dirichlet eigenfunctions
possesses a diagonal matrix. However, though theoretically possible, in the variable-coefficient
case this transformation requires the computation of indefinite integrals of the functions aj(x).
Further, the Laplace–Dirichlet discretisation now leads to a full matrix. For this reason,
we shall consider the non-canonical formulation (4.5) throughout. Note that the Neumann
problem cannot readily be reduced to a canonical form in this manner, since the boundary
conditions are not preserved by the above transformation.

4.3.1 The Galerkin approximation

We now seek an approximation uN ∈ SN to the Dirichlet and Neumann problems, where SN
consists of Laplace–Dirichlet or Laplace–Neumann eigenfunctions respectively. We write

uN (x) =
∑

i∈{0,1}d

∑
n∈IN

ū[i]
n ψ

[i]
n (x), uN (x) =

∑
i∈{0,1}d

∑
n∈IN

ū[i]
n φ

[i]
n (x),

in each case, and refer to uN as the Laplace–Dirichlet Galerkin (respectively Laplace–Neumann
Galerkin/modified Fourier–Galerkin) approximation. Throughout the remainder of this chap-
ter, we assume that either the full (2.33) or hyperbolic cross (2.41) index set is employed. The
majority of the results proved can be immediately applied or suitably adapted to other index
sets, including the optimized hyperbolic cross (2.51). However, for the sake of simplicity, we
shall not pursue this further.

In both the Dirichlet and Neumann cases, the coefficients ū
[i]
n ∈ R are specified by

Galerkin’s equations (4.4). For this, we have the following lemma:

Lemma 4.5. The coefficients ū
[i]
n of the approximation uN satisfy

(b+ µ[i]
n )ū[i]

n +

d∑
j=1

∑
mj∈N

(n;mj)∈IN

ajδ
[ij ]
nj ,mj ū

[(i;1−ij)]
(n;mj)

= f̂ [i]
n , i ∈ {0, 1}d, n ∈ IN , (4.7)

where (n;mj) = (n1, . . . , nj−1,mj , nj+1, . . . , nd), (i; 1− ij) = (i1, . . . , ij−1, 1− ij , ij+1, . . . , id)
and

δ[i]
n,m = 2(−1)n+m α

[1−i]
n α

[i]
m

µ
[1−i]
n − µ[i]

m

, δ[i]
n,m = 2(−1)n+m µ

[1−i]
m

µ
[i]
n − µ[1−i]

m

, i ∈ {0, 1}, n,m ∈ N0,

in the Dirichlet and Neumann cases respectively.
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Proof. Since the Dirichlet and Neumann cases are identical, we consider the latter. Setting

v = φ
[i]
n , i ∈ {0, 1}d, n ∈ IN , in Galerkin’s equations (4.4) gives

T (uN , φ
[i]
n ) = (b+ µ[i]

n )a[i]
n +

d∑
j=1

∑
l∈{0,1}d

∑
m∈IN

aj(∂xjφ
[l]
m, φ

[i]
n )a[l]

m.

Here the first term arises as a direct consequence of the fact that the approximation basis
consists of orthonormal Laplace eigenfunctions. Now,

(∂xjφ
[l]
m, φ

[i]
n ) = ((φ

[lj ]
mj )
′, φ

[ij ]
nj )

∏
k 6=j

(φ[lk]
mk
, φ[ik]

nk
) =

{
δ

[ij ]
nj ,mj l = (i; 1− ij), mk = nk, k 6= j,

0 otherwise,

which gives the result.

In the univariate setting, if ū = (ū[0], ū[1])> is the vector with entries ū
[i]
n and f̂ =

(f̂ [0], f̂ [1])> is the vector of coefficients f̂
[i]
n , Galerkin’s equations can be written in matrix

form as AGū = f̂ , where

AG =

(
D[0] aδ[0]

aδ[1] D[1]

)
. (4.8)

Here δ[i] is the (N+1−i)×(N+i) matrix with entries δ
[i]
n,m and D[i] is the (N+1−i)×(N+1−i)

diagonal matrix with entries b + µ
[i]
n . The diagonal blocks of this matrix correspond to the

restriction of the operator L0 = −∂xx + bI, where I is the identity operator, to SN . The
off-diagonal blocks correspond to the advection operator L1 = a∂x. For this reason, we define

MG =

(
D[0] 0

0 D[1]

)
, NG =

(
0 aδ[0]

aδ[1] 0

)
, (4.9)

as the matrices of these actions. Note that AG = MG +NG.

The operator splitting L = L0 + L1 is fundamental to a number of both practical and
analytical aspects of the modified Fourier–Galerkin method. The same splitting is also em-
ployed in the multivariate setting upon defining L0 = −4+ bI and L1 = a · ∇. As before, we
write AG = MG + NG, where MG and NG are the matrices corresponding to the operators
L0 and L1. The first term of (4.7) verifies that MG is diagonal once more with nth entry

b + µ
[i]
n . Note that the matrix MG is symmetric (a fact independent of the discretisation:

determined solely by the self-adjointness of the operator L0), whilst NG is skew-symmetric
for Dirichlet problems. Hence, AG is not symmetric in general, aside from the case a = 0, i.e.
the Helmholtz problem.

When a = 0, uN may be reinterpreted as precisely FN [u]. Indeed, it follows from (4.7)

that ū
[i]
n = (b+µ

[i]
n )−1f̂

[i]
n , which, upon comparison with (4.5), is nothing more than û

[i]
n (or ǔ

[i]
n

for the Dirichlet problem). In this case, the construction and analysis of the approximation
uN is completely accounted for by the techniques of Chapter 2. Nonetheless, when a 6= 0 (or
when b = b(x) is not constant) this ceases to be the case, and new techniques are required to
address the approximation uN . The next two sections are devoted to the construction of this
approximation. Analysis of convergence is considered in Section 4.3.4.



4.3 Discretisation of second order boundary value problems 101

4.3.2 Properties of the discretisation matrix

For an arbitrary nonsingular matrix A ∈ RM×M we define the spectral condition number
κs(A) as the ratio of the largest and smallest eigenvalues in absolute value. We refer to the
quantity

κ(A) =

√
λmax(A>A)

λmin(A>A)
,

as the condition number.8 For the Galerkin matrix AG, the size of these quantities are
of singular interest, since they determine the impact of round-off errors in the solution of
Galerkin’s equations [42]. They also determine the convergence rate of various iterative solu-
tion techniques and the necessary step-size restrictions in fully-discretised approximations to
time-dependent problems (see Chapter 6). Note that when AG is symmetric (i.e. a = 0), the
quantities κs(AG) and κ(AG) coincide. However, for a 6= 0 this ceases to be the case.

In standard spectral discretisations, the (spectral) condition number is often rather large,
so the design of effective preconditioners is imperative. We say that an invertible matrix
P ∈ RM×M is an optimal (spectral) preconditioner for A if the (spectral) condition number of
the matrix AP−1 is O (1) as M →∞.9 A fundamental consideration in the design of effective
preconditioners is that the linear system Px = y should be ‘easier’ to solve (i.e. of lower
computational cost) than the linear system Ax = b.

In this section, we demonstrate that the (spectral) condition number of the Galerkin matrix
AG arising from Laplace eigenfunction discretisations is O

(
N2
)
. Moreover, there exists an

optimal, right preconditioner given by the matrix MG. Since this preconditioner is diagonal,
it is cheap and simple to apply.

We commence with estimates for the spectral condition number:

Lemma 4.6. Suppose that IN is either the full (2.33) or the hyperbolic cross (2.41) index set.
Then the spectral condition number κs(AG) is O

(
N2
)

for both the Dirichlet and Neumann
problems, provided the operator T is coercive. Specifically,

κs(AG) ≤ γ

ω

(
1 +N2π2d

)
, κs(AG) ≤ γ

ω

(
1 + (d− 1 +N2)π2

)
,

in the full and hyperbolic cross cases respectively, where γ and ω are the constants of continuity
and coercivity.

Proof. For an eigenvalue λ with eigenfunction u ∈ SN , we have λ(u, φ) = T (u, φ), ∀φ ∈ SN . In
particular, ω‖u‖2 ≤ |λ|‖u‖2 and |λ|‖u‖2 ≤ γ‖u‖21. Now, by Bernstein’s Inequality (Corollary

2.11), ‖u‖21 ≤ maxn∈IN {1 + µ
[0]
n }‖u‖2. Moreover, for n ∈ IN ,

1 + µ[0]
n ≤ 1 +N2π2d, 1 + µ[0]

n ≤ 1 + (d− 1 +N2)π2, (4.10)

when IN is either the full or hyperbolic cross index set respectively.

We may also prove the same result for the condition number κ(AG). To do so, we first
require the following lemma:

8More precisely, since κ(A) = ‖A‖‖A−1‖, where ‖·‖ is the L2 matrix norm, this is the L2 condition number.
9Specifically, P is a right preconditioner. If we consider the quantities P−1A or P−

1
2A(P−

1
2 )> instead,

then P is referred to as a left or symmetric preconditioner respectively [142].
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Lemma 4.7. Suppose that λ is an eigenvalue of A>GAG with associated eigenfunction u ∈ SN .
Then

(FN [L[u]],FN [L[φ]]) = λ(u, φ), ∀φ ∈ SN . (4.11)

Proof. Dropping the i superscript for ease of notation, the matrix AG has (n,m)th entry
(L[φm], φn). Let u ∈ SN be an eigenfunction with eigenvalue λ. Then∑

m∈IN

(
A>GAG

)
n,m

(u, φm) = λ(u, φn), ∀n ∈ IN .

Expanding the left-hand side gives∑
m∈IN

(
A>GAG

)
n,m

(u, φm) =
∑

m,r∈IN

(L[φn], φr) (L[φm], φr) (u, φm)

=
∑
r∈IN

(L[φn], φr) (L[FN [u]], φr) = (L[FN [u]],FN [L[φn]]) .

Hence (L[FN [u]],FN [L[φn]]) = λ(u, φn) for all n ∈ IN . Linearity now gives the result.

Theorem 4.8. Suppose that IN is either the full or the hyperbolic cross index set. Then the L2

condition number of AG, κ(AG), is O
(
N2
)

in both the Dirichlet and Neumann cases, provided
the operator L is coercive. Specifically, if γ′ is a positive constant such that ‖L[u]‖2 ≤ γ′‖u‖22
for all u ∈ H2(Ω), then we have the bounds

κ(AG) ≤ ω−1
√
γ′(1 +N2π2d), κ(AG) ≤ ω−1

√
γ′(1 + (d− 1 +N2)π2),

in the full and hyperbolic cross cases respectively, where ω is the coercivity constant of L.

Proof. Setting φ = u in (4.11) gives ‖FN [L[u]]‖2 = λ‖u‖2. Now, by the duality pairing (3.25),

‖FN [L[u]]‖ = sup
g∈L2(Ω)

(FN [L[u]], g)

‖g‖
≥ sup

g∈SN

(L[u], g)

‖g‖
. (4.12)

Suppose that we define g ∈ SN by enforcing the condition (L[φ], g) = (φ, u) for all φ ∈ SN .
Note that the coefficients of g are the solution of a linear system involving A>G. Hence,
existence and uniqueness of g is guaranteed. Furthermore, (L[u], g) = (u, u) = ‖u‖2 and,
since L is coercive, ω‖g‖1 ≤ ‖u‖. Thus

λ‖u‖2 = ‖FN [L[u]]‖2 ≥ (L[u], g)2

‖g‖2
=
‖u‖4

‖g‖2
≥ ω2‖u‖2.

To derive an upper bound for λ, we note that

λ‖u‖2 = ‖FN [L[u]]‖2 ≤ ‖L[u]‖2 ≤ γ′‖u‖22 ≤ γ′ max
n∈IN
{1 + µ[0]

n }2‖u‖2,

by Bernstein’s Inequality. The result now follows from (4.10).
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The proofs of Lemma 4.6 and Theorem 4.8 highlight that the minimal eigenvalues of
both AG and A>GAG are independent of the Galerkin discretisation employed. In particular,
they are independent of the index set. The upper bounds, however, rely on Bernstein-type
estimates which are dependent on both the discretisation basis and index set employed.

The constant γ′ defined in Theorem 4.8 exists regardless of any assumptions on the values
a and b (much like the standard continuity constant γ). It represents a continuity constant
for the normal form T ′ : H2(Ω) × H2(Ω) → R, where T ′(u, v) = (L[u],L[v]). Note that an
explicit value for γ′ is given by γ′ = 3 max{1, ‖a‖, |b|}2.

Next, we assess the preconditioner MG for the matrix AG. To do so, it is first necessary to
establish coercivity for a variety of normal forms similar to that introduced above. We have

Lemma 4.9. Suppose that b− 1
4‖a‖

2 > 0 and that L0 = −4+ bI. Then

(L[u],L0[u]) ≥ ω′‖u‖22, ∀u ∈ H2(Ω),
∂u

∂n

∣∣∣
∂Ω

= 0,

for some positive constant ω′ given explicitly by

ω′ =
(
b− 1

4‖a‖
2
)

min
{

1,
(
b+ 1

4‖a‖
2
)−1

, b2
(
b+ 1

4‖a‖
2
)−1
}
.

Proof. We have (L[u],L0[u]) = ‖L0[u]‖2 + (a · ∇[u],L0[u]). Now

‖L0[u]‖2 = ‖4u‖2 + 2b‖∇u‖2 + b2‖u‖2,

and

|(L1[u],L0[u])| ≤ |(a · ∇u,4u)|+ b|(a · ∇u, u)| ≤ ‖a‖‖∇u‖‖4u‖+ b‖a‖‖∇u‖‖u‖.

Using Young’s inequality we obtain

|(L1[u],L0[u])| ≤ ε‖4u‖2 + ‖a‖2
2ε ‖∇u‖

2 + b2ε‖u‖2, ∀ε > 0.

Substituting this into the previous expression now gives

(L[u],L0[u]) ≥ (1− ε)‖4u‖2 + 2
(
b− ‖a‖

2

4ε

)
‖∇u‖2 + b2(1− ε)‖u‖2.

If we set ε = ‖a‖2(2b+ 1
2‖a‖

2)−1 then

(L[u],L0[u]) ≥

(
b− 1

4‖a‖
2

b+ 1
4‖a‖2

)
‖4u‖2 +

(
b− 1

4‖a‖
2
)
‖∇u‖2 + b2

(
b− 1

4‖a‖
2

b+ 1
4‖a‖2

)
‖u‖2,

which yields the result.

Lemma 4.10. Suppose that b > 0. Then

(L[u],L[u]) = ‖L[u]‖2 ≥ ω′‖u‖22, ∀u ∈ H2(Ω) ∩H1
0(Ω),

with positive constant ω′ = bmin{1, b, (‖a‖2 + b)−1}.



104 4. Boundary value problems

Proof. We have

‖L[u]‖2 = ‖4u‖2 + 2b‖∇u‖2 + b2‖u‖2 + 2(a · ∇u,−4u+ bu) + ‖a · ∇u‖2.

Since u ∈ H1
0(Ω), the term (a · ∇u, bu) vanishes. An application of Young’s inequality now

gives

‖L[u]‖2 ≥ (1− ε)‖4u‖2 + 2b‖∇u‖2 + (1− ε−1)‖a · ∇u‖2 + b2‖u‖2

≥ (1− ε)‖4u‖2 + (2b+ (1− ε−1)‖a‖2)‖∇u‖2 + b2‖u‖2.

Setting ε = ‖a‖2(b+ ‖a‖2)−1 completes the proof.

With these results to hand, we may now confirm MG as an optimal preconditioner for
both the Dirichlet and Neumann problems. We commence with the latter:

Theorem 4.11. Suppose that AG is the Galerkin matrix for the Neumann problem. Then, the
right preconditioner MG is optimal for the (spectral) condition number, provided the operator
T is coercive. Specifically,

κs(AG) ≤ γmax{1, b}
ωmin{1, b}

, κ(AG) ≤

√
γ′max{1, 2b, b2}
ω′min{1, 2b, b2}

,

where γ′ and ω′ are the constants of Theorem 4.8 and Lemma 4.9 respectively.

Proof. Suppose that λ is an eigenvalue of AGM
−1
G with eigenfunction u ∈ SN . Suppose further

that u = (−4+ bI)v for some v ∈ SN . Then

(L[v], φ) = λ(L0[v], φ), ∀φ ∈ SN .

Setting φ = v gives (L[v], v) = λ(L0[v], v). It is trivial to show that the operator L0 is
continuous and coercive, provided b > 0 with constants max{b, 1} and min{b, 1} respectively.
Hence

γ

min{b, 1}
≥ λ ≥ ω

max{b, 1}
> 0,

which gives the first result. Now suppose that λ is an eigenvalue of (AGM
−1
G )>(AGM

−1
G )

with eigenfunction u ∈ SN . Then, using Lemma 4.7, we obtain ‖FN [L[v]]‖2 = λ‖L0[v]‖2,
where u = (−4 + bI)v once more. Note that ‖L0[u]‖2 ≤ max{1, 2b, b2}‖u‖22 and ‖L0[u]‖2 ≥
min{1, 2b, b2}‖u‖22 for all u ∈ H2(−1, 1)d satisfying ∂u

∂n |Γ = 0. Hence

min{1, 2b, b2}λ‖v‖22 ≤ ‖FN [L[v]]‖2 ≤ ‖L[v]‖2 ≤ γ′‖v‖22,

which yields λ ≤ γ′(min{1, 2b, b2})−1. To provide a lower bound, we use (4.12) with g = L0[v]
to give

‖FN [L[v]]‖ ≥ (L[v],L0[v])

‖L0[v]‖
.

Applications of Lemma 4.9 and the continuity condition for L0 now yield

‖FN [L[v]]‖2 ≥ (ω′)2

max{1, 2b, b2}
‖v‖22.

Hence λ ≥ (ω′)2(max{1, 2b, b2})−1 and the proof is complete.
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Theorem 4.12. Suppose that AG is the Galerkin matrix for the Dirichlet problem. Then the
right preconditioner MG is optimal for the spectral condition number, provided the operator T
is coercive. It is optimal for the condition number, provided b > 0. Specifically, κs(AG) ≤ γ

ω ,
and, for sufficiently large N ,

κ(AG) ≤

√
2γ′max{1, 2b, b2}
ω′min{1, 2b, b2}

.

Proof. The proof for the spectral condition number is identical to the proof of Theorem 4.11.
For the condition number, we once more use the expression ‖FN [L[v]]‖2 = λ‖L0[v]‖2. An
upper bound for λ is provided in the same manner as before. For a lower bound, we first
write ‖FN [L[v]]‖2 = ‖L[v]‖2 − ‖L[v]− FN [L[v]]‖2. Since v ∈ SN and the operators 4 and I
commute with FN , we obtain

‖FN [L[v]]‖2 = ‖L[v]‖2 − ‖L1[v]−FN [L1[v]]‖2 ≥ ‖L[v]‖2 − c‖v −FN [v]‖21,

for some positive constant c independent of N . An application of (2.38) gives

‖v −FN [v]‖21 ≤ c max
n/∈IN
i∈{0,1}d

(1 + µ[i]
n )−1‖v‖22.

For any index set IN satisfying (2.8), this maximum must tend to zero as N tends to infinity.
Hence, for sufficiently large N , ‖v−FN [v]‖21 ≤ 1

2ω
′‖v‖22. For such N ,we obtain ‖FN [L[v]]‖2 ≥

1
2ω
′‖v‖22 and this gives a lower bound for λ.

Note that Theorem 4.11 is independent of the particular discretisation used: the matrix
MG is an optimal preconditioner for any choice of approximation basis. However, for Laplace
eigenfunctions this preconditioner is diagonal and therefore of practical use. We note in
passing that the observation that MG is an optimal preconditioner is equivalent to stating

that the set of functions (b + µ
[i]
n )−1φ

[i]
n forms an optimally conditioned approximation basis

for the problem (4.5).
Theorem 4.11 requires the Neumann coercivity condition b − 1

4‖a‖
2 > 0. It transpires

that, in the univariate setting at least, the weaker condition b > 0 may be imposed. More-
over, existence and uniqueness of a solution u to the exact problem (4.1) (respectively, the
Galerkin approximation uN ) is also guaranteed under this condition, irrespective of the value
of a. We shall not describe this case here, and we refer the reader to [3] for further details.
Unfortunately, the extension of this result to the multivariate case remains an open problem.

In Table 4.1, we demonstrate the effect of the preconditioner MG. For example, when
N = 40, the original Galerkin matrix has a condition number of approximately 5, 000, whereas
upon preconditioning, this figure is reduced to around 2.5: roughly 2, 000 times smaller.

4.3.3 Efficient solution techniques

For standard spectral discretisations in Cartesian product domains, Galerkin’s equations are
normally written in tensor-product form. For example, when d = 2, the matrix U of unknowns

ū
[i]
n,m satisfies the matrix equation AG,xU + U(AG,y)

> = F̂ , where AG,x and AG,y are the
matrices corresponding to the univariate differential operators −∂2

xx+a1∂x+ 1
2bI and −∂2

xx+

a2∂x + 1
2bI respectively, and F̂ is the matrix of coefficients of the inhomogeneous term f .
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N = 10 N = 20 N = 30 N = 40

κs(AG) 231.521 954.753 2171.47 3881.68

κ(AG) 362.676 1443.68 3245.39 5767.78

κs(AGM
−1
G ) 1.16097 1.16099 1.16099 1.16099

κ(AGM
−1
G ) 2.61680 2.61702 2.61704 2.61705

Table 4.1: Condition numbers for the univariate modified Fourier–Galerkin matrix AG and the pre-
conditioned matrix AGM

−1
G with parameters a = 3 and b = 4.

The advantage of this approach is that it facilitates the use of novel solution techniques such
as the matrix diagonalisation and Schur decomposition methods [42]. Both techniques are
solely based on the univariate matrices AG,x and AG,y, which, as discussed previously, are
reasonably conditioned.

However, we shall not pursue this approach. For approximations using a hyperbolic cross
index set, Galerkin’s equations do not naturally have a tensor-product form. Nonetheless,
due to the simple nature of the particular equations arising from Laplace eigenfunction dis-
cretisations, it turns out that techniques such as these are unnecessary.

Instead, we consider standard iterative methods. In contrast to the aforementioned tech-
niques, these methods are essentially independent of the dimension d. Since the matrix MG

is an optimal preconditioner for AG, the conjugate gradient algorithm [66] may be applied
to the preconditioned normal equations. If we write Galerkin’s equations as AGū = f̂ , then
these equations are precisely

(AGM
−1
G )>AGM

−1
G v̄ = (AGM

−1
G )>f̂ , (4.13)

where M−1
G v̄ = ū. Since (AGM

−1
G )>AGM

−1
G is symmetric and has O (1) condition number,

the conjugate gradient method converges to within a prescribed tolerance in a number of oper-
ations independent of the parameter N . Hence, the total cost of solving Galerkin’s equations
is proportional to the number of operations required to perform matrix-vector multiplications
involving AG (since MG is diagonal, its contribution can be ignored). The cost of direct eval-
uation of such matrix-vector products is determined by the number of nonzero matrix entries,
for which we have the following lemma:

Lemma 4.13. Suppose that N � d. Then the number of non-zero entries of the matrix AG

is
d2dNd+1 +O

(
Nd
)
, (4.14)

in the case of the full index set (2.33), and

d2dN2d(1 + ζ(2))d−1e+O
(
N(logN)d−1

)
, (4.15)

for the hyperbolic cross (2.41).

Proof. In view of Lemma 4.5 the number of non-zero matrix entries is

∑
i∈{0,1}d

∑
n∈IN

d∑
j=1

∑
mj∈N,

(n;mj)∈IN

1 +O (|IN |) .



4.3 Discretisation of second order boundary value problems 107

If IN is the full index set, we easily obtain (4.14). For the hyperbolic cross (2.41) we have

∑
i∈{0,1}d

∑
n∈IN

d∑
j=1

∑
mj∈N,

(n;mj)∈IN

1 = d2d
∑
n∈IN

∑
md∈N,

(n;md)∈IN

1 +O
(
N(logN)d−1

)

= d2d
∑
n∈IN

N(n̄1...n̄d−1)−1∑
m=0

1 +O
(
N(logN)d−1

)
= d2d

∑
n∈IN

N

n̄1 . . . n̄d−1
+O

(
N(logN)d−1

)
= d2dN2

∞∑
n̄1,...,n̄d−1=1

1

(n̄1 . . . n̄d−1)2
+O

(
N(logN)d−1

)
.

Evaluating this final sum gives (4.15).

We conclude that Galerkin’s equations can be solved in, at most, O
(
Nd+1

)
operations in

the full index set case, and only O
(
N2
)

operations, regardless of d, when a hyperbolic cross
is employed. Hence, even for d = 2, the hyperbolic cross will offer an advantage over the
full index set, provided, of course, that the convergence rate of the approximation remains
comparable. As we establish in the next section, this is indeed the case.

Since the action of the matrix NG = AG−MG corresponds to finding Laplace–Dirichlet or
Laplace–Neumann coefficients of derivatives of finite sums of Laplace–Dirichlet or Laplace–
Neumann eigenfunctions, a variant of the Fast Fourier Transform (FFT) can be employed in
the full index set case. In this manner, the aforementioned figure of O

(
Nd+1

)
can easily be

reduced to O
(
Nd logN

)
. For the hyperbolic cross index set, an analogue of the sparse grid

FFT could be employed [60], provided N is highly composite, thereby reducing the figure of
O
(
N2
)

to just O
(
N(logN)d

)
. However, as mentioned in Section 2.10.3, this technique is

neither easy nor straightforward to implement.

As is common for spectral methods in tensor-product domains, the matrix AG is increas-
ingly sparse for large d. Indeed, Lemma 4.13 indicates that the sparsity ratio is O

(
N2(d−1)

)
when a hyperbolic cross is employed. In Figure 4.1 we plot the matrix AG corresponding to
d = 2, 3. Herein we observe both the increasing sparsity and the non-tensor-product structure
of AG in the hyperbolic cross case.

4.3.4 Analysis of convergence

In the trivial case a = 0, the Galerkin approximation uN is precisely FN [u]. For such problems,
the error estimates of Chapter 2 are sufficient. When a 6= 0, this is no longer the case. In this
setting, Céa’s lemma is the starting point for our analysis.

Céa’s lemma immediately provides an estimate for the convergence rate in the H1(Ω)
norm. Since FN [u] is the best approximation to u in this norm (see Theorem 2.9), we have
‖u − uN‖1 ≤ γω−1‖u − FN [u]‖1. The results of Chapter 2 now provide estimates for the
rate of convergence using various index sets. Since the solution u satisfies at least the first
derivative condition, we have:
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1 100 200 345

1

100

200

345

1 100 200 345

1

100

200

345

1 200 400 600 809

1

200

400

600

809

1 200 400 600 809

1

200

400

600

809

Figure 4.1: Pattern of the d = 2 (left) and d = 3 (right) modified Fourier–Galerkin matrices AG with
N = 20 and N = 10 respectively.

Theorem 4.14. Suppose that uN is the modified Fourier–Galerkin approximation based on
the full index set (2.33). Then

‖u− uN‖1 ≤ γω−1cr,1N
1−r‖u‖r, r = 1, 2, 3, ‖u− uN‖1 ≤ γω−1c1N

− 5
2 ‖u‖4,mix,

where cr,1 and c1 are the constants from Lemmas 2.24 and 2.25 respectively. If uN is the
approximation based on the hyperbolic cross (2.41), then

‖u− uN‖1 ≤ γω−1cr,1N
1−r
d ‖u‖r, ‖u− uN‖1 ≤ γω−1cr,1N

1−r‖u‖r,mix, r = 1, 2, 3,

and ‖u − uN‖1 ≤ γω−1c1N
− 5

2 ‖u‖4,mix, where cr,1 and c1 are the constants from Lemma 2.28
and Theorem 2.29 respectively.

As in the case of function approximation, when u /∈ H4
mix(−1, 1)d we require additional

regularity for the hyperbolic cross approximation to obtain the same convergence rate as its
full index set counterpart. However, provided that u ∈ H4

mix(−1, 1)d, the convergence rates in
this norm are identical.

Estimates for the error of the Laplace–Dirichlet Galerkin approximation can be obtained
in a straightforward manner. For example, if u ∈ H3

mix(Ω) is the solution to the problem (4.5),

then Lemma 2.25 and Theorem 2.29 give that ‖u− uN‖1 is O(N−
3
2 ).

As is evident, all error estimates for Galerkin approximations rely on the smoothness of
the solution u. Clearly H1(Ω) regularity is guaranteed, since u is defined as the solution of
the weak problem (4.2). However, it can also be shown that u ∈ H2(Ω) [80]. In other words,
u is a classical solution: the residual L[u]− f vanishes almost everywhere in Ω. Moreover, u
also satisfies the stability estimate ‖u‖2 ≤ c‖f‖, where c > 0 depends only on Ω and L.

In the univariate setting, higher regularity is guaranteed by a so-called shift theorem.
If f ∈ Hr(−1, 1) then the solution u ∈ Hr+2(−1, 1) for any r ≥ 0 [77, 80]. In two or
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more dimensions, where the boundary Γ is non-smooth, this is no longer the case: even in
f ∈ C∞(Ω̄), examples can be constructed where u /∈ H2+r(Ω) for any r > 0 [77]. In general,
the solution u will exhibit weak singularities at the vertices of the domain. Effective numerical
treatment of such discontinuities, along the lines of smoothing the function u by subtracting
out such singularities, is beyond the scope of this study.10

Returning to the problem at hand, we note that, when measured in the H1(Ω) norm, the
error ‖u−uN‖1 is asymptotically of the same order as ‖u−FN [u]‖1, i.e. the error incurred by
the best approximation to u from SN . Hence, we refer to uN as a quasi-optimal approximation
in this norm. We now assess the same question for the L2(Ω) norm. We commence with the
Dirichlet problem:

Lemma 4.15. Suppose that uN is the Laplace–Dirichlet Galerkin approximation. Then

‖u− uN‖ ≤
(
1 + ‖a‖ω−1

)
‖u−FN [u]‖. (4.16)

Proof. Since uN is the Galerkin approximation to u, we have T (uN , φ) = (f, v) = T (u, φ) for
all φ ∈ SN . Suppose that we write u = FN [u] + (u−FN [u]). Then, setting φ = uN −FN [u] ∈
SN in the above expression and using the coercivity condition gives

ω‖uN −FN [u]‖21 ≤ T (uN −FN [u], uN −FN [u]) = T (u−FN [u], uN −FN [u]).

Since u−FN [u] is orthogonal to any φ ∈ SN , we obtain

ω‖uN −FN [u]‖21 ≤ (a · ∇[u−FN [u]], uN −FN [u]).

We now note that (a · ∇v, w) = −(v, a · ∇w), ∀v, w ∈ H1
0(Ω). Setting v = u − FN [u] and

w = uN −FN [u] now yields

ω‖uN −FN [u]‖21 = −(u−FN [u], a · ∇[uN −FN [u]]) ≤ ‖a‖‖u−FN [u]‖‖uN −FN [u]‖1.

This gives ‖uN − FN [u]‖1 ≤ ‖a‖ω−1‖u − FN [u]‖. This result follows straightaway from the
decomposition u− uN = u−FN [u] + FN [u]− uN .

In view of this lemma, we deduce that uN , the approximation to the Dirichlet problem,
is also quasi-optimal in the L2(Ω) norm. Note that, given sufficient regularity, it follows that

‖u− uN‖ = O(N−
5
2 (logN)

d−1
2 ) when a hyperbolic cross index set is employed.

Next we address the Neumann case:

Lemma 4.16. Suppose that uN is the modified Fourier–Galerkin approximation. Then

‖u− uN‖ ≤ c (‖u−FN [u]‖Γ + ‖u−FN [u]‖) , (4.17)

where ‖g‖2Γ =
∫

Γ |g(x)|2 dx for g ∈ L2(Γ), and c > 0 is independent of u and N .

10A more detailed assessment is given, for example, in [31]. We note, however, that it is commonly rec-
ommended that such singularities be ignored when designing numerical algorithms, except in cases when it is
known a priori that the solution u is discontinuous, or if slow convergence of numerical schemes suggests a
posteriori that singularities are present [31, p.121].
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Proof. As in the previous lemma, we have

ω‖uN −FN [u]‖21 ≤ (a · ∇[u−FN [u]], uN −FN [u]).

We note that (a ·∇v, w) =
∫

Γ n̂.avw− (v, a ·∇w), ∀v, w ∈ H1(Ω), where n̂ is the unit outward
normal vector on Γ. Hence,

ω‖uN −FN [u]‖21 ≤ c‖u−FN [u]‖Γ‖uN −FN [u]‖Γ. (4.18)

The result now follows from the trace inequality ‖g‖Γ ≤ c‖g‖1, ∀g ∈ H1(Ω) [56].

As a result of this lemma, to assess the error ‖u − uN‖ we require an estimate for ‖u −
FN [u]‖Γ. To provide this, we first derive an improved trace inequality:

Lemma 4.17. We have ‖g‖Γ ≤ c
√
‖g‖‖g‖1, ∀g ∈ H1(Ω), where c > 0 is independent of g.

Proof. Consider g(±1, x2, . . . , xd). By the univariate Sobolev interpolation inequality ‖h‖∞ ≤
c
√
‖h‖‖h‖1, ∀h ∈ H1(−1, 1), it follows that∫ 1

−1
. . .

∫ 1

−1
g(±1, x2, . . . , xd)

2 dx2 . . . dxd

≤ c
∫ 1

−1
. . .

∫ 1

−1

[∫ 1

−1
g(x)2 dx1

] 1
2
[∫ 1

−1
g(x)2 + ∂x1g(x)2 dx1

] 1
2

dx2 . . . dxd

≤ c‖g‖‖g‖1.

Hence we obtain the result.

Corollary 4.18. Suppose that uN is the modified Fourier–Galerkin approximation. Then

‖u− uN‖ ≤ c
√
‖u−FN [u]‖‖u−FN [u]‖1,

for some constant c > 0 independent of u and N .

From this corollary, we conclude that uN is no longer quasi-optimal in the L2(Ω) norm.

For example, when a hyperbolic cross index set is employed, ‖u− uN‖ = O(N−3(logN)
d−1

4 ),

whereas ‖u − FN [u]‖ = O(N−
7
2 (logN)

d−1
2 ). This estimate is corroborated by numerical

example at the end of this section.
In view of the results of this section, we deduce that the hyperbolic cross approximation

converges no more slowly than its full index set counterpart (given sufficient regularity).
This, in combination with the arguments of the previous section, establishes the advantage
of the hyperbolic cross in this context (i.e. reduced computational cost and comparable error
estimates). Hence it shall form our primary consideration from now on.

Our final result of this section assesses the uniform error of the approximation uN :

Lemma 4.19. Suppose that u ∈ L∞(Ω) and that uN is the Laplace–Dirichlet or Laplace–
Neumann Galerkin approximation based on the hyperbolic cross (2.41). Then, for d = 1,

‖u− uN‖∞ ≤ c‖u−FN [u]‖∞,

and for d ≥ 2,

‖u− uN‖∞ ≤ cN
1
2 (logN)

d−1
2 ‖u− uN‖+ ‖u−FN [u]‖∞.
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Figure 4.2: Scaled errors N3(logN)−
d−1
4 ‖u−uN‖ (left) and N

5
2 ‖u−uN‖1 (right) for (4.19) (squares)

and (4.20) (circles).

Proof. Consider the univariate case first. For d = 1, the estimate (4.18) reduces to ‖uN −
FN [u]‖1 ≤ c‖u − FN [u]‖∞. The result now follows immediately from the decomposition
u− uN = FN [u]− uN + u−FN [u] and the imbedding H1(−1, 1) ↪→ C[−1, 1].

Next we consider the case d ≥ 2. Once more, we have ‖u−uN‖∞ ≤ ‖FN [u]−uN‖∞+‖u−
FN [u]‖∞. Now suppose that v ∈ SN is arbitrary. We claim that ‖v‖∞ ≤ cN

1
2 (logN)

d−1
2 ‖v‖

for some constant c > 0 independent of N and v. In particular, if v = FN [u]− uN , then the
lemma is verified upon substituting this result into the previous expression (and noting that
‖u − uN‖2 = ‖FN [u] − uN‖2 + ‖u − FN [u]‖2 ≥ ‖FN [u] − uN‖2 by orthogonality). However,
by the Cauchy–Schwarz inequality,

‖v‖∞ ≤
∑

i∈{0,1}d

∑
n∈IN

|v̂[i]
n | ≤ c|IN |

1
2

 ∑
i∈{0,1}d

∑
n∈IN

|v̂[i]
n |2
 1

2

≤ cN
1
2 (logN)

d−1
2 ‖v‖,

as required.

In the Dirichlet case, this lemma establishes an O
(
N−2(logN)d−1

)
estimate for the

uniform error, provided u ∈ H3
mix(Ω); a result which is asymptotically the same order as

‖u−FN [u]‖∞. For the Neumann problem, the corresponding estimate is O(N−
5
2 (logN)d−1)

for d ≥ 2, which numerical examples indicate is sub-optimal. Conversely, the univariate
estimate is quasi-optimal.

In Figure 4.2 we consider the univariate Neumann problem

−u′′(x) + u′(x) + 2u(x) = x3ex, x ∈ (−1, 1), u′(±1) = 0, (4.19)

and the bivariate problem with parameters a1 = −1, a2 = 2, b = 4 and exact solution

u(x1, x2) =ex1x2 − x2

4

[
(1 + x1)2ex2 + (1− x1)2e−x2

]
− x1

4

[
(1 + x2)2ex1 + (1− x2)2e−x1

]
+

e

8

[
(1− x)2(1− y)2 + (1 + x)2(1 + y)2

]
, (4.20)

with f(x1, x2) given accordingly. Both the previously derived H1(Ω) and L2(Ω) error estimates
are confirmed for these examples. Moreover, graphs of the pointwise error, given in Figure 4.3,
verify both the uniform error estimate of Lemma 4.19 for the case d = 1 and the non-optimality
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Figure 4.3: Scaled error N3(logN)−(d−1)|u(x) − uN (x)| against N = 1, . . . , 100 for the problems
(4.19) (left), where x = −1 (squares), x = 1

4 (circles) and x = 3
4 (crosses), and (4.20) (right), where

x = (1,−1), x = (−1, 1) and x = (0,− 1
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Figure 4.4: Log pointwise error log10 |u(x)−uN (x)| for −1 ≤ x ≤ 1 and N = 20, 40, 80 (in descending
order), where uN is the modified Fourier–Galerkin (left) or Laplace–Dirichlet Galerkin (right) approx-
imation to the problem −u′′(x) + u′(x) + 2u(x) = f(x) with boundary conditions u′(±1) = 0 and
u(±1) = 0 respectively.

of the corresponding multivariate result. Indeed, the indication given by this example is that
the approximation remains quasi-optimal in the uniform norm for d ≥ 2.

In the trivial case a = 0, the pointwise error for both the Neumann and Dirichlet approx-
imations is one power of N faster inside the domain than on the boundary (see Chapter 2).
For a 6= 0, as we indicate in Figure 4.4, the same effect occurs for the Dirichlet approximation,
yet we have no proof of this fact. On the other hand, the Neumann approximation does not
offer a faster convergence rate inside the domain when a 6= 0, as demonstrated by Figure 4.3.

4.3.5 Numerical comparison

Standard spectral–Galerkin approximations for (4.5) involving Jacobi polynomials, usually of
Chebyshev or Legendre type, guarantee spectral convergence provided the solution is smooth.
The efficient methods of Shen [78, 146, 147], based on such polynomials, can be optimally
preconditioned, and the O

(
Nd
)

coefficients of the approximation found in O
(
Nd+1

)
opera-

tions.
Conversely, both the modified Fourier and Laplace–Dirichlet methods converge slowly un-

less the solution u obeys higher-order derivative conditions. However, due to their lower com-
plexity (only O

(
N(logN)d−1

)
terms which can be found in O

(
N2
)

operations), for certain
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Figure 4.5: Comparison of the modified Fourier (circles) and Legendre–Galerkin (crosses) methods
applied to the Neumann problem (4.5) with exact solution (4.21)–(4.23) (left to right). (top) log L2(Ω)
error log10 ‖u− uN‖ against number of terms, (bottom) log H1(Ω) error log10 ‖u− uN‖1.

examples, these methods offer significantly lower errors for moderate values of the parameter
N . We now consider three such examples, all Neumann problems, with parameters d = 3,
b = 2, a = 0 and exact solutions

u(x, y, z) = sin(2x(2x2 − 2)2)(sin y − y cos 1)(z5 − 5z), (4.21)

u(x, y, z) = ez
2 cos 4y+x2 − p(x, y, z), (4.22)

u(x, y, z) = x2 cos(y sin 5x) cosh z − p(x, y, z), (4.23)

respectively. Note that in (4.22) and (4.23) the function p interpolates the Neumann data of
the functions v(x, y, z) = x2 cos(y sin 5x) cosh z and v(x, y, z) = ez

2 cos 4y+x2
:

p(x, y, z) =
1

2

[
vx(1, y, z)x2 + vy(x, 1, z)y

2 + vz(x, y, 1)z2
]

− 1

4

[
vxy(1, 1, z)x

2y2 + vxz(1, y, 1)x2z2 + vyz(x, 1, 1)y2z2
]

+
1

8
vxyz(1, 1, 1)x2y2z2.

In Figure 4.5 we plot the error against the number of approximation terms for this method and
the Legendre–Galerkin method (the Chebyshev–Galerkin method gives similar results). As is
evident, the modified Fourier method offers a smaller error until the number of approximation
coefficients is moderately large. In particular, at least 3375 terms are required before the
Legendre approximations to (4.21)–(4.23), which involve O

(
N3
)

coefficients in comparison to
O
(
N(logN)2

)
, become superior.

For d > 3, this effect will become more pronounced. Due to itsO
(
Nd
)

terms andO
(
Nd+1

)
complexity, the Legendre method becomes impractical for such higher dimensional problems.
Moreover, the techniques to construct Legendre–Galerkin approximations are specific to di-
mension [146]. Conversely, the coefficients of the modified Fourier approximation are found
using only generic iterative techniques, which are essentially independent of d.

Note that these plots do not take into account the operational cost of each method. As
discussed, the modified Fourier method is likely to perform even better if we were to take this
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Figure 4.6: Log error log10 ‖u−uN‖ against number of terms for the modified Fourier and Legendre–
Galerkin methods applied to the problem with a = 0, b = 2 and exact solutions u1 (left), u2 (middle)
and u3 (right), where ω = 10.

factor into account. Having said that, we note that a central issue concerning the modified

Fourier method is the computation of the coefficients f̂
[i]
n , meaning that a direct comparison of

the two methods in terms of computational time is premature. The design of efficient, robust
algorithms based on the quadratures developed in [94, 95] is a subject of ongoing research, as
we discuss briefly in Chapter 6.

Having provided examples where the modified Fourier method is advantageous, it should
be noted that such improvement is certainly not in evidence for all problems. In particular,
whenever the solution u has large mixed derivative in comparison to its classical derivative,
the Legendre–Galerkin approach (which is based on a full index set) will outperform the
modified Fourier method (which utilises the hyperbolic cross). This feature is common to all
hyperbolic cross/sparse grid methods. By way of example, consider the functions

u1(x, y, z) = vω(x)v1(y)v1(z), u2(x, y, z) = vω(x)vω(y)v1(z), u3(x, y, z) = vω(x)vω(y)vω(z),

where vt(x) = cosh[t(1−x2)]
cosh t for t ∈ R, which satisfy ‖ui‖r = O (ωr) and ‖ui‖r,mix = O

(
ωir
)

for i = 1, 2, 3. Figure 4.6 compares the two methods for these example. For u1, the modified
Fourier method outperforms the Legendre method for moderate values of N . However, this
effect is less pronounced for u2, and does not occur at all for u3.

Even for problems where the modified Fourier method outperforms polynomial-based
methods for moderate N , this regime may be rather small (especially for d = 2, 3). To
address this issue—thereby making the method effective for a broader range of problems—the
topic of convergence acceleration of modified Fourier approximations is broached in Chapter
5. In Chapter 6, we briefly discuss the application of the ensuing techniques to boundary
value problems.

4.4 Extensions

The second-order, constant coefficient problem (4.5) presents the simplest setting for Laplace
eigenfunction approximations. In this section, we assess the applicability of such techniques
to several more general types of problems. In particular, we first consider variable-coefficient,
second-order Neumann and Dirichlet problems, and in Section 4.4.5 we scrutinise the appli-
cation of such methods to higher, even-order boundary value problems.
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Figure 4.7: (left) scaled pointwise error N3|u(x) − uN (x)| where u is given by (4.25) and x = −1
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2 (circles), x = − 1
4 (crosses). (middle) scaled pointwise error N3(logN)−1|u(x)−uN (x)|

for (4.26), where (x1, x2) = (1,−1), (1, 14 ) and (− 1
2 ,−

1
2 ). (right) scaled H1 error N
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2 ‖u − uN‖1 for
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4.4.1 Variable-coefficient Neumann boundary value problems

The modified Fourier–Galerkin method may be extended in a straightforward manner to the
variable-coefficient problem

L[u](x) = −4u(x) + a(x) · ∇u(x) + b(x)u(x) = f(x), x ∈ Ω,
∂u

∂n

∣∣∣
∂Ω

= 0, (4.24)

where b : Ω → R and a : Ω → Rd are (sufficiently smooth11) functions of x. Note that
coercivity of the bilinear form T is equivalent to the condition minx∈Ω̄

{
b(x)− 1

4‖a(x)‖2
}
> 0.

Under this condition, convergence may be analysed in an identical manner to the constant
coefficient case previously studied. In particular, the H1(Ω) norm error remains O(N−

5
2 ).

Once more, numerical results indicate that the uniform error is O(N−3(logN)d−1).

In Figure 4.7 we demonstrate these results for the univariate problem with parameters

u(x) = cos 3x+
3x2

2
sin 3, a(x) = x, b(x) = e−x, (4.25)

and the bivariate problem

u(x1, y2) =
1

2
sin 2x1x2 − x1x2(cos 2x1 + cos 2x2 + 2 sin 2− cos 2),

a(x1, x2) ≡ 0, b(x1, x2) = cos(x1 + x2). (4.26)

We note in passing that previously derived estimates for the condition number also remain
valid in the variable-coefficient setting.

The central question remaining in this case is the computation of the approximation uN .
Once more, we devise a scheme based on an appropriate decomposition of the operator L. To
this end, we write L = (−4+ b0I) + (a · ∇+ (b− b0)I), where b0 = maxx∈Ω̄ b(x), and define
MG and NG as the matrices corresponding to these operators.12 Concerning such matrices,
we have the following result:

11In practice, we shall assume that a and b are continuous on Ω̄. However, lower smoothness conditions may
be imposed [142, chapter 6].

12This is a standard approach for variable-coefficient discretisations. See, for example, [47, 147].
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Lemma 4.20. Suppose that ρ(M−1
G NG) is the spectral radius of the matrix M−1

G NG. Then

ρ(M−1
G NG) ≤ 1−

minx∈Ω̄

{
b(x)− 1

4‖a(x)‖2
}

b0
.

In particular, if the operator T is coercive, then ρ(M−1
G NG) < 1.

Proof. Suppose that λ is an eigenvalue of M−1
G NG with corresponding eigenfunction u ∈ SN .

Then

λ = −((b0 − b)u, u) + (a · ∇u, u)

b0‖u‖2 + ‖∇u‖2
.

Note that b0 − b(x) ≥ 0 for all x ∈ Ω̄. An application of Young’s inequality now gives

|λ| ≤
∫

Ω

(
b0 − b(x) + 1

4‖a(x)‖2
)
u(x)2 dx+ ‖∇u‖2

b0‖u‖2 + ‖∇u‖2

≤
maxx∈Ω̄

{
b0 − b(x) + 1

4‖a(x)‖2
}
‖u‖2 + ‖∇u‖2

b0‖u‖2 + ‖∇u‖2

≤
maxx∈Ω̄

{
b0 − b(x) + 1

4‖a(x)‖2
}
‖u‖2

b0
= 1−

minx∈Ω̄

{
b(x)− 1

4‖a(x)‖2
}

b0
,

as required.

As a consequence of this lemma, Galerkin’s equations AGū = f̂ for the problem (4.24)
can be solved using the classical Lanczos iteration MGū

k+1 = −NGū
k + f̂ , k = 0, 1, 2, . . .,

where ū0 is arbitrary and ūk is the kth iterate [66]. Convergence of this iteration to within
a prescribed numerical tolerance is guaranteed by Lemma 4.20. Moreover, since the bound
established is independent of N , the number of iterations required is also independent of N .
We conclude that the total cost of this approach is determined by the number of operations
required to perform matrix-vector multiplications involving NG.

The matrix NG is typically dense; thus, direct evaluation requires O
(
|IN |2

)
operations.

However, the action of NG involves finding modified Fourier coefficients of products and
derivatives of finite modified Fourier sums. Hence, this figure can be reduced to O

(
Nd logN

)
by using the FFT in the case of the full index set (2.33) and, in theory, to O

(
N(logN)d

)
by

use of the SGFFT in the hyperbolic cross case (2.41).
Conjugate gradients can also be applied to the preconditioned normal equations.13 It can

be shown that the diagonal matrix MG corresponding to −4+ b0I is optimal for the spectral
condition number. However, though numerical results indicate it to be the case, it is not
known whether this holds for the L2 condition number.

If the FFT or SGFFT are not to be used, it is necessary to express Galerkin’s equations
explicitly. As expected, the entries of the matrix AG involve both Laplace–Dirichlet and
Laplace–Neumann coefficients of the functions b(x) and aj(x), j = 1, . . . , d, where a(x) =
(a1(x), . . . , ad(x))>. Thus, they may be calculated using the quadrature methods outlined

in Section 2.12. The underlying reason for this observation is that the products φ
[i]
n φ

[l]
m and

φ
[i]
n (φ

[l]
m)′, i, l ∈ {0, 1}, n,m ∈ N0, may be expressed in terms of sums of Laplace–Neumann

and Laplace–Dirichlet eigenfunctions.14

13Commonly, conjugate gradients are preferred over Lanczos iterations [42].
14Much like in the classical Fourier case, this observation underpins why fast evaluation of matrix-vector

products can be achieved by a variant of the FFT.
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To demonstrate this, and hence derive an explicit expression for AG, it is useful to redefine

the univariate eigenfunction φ
[0]
0 = 1 as opposed to φ

[0]
0 = 1√

2
. This eigenfunction is no longer

normalised; to counter this, we define the scaling parameter c
[i]
n by c

[0]
0 = 1

2 and c
[i]
n = 1

otherwise.
With eigenfunctions φ

[i]
n expressed in this manner, for n,m ∈ N0 and i, l ∈ {0, 1}, we have

φ[i]
n φ

[l]
m =

1

2

{
(−1)ilφ

[i+l]
n+m−il + φ

[i+l]

(−1)l(n−m)

}
,

φ[i]
n (φ[l]

m)′ =
α

[l]
m

2

{
(−1)(1−i)(1−l)ψ

[i+l+1]
n+m−il + (−1)1−lψ

[1+i+l]

(−1)il(m−n)

}
, (4.27)

where ψ
[i]
n is the nth univariate Laplace–Dirichlet eigenfunction. Here the sum i + l is taken

modulo 2 and φ
[0]
−n = φ

[0]
n , φ

[1]
−n = −φ[1]

n+1, ψ
[0]
−n = ψ

[0]
n+1 and ψ

[1]
−n = −ψ[1]

n for n ∈ N0.
It is now possible to give an explicit expression for the matrix AG. We shall not present

the full multivariate case. Instead we focus on the univariate setting. The extension to d ≥ 2
is conceptually clear, but algebraically convoluted.

Lemma 4.21. The modified Fourier–Galerkin matrix AG corresponding to the univariate
problem (4.24) is given by

AG =

(
D[0] 0

0 D[1]

)
+

(
B[0,0] B[0,1]

B[1,0] B[1,1]

)
+

(
C [0,0] C [0,1]

C [1,0] C [1,1]

)
,

where D[i] is the diagonal matrix with entries c
[i]
n µ

[i]
n and B[i,l], C [i,l] ∈ R(N+1−i)×(N+1−l) have

(n,m)th entries

B[i,l]
n,m =

α
[l]
m

2

{
(−1)(1−i)(1−l)ǎ

[i+l+1]
n+m−il + (−1)1−lǎ

[1+i+l]

(−1)il(m−n)

}
,

C [i,l]
n,m =

1

2

{
(−1)ilb̂

[i+l]
n+m−il + b̂

[i+l]

(−1)l(n−m)

}
, i, l ∈ {0, 1}, n,m ∈ N0.

Proof. The entry of AG corresponding to indices i, l ∈ {0, 1} and n,m ∈ N0 is

(L[φ[l]
m], φ[i]

n ) =

∫ 1

−1

{
−(φ[l]

m)′′(x) + a(x)(φ[l]
m)′(x) + b(x)φ[l]

m(x)
}
φ[i]
n (x) dx.

The result now follows immediately from (4.27).

4.4.2 General second order Neumann boundary value problems

Unfortunately, the modified Fourier–Galerkin technique is limited to problems of the form
(4.24). Following the approach of [142, chapter 6], a significantly more general setting is
presented by the following problem:

L[u] = −
d∑

i,j=1

∂xi
(
ai,j∂xju

)
−

d∑
i=1

bi∂xiu+ cu = f, B[u] = 0, (4.28)

where ai,j , bi, c : Ω→ R are given functions of sufficient smoothness and B[u] are appropriate
boundary conditions. In general, the operator (4.28) is nonseparable. Such an operator often
occurs when co-ordinate mappings are employed [42].
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Associated with the operator L is the bilinear form

T (u, v) =
d∑

i,j=1

(
ai,j∂xiu, ∂xjv

)
−

d∑
j=1

(bi∂xiu, v) + (cu, v) , ∀u, v ∈ H1(Ω). (4.29)

Appropriate boundary conditions can be assigned by equating the weak form T with the
operator L. Since T (u, v) = (L[u], v) for all u, v of sufficient smoothness, it is readily seen
that Dirichlet boundary conditions B[u] = u|∂Ω can be imposed in this setting. However, the
appropriate generalisation of Neumann boundary conditions involves the so-called co-normal
derivative of u:

B[u] =
d∑

i,j=1

n̂iai,j∂xju
∣∣
∂Ω
, (4.30)

where n̂ is the unit normal vector. If ai,j = 0 whenever i 6= j, these readily reduce to the
standard Neumann boundary conditions, and Laplace–Neumann eigenfunctions may be used
for discretisation. However, such eigenfunctions do not form a suitable basis for approximation
of the general problem.

Of course, the boundary conditions (4.30) are natural, and so can be enforced in a weak
manner rather than by the choice of approximation basis. However, this approach will yield
a poor rate of convergence if the modified Fourier basis is employed (clearly, the co-normal
derivative of the Galerkin approximation uN will not converge uniformly to the corresponding
derivative of u).

This raises the question of whether or not a simple basis of eigenfunctions satisfying the
boundary conditions (4.30) can be constructed. However, this can be almost immediately
disregarded: the boundary conditions are nonseparable, so such eigenfunctions do not arise
from Cartesian products, thus limiting their practical use.

4.4.3 General second order Dirichlet boundary value problems

Aside from Neumann boundary conditions involving co-normal derivatives, the operator (4.28)
is also frequently endowed with homogeneous Dirichlet boundary conditions: B[u] = u|∂Ω =
0. Since such boundary conditions are separable, and identical to those of the simple case
(4.5), Laplace–Dirichlet eigenfunctions form a suitable discretisation basis. In this section, we
describe some of the salient features of this approach.

It is first necessary to derive a coercivity condition for the operator (4.29). As outlined in
[142, chapter 6] we assume that the operator T is elliptic on Ω. In other words, there exists
a positive constant α such that

d∑
i,j=1

ai,j(x)ξiξj ≥ α‖ξ‖2, ∀ξ = (ξ1, . . . , ξd) ∈ Rd,

for almost every x ∈ Ω. With this in hand, we now consider the other terms of T . Since
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Figure 4.8: Error in the Laplace–Dirichlet Galerkin approximation. (left) scaled error N3|u(x0) −
uN (x0)| for N = 1, . . . , 100, where x0 = 1

2 (squares) and x0 = − 1
2 (circles) respectively. (right) scaled

errors N2‖u− uN‖∞ (squares) and N
5
2 ‖u− uN‖ (circles).

(bi∂xiu, u) = −1
2

(
∂xibi, u

2
)
, the ellipticity condition gives

T (u, u) =
d∑

i,j=1

(
ai,j∂xiu, ∂xju

)
+

1

2

d∑
i=1

(
∂xibi, u

2
)

+ (cu, u).

≥ α‖∇u‖2 + min
x∈Ω̄

{ d∑
j=1

∂xibi(x) + c(x)
}
‖u‖2.

Hence, provided minx∈Ω̄{
∑d

j=1 ∂xibi(x) + c(x)} > − α
C2 , where C is the constant in Poincaré’s

inequality, the operator T is coercive.

We may now discretise this problem in the standard manner with Laplace–Dirichlet eigen-
functions. The resulting method admits similar analysis to that given in the constant coeffi-
cient case. Once more, the spectral condition number is O

(
N2
)

and the matrix MG corre-
sponding to the operator −4 + b0I, where b0 ≥ 0 is arbitrary, is an optimal preconditioner.
Analysis of the convergence rate of this approximation may also be carried out.

Furthermore, efficient solution of Galerkin’s equations can be achieved by the minimax
principle [47, 147]. This is based on the splitting AG = MG + NG, where the parameter
b0 appearing in MG is chosen appropriately to ensure convergence of the iterative scheme.
Alternatively, conjugate gradients can be employed.

Application of the Laplace–Dirichlet Galerkin approximation to the univariate problem
−(a(x)u′(x))′ = f(x), u(±1) = 0, where u(x) = x3ex − 3e−x +

(
2e−1 + e

)
+
(
e−1 − 2e

)
x

and a(x) = 1 + ex, is considered in Figure 4.8. As demonstrated, the uniform and L2(−1, 1)

norm errors are O(N−2) and O(N−
5
2 ) respectively. Moreover, much like the case of the

approximation FN [u], the pointwise convergence rate is one power of N faster away from
the endpoints, i.e. O(N−3). Complementing these results, Table 4.2 verifies both O(N2)
condition number of the Galerkin matrix and its optimal preconditioning via the diagonal
matrix MG.

4.4.4 Other boundary conditions

As discussed in Section 2.11, Laplace eigenfunctions techniques can be applied to a variety of
problems with different boundary conditions. The key element is that the boundary conditions
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N = 10 N = 20 N = 30 N = 40

κ(AG) 507.883 2187.79 5113.48 9313.57

N−2κ(AG) 5.07883 5.46946 5.68165 5.82098

κ(AGM
−1
G ) 2.83349 2.89153 2.90876 2.91682

Table 4.2: Condition numbers for the Laplace–Dirichlet Galerkin matrix AG and the preconditioned
matrix AGM
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Figure 4.9: Pointwise error log10 |u(x)− uN (x)| against x ∈ [−1, 1] for N = 20, 40, 80 (in descending
order), where uN is the Galerkin approximation to the problem with mixed (left) and Robin (right)
boundary conditions.

be separable, thus endowing the eigenfunctions with a tensor-product structure. As previously
suggested, even for second-order problems, there are a whole host of multivariate nonseparable
boundary conditions, whose numerical treatment requires considerable care, regardless of the
particular approximation scheme used.

To illustrate the application of this approach beyond Neumann or Dirichlet boundary
conditions, consider the constant coefficient problem (4.19) with either the mixed u(−1) =
u′(1) = 0 or Robin u′(±1) + 3u(±1) = 0 boundary conditions. Figure 4.9 presents numerical
results for the discretisation of these problems based on the Laplace eigenfunctions (2.52) and
(2.54) respectively. In correspondence with our expectations (see Section 2.11), the approxi-
mation to the Robin problem offers an O(N−3) uniform error, whereas this figure is O(N−2)
for the problem with mixed boundary conditions. Note that, as with the Laplace–Dirichlet
case, the approximation to the mixed problem converges faster away from the endpoints. Yet,
much like in the modified Fourier case, this effect does not occur in the Robin setting.

4.4.5 Higher-order problems

Higher-order boundary value problems often arise in the mathematical modelling of physical
phenomena. Even-order differential equations, in particular, arise in astrophysics, structural
mechanics and geophysics [55, 79]. Typical examples of such problems include

42u− a4u+ bu = f, u|Γ = n̂ · ∇u|Γ = 0, (4.31)

which serves as a model for the clamped rod problem (and also arises in the time discretisation
of various models for flame propagation [147]), and the sixth order problem

− (4− b)3 u = f, u|Γ = n̂ · ∇u|Γ = 4u|Γ = 0, (4.32)



4.4 Extensions 121

frequently occurring in astrophysics [15, 30]. Note that both (4.31) and (4.32) are special
cases of the general 2qth order Dirichlet problem

L[u] = f, Br[u] = 0, r = 0, . . . , q − 1, (4.33)

where B2r[u] = 4ru|Γ and B2r+1[u] = n̂.∇4ru|Γ.
Due to the large number of boundary conditions, finite difference or finite element schemes

for (4.33) are typically cumbersome to implement, as are spectral collocation methods [79].
To counter this, basis functions are sought that individually satisfy boundary conditions.
Though spectral–Galerkin schemes for such problems can be constructed from generalised
Jacobi polynomials [78], there are, in general, far fewer effective methods for higher-order
problems than for the second-order case.

We now turn our attention to the discretisation of such problems by Laplace eigenfunction
techniques. Consider the univariate 2qth order problem

L[u](x) = f(x), x ∈ (−1, 1), u(±1) = . . . u(q−1)(±1) = 0. (4.34)

To design an approximation scheme, we first seek basis functions that match boundary condi-
tions individually. Thus, given a finite set of Laplace eigenfunctions, we construct new basis
functions obeying such conditions by taking appropriate linear combinations. Automatically,
Laplace–Dirichlet eigenfunctions satisfy d q2e boundary conditions and Laplace–Neumann b q2c.
Linear combinations involving as few eigenfunctions as possible are naturally preferable (they
lead to lower bandwidth matrices). This indicates that when q is odd, we should use Laplace–
Dirichlet eigenfunctions. Conversely, when q is even, we choose Laplace–Neumann eigenfunc-
tions (due to their faster rate of convergence).15

In either case, the remaining boundary conditions are satisfied by forming appropriate
linear combinations. We write

Φ[i]
n (x) = φ[i]

n (x) +

b q
2
c∑

m=1

a[i]
n,mφ

[i]
n+m(x),

where φ
[i]
n are univariate Laplace–Dirichlet (respectively Laplace–Neumann) eigenfunctions,

and the values a
[i]
n,m ∈ R enforce the remaining boundary conditions. In particular, when

q = 2,

Φ[0]
n (x) = cosnπx+ cos(n+ 1)πx, Φ[1]

n (x) = sin(n− 1
2)πx+ sin(n+ 1

2)πx, (4.35)

and, for q = 3,

Φ[0]
n (x) = cos(n− 1

2)πx+
2n− 1

2n+ 1
cos(n+ 1

2)πx, Φ[1]
n (x) = sinnπx+

n

n+ 1
sin(n+ 1)πx.

The simple extension to the d-variate cube follows immediately via Cartesian products.

Suppose that we define the finite-dimensional space XN = {Φ[i]
n : n ∈ IN , i ∈ {0, 1}d}.

Note that XN ⊆ SN+b q
2
c. Our Galerkin approximation uN ∈ XN to (4.34) is then given

15Polyharmonic–Dirichlet eigenfunctions are seemingly a natural choice for such problems. Indeed, in the
constant coefficient case at least, there is no barrier to their use. However, unlike the Laplace case (see Section
4.4.1), the entries of the discretisation matrix corresponding to a variable-coefficient problem are not known
explicitly, and, as of this moment, there is no fast method for computing such values.
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by the relation T (uN ,Φ) = (f,Φ), ∀Φ ∈ XN , where T is the weak form corresponding to
L. Provided the form T is Hq

0(Ω)-continuous and coercive, we immediately obtain the error
estimate

|u− uN |q ≤
γ

ω
inf

Φ∈XN
|u− Φ|q, (4.36)

where | · |q is the inner product on Hq
0(Ω). Note that this infimum is attained precisely when

Φ = HN [u], where HN : L2(−1, 1)→ XN is the orthogonal projection onto XN .
For the problems (4.31) and (4.32), the corresponding weak forms are given by

T (u, v) = (4u,4v) + a (∇u,∇v) + b(u, v), ∀u, v ∈ H2
0(Ω),

and

T (u, v) = (∇4u,∇4v) + 3b (4u,4v) + 3b2 (∇u,∇v) + b3(u, v), ∀u, v ∈ H3
0(Ω),

respectively. They are continuous and coercive, provided a, b ≥ 0 for (4.31) and b ≥ 0 for
(4.32).

Returning to the general setting, we note that, if the operator L involves only even-
order derivatives, as is the case with (4.31) and (4.32), then the corresponding Galerkin
matrix AG is banded, with bandwidth 1 + 2b q2c. In particular, for (4.31) and (4.32), AG is
tridiagonal, hence easily solvable.16 In general, the matrix AG is dense with condition number
κ(AG) = O(N2q). Hence, the design of effective preconditioners is of paramount importance.
Yet optimal preconditioning, and therefore also fast solution via conjugate gradients, is readily
obtained upon considering the banded matrix corresponding to the highest-order derivatives
in L.

We now wish to assess the rate of convergence of this approximation. For the sake of
simplicity, we restrict ourselves to the univariate, q = 2 case. Identification of the projector
HN [u] for general 2qth order multivariate problems is rather unpleasant, so instead we focus
solely on this scenario:

Lemma 4.22. Suppose that XN = {Φ[i]
n : n = 0, . . . , N, i ∈ {0, 1}}, where the functions Φ

[i]
n

are given by (4.35), and that HN : L2(−1, 1)→ XN is the orthogonal projection. Then

HN [f ](x) = FN+1[f ](x)−
1∑
i=0

a
[i]
N

N+1∑
n=0

(−1)n+iφ[i]
n (x),

where a
[i]
N = 1

2(N+i+1)

{
(−1)iFN+1[f ](1) + FN+1[f ](−1)

}
. In particular, if uN ∈ XN is the

modified Fourier–Galerkin approximation to the univariate problem (4.34) with q = 2, then

|u− uN |2 ≤ c‖u‖4N−
3
2 for some positive constant c independent of N and u.

Proof. For the first part, it suffices to show thatHN [f ] ∈ XN and that (HN [f ],Φ
[i]
n ) = (f,Φ

[i]
n ),

n = 0, . . . , N , i ∈ {0, 1}. Both follow immediately from the properties of the functions φ
[i]
n

and Φ
[i]
n .

16In theory, rather than enforcing a Galerkin condition, we could define the approximation uN ∈ XN via a
Petrov–Galerkin criterion: T (uN , φ) = (f, φ), ∀φ ∈ SN . This would lead to a sparser matrix (with only 1 + b q

2
c

nonzero diagonals). However, the self-adjointness of the operator L is now lost when passing to the discrete
problems—a less than desirable property.
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For the second result, in view of (4.36), an estimate for |u−uN |2 is provided by |u−HN [u]|2.
Note that

u(x)−HN [u](x) = {u(x)−FN+1[u](x)}+

1∑
i=0

a
[i]
N

N+1∑
n=0

(−1)n+iφ[i]
n (x),

where a
[i]
N = 1

2(N+i+1)

{
(−1)iFN+1[u](1) + FN+1[u](−1)

}
. Since u(±1) = 0 and u′(±1) = 0,

we have FN [u](±1) = O
(
N−3

)
. Hence a

[i]
N = O

(
N−4

)
. It now follows from Lemma 2.25 that

|u−HN [u]|22 = |u−FN+1[u]|22 +

1∑
i=0

(a
[i]
N )2

N+1∑
n=0

(µ[i]
n )2

≤ cN−3‖u‖24 + cN−8‖u‖24
N∑
n=1

n4 ≤ c‖u‖2N−3‖u‖24,

as required.

This lemma covers the convergence rate of the modified Fourier–Galerkin approximation
to the clamped rod problem (4.31), for example. However, it turns out that we can provide a
far more accurate assessment in this case. Specifically, the banded structure of AG allows us
to determine an explicit expression for the Galerkin approximation uN :

Theorem 4.23. The modified Fourier–Galerkin approximation uN ∈ XN to the univariate
problem (4.31) is given by

uN (x) = FN+1[u](x)−
1∑
i=0

FN+1[u](1) + (−1)iFN+1[u](−1)

FN+1[p[i]](1) + (−1)iFN+1[p[i]](−1)
FN+1[p[i]](x), (4.37)

where p[i] is the smooth function with modified Fourier coefficients p̂[i]
[1−i]
n = 0, p̂[i]

[i]

n =

(−1)n+i(λ
[i]
n )−1 and λ

[i]
n = (µ

[i]
n )2 + aµ

[i]
n + b. In particular,

‖u− uN‖∞ ≤ c‖u‖4N−3, ‖u− uN‖r ≤ c‖u‖4 max{N r− 7
2 , N−3}, r ∈ N0,

where c > 0 is independent of N and u.

Proof. We first verify that uN (±1) = 0. We have

uN (1) + (−1)luN (−1) = FN+1[u](1) + (−1)lFN+1[u](−1)

−
1∑
i=0

FN+1[u](1) + (−1)iFN+1[u](−1)

FN+1[p[i]](1) + (−1)iFN+1[p[i]](−1)

{
FN+1[p[i]](1) + (−1)lFN+1[p[i]](−1)

}
.

Note that p[0] is even, whereas p[1] is odd. Hence FN+1[p[i]](1) + (−1)1−iFN+1[p[i]](−1) = 0.
It now follows that uN (1) + (−1)luN (−1) = 0, l = 0, 1, as required.

Next, we must verify that (L[uN ],Φ
[i]
n ) = (f,Φ

[i]
n ) for n = 0, . . . , N , i = 0, 1. Note that

L[φ
[i]
n ] = λ

[i]
n φ

[i]
n . Hence(
L[uN ], φ[i]

n

)
= λ[i]

n û
[i]
n −

FN+1[u](1) + (−1)iFN+1[u](−1)

FN+1[p[i]](1) + (−1)iFN+1[p[i]](−1)
(−1)n+i.
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Figure 4.10: Error in the approximation uN to the problem (4.31) with a = b = 0 and exact solution
(sin 4x− x sin 4)2. (left) scaled errors N3‖u− uN‖∞ (squares) and N3|u(x0)− uN (x0)|, where x0 = 0
(circles) and x0 = 9

10 (crosses). (right) pointwise error |u(x)− u50(x)| for −1 ≤ x ≤ 1.

Recalling that Φ
[i]
n = φ

[i]
n + φ

[i]
n+1, we obtain (L[uN ],Φ

[i]
n ) = λ

[i]
n û

[i]
n + λ

[i]
n+1û

[i]
n+1. Now consider

û
[i]
n . Using the asymptotic expansion (2.11), we have

û[i]
n = − 1

µ
[i]
n

(
u′′, φ[i]

n

)
=

(−1)n+i+1

(µ
[i]
n )2

{
u′′′(1) + (−1)i+1u′′′(−1)

}
+

1

(µ
[i]
n )2

(
u(4), φ[i]

n

)
.

Since L[u] = f , this gives

f̂ [i]
n =

(
L[u], φ[i]

n

)
=
(
u(4), φ[i]

n

)
− a

(
u′′, φ[i]

n

)
+ bû[i]

n

= λ[i]
n û

[i]
n + (−1)n+i

{
u′′′(1) + (−1)i+1u′′′(−1)

}
.

It follows immediately that λ
[i]
n û

[i]
n + λ

[i]
n+1û

[i]
n+1 = f̂

[i]
n + f̂

[i]
n+1 = (f,Φ

[i]
n ), thus completing the

first part of the proof. Error estimates are obtained from standard properties of the modified
Fourier projector FN+1[·] and the fact that u(±1) = u′(±1) = 0.

In Figure 4.10 we confirm the result of this theorem. As illustrated, the uniform error is
O
(
N−3

)
. Moreover, the pointwise error does not decay at a faster rate in this case, a fact

which is easily verified upon scrutinising the expression (4.37).
The application of Laplace–Dirichlet eigenfunctions to the sixth order problem (4.32) is

considered in Figure 4.11(a). Once more, we observe that the uniform error is O
(
N−3

)
, a

result which can be established in the same manner as the biharmonic case studied in Theorem
4.23. Note also that the pointwise convergence rate is not, in general, faster than O

(
N−3

)
.

Figure 4.11(b) gives numerical results for the application of this method to the bivariate
clamped rod problem (4.31). As in the univariate cases, the uniform error remains cubic:
when a hyperbolic cross is used, ‖u− uN‖∞ = O

(
N−3 logN

)
.

We mention in passing that, in certain applications, the boundary value problems (4.31)
and (4.32) are alternatively specified with so-called second boundary conditions of either
Dirichlet or Neumann type. In other words,

4ru|Γ = 0, r = 0, . . . , q − 1, or n̂.∇4ru|Γ = 0, r = 0, . . . , q − 1, (4.38)

respectively [15, 30]. Solution of such problems directly via polynomial-based methods is
typically unwise. Discretisation matrices suffer from extreme ill-conditioning, and the re-
sultant accumulation of round-off error typically destroys any approximation quality [146].
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Figure 4.11: (a) error in the approximation uN to the problem (4.32) with b = 2 and exact solution
u(x) = 5(ex−cosh 1−x sinh 1)3. Scaled errors N3‖u−uN‖∞ (squares) and N3|u(x0)−uN (x0)|, where
x0 = 0 (circles) and x0 = − 1

2 (crosses). (b) approximation of the bivariate problem (4.31) with a = b =

0 and exact solution u(x1, x2) = (coshx1 − cosh 1)
2 (
x22 − 1

)2
. Scaled errors N3(logN)−1‖u − uN‖∞

(squares) and N3(logN)−1|u(x0)− uN (x0)|, where x0 = 0 (circles) and x0 = − 1
2 (crosses).

Usually such problems are treated by solving decoupled systems of second order equations.
Nonetheless, direct solution of such problems is extremely easy with Laplace eigenfunctions.
Laplace–Dirichlet or Laplace–Neumann eigenfunctions automatically satisfy the boundary
conditions (4.38), thus immediately permitting discretisation. In particular, for (4.31) or
(4.32) the Galerkin matrix is diagonal. All the properties of the q = 1 case studied previously
are easily generalised to this particular setting.

This section completes our study of modified Fourier–Galerkin methods for boundary value
problems. As commented in Section 4.3.5, convergence acceleration is a primary step towards
the design of increasingly effective methods based on modified Fourier expansions. The next
chapter is devoted to this task.





Chapter 5

Accelerating convergence

5.1 Introduction

A central drawback of expansions in Laplace or polyharmonic eigenfunctions, as demonstrated
in previous chapters, is that the rate of convergence may be slow. Nonetheless, the analysis
provided in Chapters 2 and 3 highlights the precise criteria that determine such convergence
rates: namely, derivative conditions. The purpose of this chapter is to introduce and analyse
a technique to accelerate convergence based on these conditions.

There is an abundance of devices for the convergence acceleration of Fourier-like series.
We defer a discussion of the relative merits of such methods to Section 5.10. The primary
technique we consider in this chapter, the polynomial subtraction device, is arguably one of the
simplest and best known in its most basic form. However, we present a number of significant
generalisations and refinements of this approach, including a full extension to functions defined
on the d-variate cube. Outside of function approximation, a central motivation for developing
such a technique is its potential for incorporation into spectral discretisations of boundary
value problems based on modified Fourier expansions—the main application considered in
this thesis. We return briefly to this topic in Chapter 6.

Unfortunately, polynomial subtraction has a number of well-documented drawbacks [54,
62]. Subsequently, we shall describe these issues in greater detail. Nevertheless, through
the work of this chapter, we will demonstrate how these issues can be successfully bypassed,
leading to a robust, effective method for accelerating convergence. Moreover, the incorporation
of a hyperbolic cross index set leads to a highly accurate approximation scheme for multivariate
functions comprising relatively small numbers of terms.

For reasons of clarity and simplicity, modified Fourier expansions form the principal con-
cern of this chapter. There are no theoretical barriers to adjusting this device for use with
other eigenfunction expansions (including, for example, the polyharmonic expansions of Chap-
ter 3). Needless to say, the vast majority of existing literature on convergence acceleration
deals with Fourier series. We mention in passing that both the theory and practical aspects
presented in this chapter are equally applicable to this case with only minor adjustments (the
main theoretical distinction being a convergence rate one power of N slower than that ob-
tained from modified Fourier expansions, a difference which provided the original motivating
factor for study of the latter).

127
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Convergence acceleration of modified Fourier expansions1 was first considered in [87],
where the polynomial subtraction technique (in its most basic form) was extended to mul-
tivariate expansions. The key problem with this device is that it requires rather extensive
knowledge of the function being approximated, which, in general, is not available. In [4],
an extension of this approach, which successfully circumvents this issue, was developed and
analysed (based on the work of [54] and [16]). The majority of this chapter originates from
the material presented therein.

The key results of this chapter are as follows:

1. If the first k ∈ N0 odd derivatives of a function f are known explicitly on the boundary
of the d-variate cube, then the kth polynomial subtraction approximation of f can be

constructed using only the modified Fourier coefficients f̂
[i]
n and such derivatives. The

corresponding uniform convergence rate is O
(
N−2k−1

)
.

2. Such derivatives can be approximated by linear combinations of the coefficients f̂
[i]
n . The

resulting approximation, the kth Eckhoff approximation of f , converges no slower than
the corresponding polynomial subtraction approximation. In other words, using only

the coefficients f̂
[i]
n , an approximation can be constructed with a uniform convergence

rate of O
(
N−2k−1

)
.

3. Provided certain parameters are selected according to an explicit criterion, the pointwise
convergence rate of the kth Eckhoff approximation inside the domain Ω = (−1, 1)d is
O
(
N−3k−2

)
, a full factor of O

(
Nk
)

faster than the corresponding polynomial subtrac-
tion approximation.

4. The cost of constructing the standard Eckhoff approximation is O
(
kdNd

)
. However, a

hyperbolic cross index set can be incorporated into this approximation, thereby reducing
this figure toO

(
kdN(logN)d−1

)
. The uniform convergence rate is unaffected, aside from

a logarithmic factor.
5. Standard implementations of both polynomial subtraction and Eckhoff’s method employ

certain polynomials to interpolate the requisite derivatives of the function f . This leads
to extreme ill-conditioning. However, a vast improvement is obtained by replacing such
functions with Laplace–Dirichlet eigenfunctions. Combined with a judicious choice of
various parameters and a least squares procedure, this yields a robust, effective method
possessing both high accuracy and good numerical stability.

The eventual objective of this chapter is the construction and subsequent analysis of Eckhoff’s
approximation for functions defined on the d-variate cube. Before doing so, however, we
commence with the case of the unit interval. Moreover, since Eckhoff’s method is based on
the polynomial subtraction technique, we first describe this device in this domain.

5.2 Univariate polynomial subtraction

As established in Chapter 2, if a univariate function f ∈ H2k+2(−1, 1) obeys the first k
Neumann derivative conditions f (2r+1)(±1) = 0, r = 0, . . . , k − 1, then its modified Fourier
expansion converges uniformly at a rate of O

(
N−2k−1

)
, as opposed to O

(
N−1

)
(see Theorem

2.20). Suppose now that f does not satisfy such conditions. We write f in terms of its

1We stress that this refers to modified Fourier expansions. Convergence acceleration of classical Fourier
series has a much more extensive history, as we describe in further detail in Section 5.10.
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Lanczos representation f = (f − gk) + gk [112, 118], where the function gk is chosen so that

f (2r+1)(±1) = g
(2r+1)
k (±1), r = 0, . . . , k−1. Since f−gk obeys the first k derivative conditions,

the new approximation
FN,k[f ] = FN [f − gk] + gk, (5.1)

converges uniformly to f at the faster rate of N−2k−1. This is the polynomial subtraction tech-
nique. We refer to FN,k, as defined in (5.1), as the kth polynomial subtraction approximation
of f (for convenience, we interpret FN,0[f ] as FN [f ]). This idea dates back to Krylov [109],
and was studied more formally in [102, 112]. Since then, it has been widely considered in the
context of Fourier series [19, 67, 97, 118]. Its application to modified Fourier expansions was
originally considered in [87, 94].

Faster convergence of FN,k[f ] to f in various norms is guaranteed by Theorem 2.20 and
Lemma 2.25. For clarity, we now restate these results explicitly in terms of FN,k[f ]:

Theorem 5.1. Suppose that k ∈ N0, f ∈ H2k+2(−1, 1) and that FN,k[f ] is given by (5.1).
Then, the error ‖f (r) − (FN,k[f ])(r)‖∞ is O

(
N r−2k−1

)
for r = 0, . . . , 2k. If, additionally,

f ∈ H2k+3(−1, 1), then the convergence rate of (FN,k[f ])(r) to f (r) is O
(
N r−2k−2

)
uniformly

in compact subsets of (−1, 1) for r = 0, . . . , 2k + 1.

Theorem 5.2. Suppose that f ∈ H2k+2(−1, 1) and that FN,k[f ] is as in Theorem 5.1. Then

‖f −FN,k[f ]‖r is O(N r−2k− 3
2 ) for r = 0, . . . , 2k + 1.

5.2.1 Construction of the subtraction function

Vital to the application of this technique is the construction of the function gk. To accomplish
this, it is convenient to first recall the values

A[i]
r [f ] = (−1)r

[
f (2r+1)(1) + (−1)i+1f (2r+1)(−1)

]
, i ∈ {0, 1}, r ∈ N0, (5.2)

which were introduced in Section 2.7. Note that f (2r+1)(±1) = 0 if and only if A[i]
r [f ] = 0.

The slow convergence of modified Fourier expansions stems from such values being non-
zero. In other words, there are ‘jumps’ in the odd derivatives of f at the endpoints x = ±1.

For this reason, the values A[i]
r [f ] are often referred to as jump values.2 Additionally (and

intimately related), such values also determine the rate of decay of the modified Fourier

coefficients f̂
[i]
n , as considered in Chapter 2. Since

f̂ [i]
n =

k−1∑
r=0

(−1)n+i

(µ
[i]
n )r+1

A[i]
r [f ] +

(−1)k

(µ
[i]
n )k

f̂ (2k)
[i]

n , i ∈ {0, 1}, n ∈ N, (5.3)

it is apparent that f̂
[i]
n = O

(
n−2k−2

)
, provided the first k jump values vanish. Equivalent

statements can also be constructed regarding the smoothness of the periodic extension of the
function f (see Section 2.3).

The definition of the function gk may be restated in terms of such values. That is to say,
we seek a function gk such that

A[i]
r [gk] = A[i]

r [f ], r = 0, . . . , k − 1, i = 0, 1. (5.4)

2This interpretation and terminology is standard practice in the area of computational Fourier analysis that
deals with the resolution of the Gibbs phenomenon [72, 156].
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To construct gk, we introduce (smooth) functions p
[i]
0 , . . . , p

[i]
k−1, where p

[i]
r is even (respectively

odd) if i = 0 (i = 1), that satisfy the conditions

A[i]
r

[
p[i]
s

]
= δr,s, r, s = 0, . . . , k − 1, i ∈ {0, 1}. (5.5)

We say that p
[i]
0 , . . . , p

[i]
k−1 are cardinal functions for the first k derivative conditions. With

this in hand, we define gk by

gk(x) =
1∑
i=0

k−1∑
r=0

A[i]
r [f ]p[i]

r (x), x ∈ [−1, 1]. (5.6)

In standard implementations of this device, the rth cardinal function p
[i]
r is specified to be a

polynomial of degree 2(r+1)−i [16, 54, 112]. This explains the name ‘polynomial subtraction’.

In this case, we refer to the functions {p[i]
r } as cardinal polynomials.

Having said this, a little care is necessary. It is not immediately obvious that such poly-
nomials exist. As discussed in [94], the condition (5.5) is an example of a so-called Birkhoff–
Hermite interpolation problem [116] (the interpolation of non-consecutive derivatives by a
polynomial). In general, such problems are not guaranteed to have a solution. Despite this
warning, however, it is easily confirmed that this particular problem is uniquely solvable [94].3

The first few cardinal polynomials are given by

p
[0]
0 (x) =

1

4
x2, p

[1]
0 (x) =

1

2
x,

p
[0]
1 (x) =

1

48
x2(x2 − 2), p

[1]
0 (x) =

1

12
x(x2 − 3),

p
[0]
2 (x) =

1

1440
x2
(
x4 − 5x2 + 7

)
, p

[1]
2 (x) =

1

240
x(x2 − 5)2,

from which it can be explicitly verified that the modified Fourier coefficient of p
[i]
n , which we

write p̂r
[i]
n (note that, since p

[i]
r is even (respectively odd) for i = 0 (i = 1), the coefficient of

p
[i]
r corresponding to φ

[1−i]
n is zero), satisfies p̂r

[i]
n = (−1)n+i(µ

[i]
n )−r−1. In particular, recalling

the expansion (2.11) of the coefficient f̂
[i]
n ,

f̂ [i]
n =

k−1∑
r=0

A[i]
r [f ]p̂r

[i]
n +

(−1)k

(µ
[i]
n )k

f̂ (2k)
[i]

n = ĝk
[i]
n +

(−1)k

(µ
[i]
n )k

f̂ (2k)
[i]

n = ĝk
[i]
n +O

(
n−2k−2

)
. (5.7)

Hence, the function gk can be viewed as an approximation to f which replicates its modified
Fourier coefficients to high order. This viewpoint is the basis for the generalisation of the
polynomial subtraction technique that we consider in the sequel, namely Eckhoff’s method.

Though the cardinal functions p
[i]
r provide the most simple interpretation, there is no need

for this restriction. Suppose that the (smooth) functions q
[i]
0 , . . . , q

[i]
k−1 have the property that

the interpolation problem

find {a[i]
r : i ∈ {0, 1}, r = 0, . . . , k − 1}

such that
k−1∑
s=0

a[i]
s A[i]

r

[
q[i]
s

]
= b[i]r , i ∈ {0, 1}, r = 0, . . . , k − 1, (5.8)

3The resultant polynomials are shifted Bernoulli polynomials [112]. For this reason, polynomial subtraction
is also referred to as the Bernoulli method [62, 67].
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has a unique solution for all choices b
[i]
r ∈ R. Then we may construct gk as a linear combination

of such functions:

gk(x) =
1∑
i=0

k−1∑
r=0

Ã[i]
r [f ]q[i]

r (x), x ∈ [−1, 1],

where the values Ã[i]
r [f ] enforce (5.4).4 We refer to {q[i]

r : i ∈ {0, 1}, r = 0, . . . , k − 1} as

a subtraction basis. Given such a basis, appropriate cardinal functions p
[i]
r can always be

constructed by taking suitable linear combinations of the functions q
[i]
r . For example, the

aforementioned cardinal polynomials are derived from the subtraction basis consisting of the

monomials q
[i]
r (x) = x2(r+1)−i.

The resulting approximations FN,k[f ] based on either the cardinal or non-cardinal formu-
lations are identical. However, as we demonstrate in Section 5.9, a significant advantage is
gained by allowing this general form (an idea which was suggested in [54]). To this end, we
briefly introduce two other subtraction bases. The first is

q[i]
r (x) = T2(r+1)−i(x), i ∈ {0, 1}, r ∈ N0, (5.9)

where Tm is the mth Chebyshev polynomial.5 The second consists of Laplace–Dirichlet eigen-
functions,

q[0]
r (x) = cos(r + 1

2)πx, q[1]
r (x) = sin(r + 1)πx, r = 0, . . . , k − 1. (5.10)

It is readily verified that both sets of functions form subtraction bases:

Lemma 5.3. Suppose that the functions q
[i]
r are given by (5.9) or (5.10). Then the interpo-

lation problem (5.8) has a unique solution for all choices b
[i]
r ∈ R.

Proof. Suppose that the functions q
[i]
r are given by (5.10). Then

A[i]
r

[
q[i]
s

]
= 2(−1)s+1

(
s+ i+1

2

)2r+1
π2r+1.

The k × k matrix with (r, s)th entry A[i]
r [q

[i]
s ] is of the form (V [i])>D[i], where V [i] is a k × k

Vandermonde matrix with entries (r + i+1
2 )2sπ2s and D[i] is a k × k diagonal matrix with

entries 2(−1)s+1(s+ i+1
2 )π. Hence, the result for (5.10) now follows immediately.

For the Chebyshev polynomials (5.9), existence and uniqueness is a direct consequence of
the fact that the related Birkhoff–Hermite interpolation problem is uniquely solvable with a
polynomial of degree 2k.

We scrutinise the bases (5.9) and (5.10) in greater detail in Section 5.9. As we demonstrate
numerically, the use of Laplace–Dirichlet eigenfunctions yields greatly superior numerical re-
sults over approximations based on subtraction bases derived from polynomials. Hence, the
duality enjoyed by the Laplace–Dirichlet and Laplace–Neumann bases (in the sense of Lemmas
2.4 and 2.5) is not only of theoretical interest, it also has practical consequences.

4In general, the values Ã[i]
r [f ] will also depend on k, unlike the jump values A[i]

r [f ]. However, this presents
few analytical or computational difficulties. For this reason, we do make this dependence explicit.

5We could also use Legendre polynomials with very similar results.
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5.3 Eckhoff’s method for univariate expansions

There are three well-documented problems with the polynomial subtraction technique, which
we now describe. First, the method requires exact jump values. Ordinarily, such values are
unknown. In many applications, only the modified Fourier coefficients of a given function
may be specified. Moreover, even if arbitrary pointwise values of the function can be calcu-
lated, approximation via finite differences is not recommended for this purpose [118]. For the
particular application considered in this thesis, the spectral approximation of boundary value
problems, modified Fourier coefficients can be calculated, but both derivatives and pointwise
values are not explicitly available. To address the convergence acceleration of the modified
Fourier–Galerkin method introduced in Chapter 4 (a task we discuss briefly in Chapter 6),
we must first develop a more sophisticated polynomial subtraction technique for the related
task of function approximation.

The second drawback of polynomial subtraction, as we demonstrate in Section 5.4, relates
to higher dimensions. In addition to pointwise jump values, various partial derivatives need
to be known over (d − 1)-dimensional subsets of the boundary. In practice, these may be
approximated by lower dimensional techniques. However, to do so requires exact knowledge
of O

(
(k +N)d

)
particular values (modified Fourier coefficients of derivatives evaluated on the

boundary), where N is the truncated parameter used. Thus, the situation is even worse in
higher dimensions, making the need to develop techniques to approximate such values even
more pressing.

A final handicap of the polynomial subtraction device is that, for practical purposes,
empirical evidence suggests that the parameter k must remain small [62]. Larger k (i.e.
higher derivatives) often leads to a loss of accuracy, even if exact jump values are used. This
restricts the potential convergence rate of the approximation, thus limiting its applicability.

As noted in [54], the previous lack of robust methods for the approximation of jump values
is the central reason why the polynomial subtraction technique has not been more extensively
utilised (see also [118, p.101] and [62]). In this chapter, to circumvent these aforementioned
problems, we adapt Eckhoff’s method to this task [52, 53, 54]. This approach is based on the
observation that the modified Fourier coefficients themselves contain sufficient information to
reconstruct the jump values. Hence, such values can be approximated to sufficient accuracy
using only coefficients and suitably constructed extrapolation techniques.

After introducing the univariate version of Eckhoff’s method for modified Fourier expan-
sions, we next establish an extension to the d-variate cube (Sections 5.4—5.8). In Section
5.9 we address numerical issues—the third drawback mentioned previously—and, as a result,
demonstrate how to obtain both high accuracy and improved numerical stability.

5.3.1 Eckhoff’s method for the approximation of jump values

Before introducing a technique to approximate the exact jump values (5.2), we must first
justify why inexact values can be used without deteriorating the convergence rate of the
approximation FN,k[f ]. We do this as follows. First, recalling that FN [f ]6 converges uniformly

6For convenience, throughout this chapter, replace N by N − 1 in the definition of FN [f ] as given in (2.4).
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to f , it follows from the expansion (5.7) that

f(x)−FN [f ](x) =

1∑
i=0

k−1∑
r=0

A[i]
r [f ]

(
p[i]
r (x)−FN [p[i]

r ](x)
)

+O
(
N−2k−1

)
, x ∈ [−1, 1].

Now, suppose that the values A[i]
r [f ] are approximated by values Ā[i]

r [f ] and that gk is con-
structed as in (5.6) using these approximate values. Then, it follows from (5.1) and the above
expression that

f(x)−FN,k[f ](x) =
1∑
i=0

k−1∑
r=0

(
A[i]
r [f ]− Ā[i]

r [f ]
)(

p[i]
r (x)−FN [p[i]

r ](x)
)

+O
(
N−2k−1

)
.

Consider, for example, the uniform error. Since ‖p[i]
r − FN [p

[i]
r ]‖∞ = O

(
N−2r−1

)
, to obtain

an O
(
N−2k−1

)
uniform error with the values Ā[i]

r [f ], we require that

Ā[i]
r [f ] = A[i]

r [f ] +O
(
N2(r−k)

)
, r = 0, . . . , k − 1, i ∈ {0, 1}. (5.11)

In other words, rather than using exact jump values, it suffices to employ sufficiently accurate
approximations. To accomplish this prescribed accuracy, we adapt Eckhoff’s method [52, 53,
54], as we now describe.

Eckhoff’s method is based on (5.7). In essence, we seek values Ā[i]
r [f ] that satisfy this

relation approximately. To do so, suppose that N ≤ m(0) < . . . < m(k − 1) ≤ aN , m(r) ∈ N
are given values and a ≥ 1 is constant. We define Ā[i]

r [f ] as the solution of the 2k × 2k linear
system

k−1∑
s=0

p̂s
[i]
m(r)Ā

[i]
s [f ] = f̂

[i]
m(r), r = 0, . . . , k − 1, i ∈ {0, 1}. (5.12)

From a practical standpoint, this linear system decouples into two k × k linear systems cor-
responding to i = 0 and i = 1, which can be solved in parallel. Henceforth, we write V [i] for

the k × k matrix with (r, s)th entry p̂s
[i]
m(r). Note that the choice of the values m(r) is essen-

tially arbitrary. However, particular choices lead to better numerical stability and a so-called
auto-correction phenomenon [138], an issue that we address in Section 5.7.

Nonsingularity of the linear system (5.12) can be immediately guaranteed:

Lemma 5.4. For sufficiently large N , the linear system (5.12) is nonsingular. Moreover, if

p
[i]
0 , . . . , p

[i]
k−1 are cardinal polynomials or arise from the subtraction basis (5.10), then (5.12)

is nonsingular for all N .

Proof. Suppose first that P
[i]
0 , . . . , P

[i]
k−1 (for the sake of clarity, we use this notation) are

cardinal polynomials. Then, since P̂s
[i]

m(r) = (−1)m(r)+i(µ
[i]
m(r))

−s−1, V [i] = D[i]Ṽ [i], where D[i]

is the diagonal matrix with entries (−1)m(r)(µ
[i]
m(r))

−1 and Ṽ [i] is the Vandermonde matrix

with entries (µ
[i]
m(r))

−s. Nonsingularity (for all N) now follows immediately.

Suppose now that p
[i]
0 , . . . , p

[i]
k−1 are arbitrary cardinal functions. Then, since p

[i]
r = P

[i]
r +

(p
[i]
r − P [i]

r ), we may write V [i] = W [i] + (V [i] −W [i]), where W [i] is the matrix with (r, s)th
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entry P̂s
[i]

m(r). To prove the result, it suffices to show that ‖(W [i])−1(V [i] −W [i])‖ = o(1) for
large N , where ‖·‖ is any matrix norm.

Note that the sth column of V [i]−W [i] has entries ̂(ps − Ps)
[i]

m(r). Moreover, ps−Ps obeys

the first k derivative conditions. Hence, it can be shown that (W [i])−1 applied to this vector,
which is just the vector of Eckhoff’s approximation to the jump values of the function ps−Ps,
is o(1) (see Theorem 5.5). Using this, we deduce the result.

Suppose now that the functions q
[i]
r are given by (5.10). Then, due to (5.8) and Lemma

5.3, it suffices to prove nonsingularity of the matrix with (r, s)th entries

q̂s
[i]
m(r) =

2(−1)m(r)+s+1(s+ 1−i
2 )[

(m(r)− i
2)2 − (s+ 1−i

2 )2
]
π
.

After appropriate multiplication by a nonsingular diagonal matrix, we obtain the matrix with
entries [

(m(r)− i
2)2 − (s+ 1−i

2 )2
]−1

.

This is a Cauchy matrix: hence, nonsingularity follows immediately.

The fundamental aspect of Eckhoff’s method, the linear system (5.12), is rather familiar. A
similar idea is used in the Richardson extrapolation process [148]. However, the key difference

herein is that we seek not just the limiting value of the sequence f̂
[i]
n , but also the first k terms

of its asymptotic expansion. Despite misgivings (see [148, p.33], where the instability of such
a process is discussed), this can be done in a reasonably robust manner, as we demonstrate
in Section 5.9.

With values Ā[i]
r [f ] given as the solutions of (5.12), we refer to the resulting approximation

FN,k[f ] = FN [f − gk] + gk as the kth Eckhoff approximation of f . In the forthcoming section,
we study the convergence rate of this approximation. As we discuss further in Section 5.9,
linear systems involving the matrices V [i] can be solved in O

(
k2
)

operations. The overall cost
of forming Eckhoff’s approximation is therefore O

(
max{k2, kN}

)
. Typically, k � N , so this

figure reduces to O (kN).
Standard implementations of Eckhoff’s method employ cardinal polynomials [16, 54]. For

previously described reasons, we have presented Eckhoff’s method in a more general form
involving arbitrary cardinal functions. However, though the cardinal function formulation
is the simplest version to consider in analysis, for computational purposes, it is often more

convenient to present the method in terms of the subtraction basis q
[i]
r . In this case

gk(x) =

1∑
i=0

k−1∑
r=0

Ã[i]
r [f ]q[i]

r (x), x ∈ [−1, 1],

and the values Ã[i]
r [f ] are specified by the linear system

k−1∑
s=0

q̂s
[i]
m(r)Ã

[i]
s [f ] = f̂

[i]
m(r), r = 0, . . . , k − 1, i ∈ {0, 1}. (5.13)

The resulting approximation is identical to the cardinal function formulation, but typically
exhibits improved numerical behaviour (see Section 5.9).
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Throughout this chapter, we study the continuous version of Eckhoff’s method (5.12)
based on modified Fourier coefficients. An analogous version can also be developed for discrete
modified Fourier data. In the Fourier setting, this has been studied in [54, 129].

5.3.2 Convergence rate of Eckhoff’s approximation

Eckhoff’s method was originally presented for univariate Fourier series in [52, 53, 54]. Analysis

of convergence was carried out in [16]. The key result demonstrates that the values Ā[i]
r [f ]

approximate the true values A[i]
r [f ] to the accuracy prescribed in (5.11). For the modified

Fourier case, we have:

Theorem 5.5. Suppose that m(r) = c(r)N + O (1), where c(r) ≥ 1 and that at most l ≤ k

of the c(r) are equal. Suppose further that f ∈ H2k+l+1(−1, 1). Then the coefficients Ā[i]
r [f ]

obtained by Eckhoff’s method satisfy (5.11).

A proof of this result was originally given in [16]. Adaption to the modified Fourier case of
the techniques used therein presents few conceptual challenges. Nonetheless, since there are
several key differences, we now present the salient aspects of the proof for modified Fourier
expansions.

Proof of Theorem 5.5. For the sake of brevity, we assume that cardinal polynomials are used
(extension to arbitrary subtraction bases is simple). In this case, as in the proof of Lemma

5.4, we write V [i] = D[i]Ṽ [i], where Ṽ
[i]
r,s = xsr and xr = (µ

[i]
m(r))

−1.

Upon replacing the coefficient in the right-hand side of (5.12) by its asymptotic expansion
(5.7) and rearranging, we obtain the linear system of equations

k−1∑
r=0

Ṽ [i]
r,s

(
A[i]
s [f ]− Ā[i]

s [f ]
)

= (−1)m(r)+i+kxk−1
r f̂ (2k)

[i]

m(r), r = 0, . . . , k − 1.

We now expand the right-hand side once more a total of K times, where 2K ≤ l + 1, to give

k−1∑
s=0

Ṽ [i]
r,s

(
A[i]
s [f ]− Ā[i]

s [f ]
)

=

k+K−1∑
s=k

xsrA[i]
s [f ] + (−1)m(r)+i+k+Kxk+K−1

r
̂f (2(k+K))

[i]

m(r). (5.14)

The entries of the inverse of a Vandermonde matrix can be exactly prescribed. In fact, the
(r, s)th entry of (Ṽ [i])−1 is precisely

− x−(r+1)
s

k−1∏
j=0
j 6=s

(xs − xj)−1
r∑
j=0

γjx
j
s, (5.15)

where the values γ0, . . . , γk are symmetric polynomials of x0, . . . , xk−1, defined by the relation∑k
r=0 γrx

r =
∏k−1
r=0(x−xr) [16]. For future use, we note that γr = O

(
N2(r−k)

)
. Suppose now

that we define the parameter

ωr = −
k−1∑
s=0

xrs

k−1∏
j=0
j 6=s

(xs − xj)−1.
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Then, upon inverting the linear system (5.14) using (5.15) and substituting ωr, we obtain

A[i]
r [f ]− Ā[i]

r [f ] =

k+K−1∑
s=k

r∑
j=0

γjωs+j−r−1

+ (−1)i+k+K
k−1∑
s=0

(−1)m(s) ̂f (2(k+K))
[i]

m(s)x
k+K−r−2
s

k−1∏
j=0
j 6=s

(xs − xj)−1
r∑
j=0

γjx
j
s. (5.16)

We estimate the two terms of (5.16) separately. For the first, we recall from [16] that ωr =
O
(
N2(k−r−1)

)
for all r ∈ N0. Hence

k+K−1∑
s=k

r∑
j=0

γjωs+j−r−1 = O

k+K−1∑
s=k

r∑
j=0

N2(j−k)N2(k−s−j+r)

 = O
(
N2(r−k)

)
,

as required. Now consider the second term of (5.16). If m(r) = c(r)N +O (1), then µ
[i]
m(r) =

c(r)2(N − i
2)2π2 +O (1). Since xr = (µ

[i]
m(r))

−1, simple arguments demonstrate that

k−1∏
j=0
j 6=s

(xs − xj)−1 = O
(
N2k+l−3

)
,

where l is the number of equal values c(r). Hence, the second term of (5.16) is of order

̂f (2(k+K))
[i]

m(s)

k−1∑
s=0

N2(r+2−k−K)N2k+l−3
r∑
j=0

N2(j−k)N−2j

= O
(

̂f (2(k+K))
[i]

m(s)N
2(r−k)N l+1−2K

)
.

If l is odd, 2K = l + 1 and the result follows immediately. For even values l = 2K, we have

f2(k+K) ∈ H1(−1, 1), so the coefficient ̂f (2(k+K))
[i]

m(s) = O
(
N−1

)
. Hence the result is also

obtained in this case.

There are several key differences between this result for modified Fourier expansions and
the corresponding Fourier case. Most notably, since modified Fourier sine and cosine coef-
ficients both have asymptotic expansion in even powers of n−1, we do not require different
regularity for even and odd values of the parameter l. Moreover, Theorem 5.5 only establishes
the estimate (5.11). As described in [16], the imposition of two additional degrees of smooth-
ness would have allowed us to determine the exact coefficient of N2(r−k) in this equation.
This facilitates the derivation of precise asymptotic estimates for the L2(−1, 1) norm error
of Eckhoff’s approximation, as studied in [16]. However, since our interest lies with minimal
regularity, we shall not pursue this further.

With this in hand, we may now provide estimates for the rate of convergence:

Theorem 5.6. Suppose that l and f are as in Theorem 5.5, and that FN,k[f ] is the kth

Eckhoff approximation of f . Then ‖f −FN,k[f ]‖r is O(N r−2k− 3
2 ) for r = 0, . . . , 2k + 1.
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Proof. Suppose that we write FeN,k[f ] and FN,k[f ] for the approximations based on the exact

jump values A[i]
r [f ] and their approximations Ā[i]

r [f ] respectively. In view of Theorem 5.2, it
suffices to consider the difference FeN,k[f ]−FN,k[f ]. We have

‖FeN,k[f ]−FN,k[f ]‖r ≤
1∑
i=0

k−1∑
r=0

∣∣A[i]
r [f ]− Ā[i]

r [f ]
∣∣∥∥p[i]

r −FN [p[i]
r ]
∥∥
r
. (5.17)

Now suppose that an arbitrary function h ∈ C∞[−1, 1] satisfies the first s ∈ N0 derivative
conditions. We claim that

‖h−FN [h]
∥∥
r

= O
(
N r−2s− 3

2

)
, ∀r ∈ N0. (5.18)

When r ≤ 2s + 1, this result follows immediately from Lemma 2.25. Now suppose that
r > 2s+ 1. Since ‖h−FN [h]‖r ≤ ‖h‖r + ‖FN [h]‖r it suffices to consider ‖FN [h]‖r. Moreover,
recalling that ĥn = O

(
n−2s−2

)
, we obtain

‖FN [h]‖2r ≤
1∑
i=0

N−1∑
n=0

(1 + µ[i]
n )r|ĥ[i]

n |2 ≤ c
N−1∑
n=0

n̄2r−4s−4 = O
(
N2r−4s−3

)
,

which gives (5.18). Substituting (5.18) with h = p
[i]
r into (5.17) and using Theorem 5.5

immediately completes the proof.

Theorem 5.7. Suppose that f and FN,k[f ] are as in Theorem 5.6. Then, the error ‖f (r) −
(FN,k[f ])(r)‖∞ is O

(
N r−2k−1

)
for r = 0, . . . , 2k.

Proof. This follows immediately from Theorem 5.6 and the Sobolev interpolation inequality

‖h‖∞ ≤ c
√
‖h‖‖h‖1, ∀h ∈ H1(−1, 1), where c =

√
5
2 .

In Figure 5.1, we demonstrate the improvement offered by Eckhoff’s method over the
original (k = 0) modified Fourier approximation. For both functions considered, using only
N = 15 and k = 3 we obtain 8 digits of accuracy. In comparison, less than two digits are
witnessed for the original modified Fourier approximation. We mention in passing that, for
the numerical examples presented in this and all sections up to Section 5.9, we use additional
precision where necessary. The practical implementation of Eckhoff’s method requires further
study to lessen the impact of numerical instability, a topic we consider further in Section 5.9.

Theorems 5.6 and 5.7, in comparison to Theorems 5.1 and 5.2, demonstrate that Eckhoff’s
method leads to no deterioration in the convergence rate of the approximation over polynomial
subtraction. In [16], the authors also compare the size of the error constants in ‖f −FeN,k[f ]‖
and ‖f−FN,k[f ]‖. They establish that approximating the jump values in this manner not only
leads to the same convergence rate, but also does not increase the error constant unduly. For
this reason, we address only the asymptotic order of convergence throughout the remainder
of this chapter.

Another consequence of Theorems 5.5–5.7 is that, for certain choices of m(r), Eckhoff’s
method requires additional smoothness to obtain the same convergence rate as the approxi-
mation based on the exact jump values. A remedy for this is to employ distinct values c(r).
Typical choices of such values are

m(r) = (r + 1)N, r = 0, . . . , k − 1, (5.19)
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Figure 5.1: Eckhoff’s method based on m(r) = N + r and cardinal polynomials p
[i]
r . Log error

log10 |f(x)−F15,k[f ](x)| for −1 ≤ x ≤ 1 and k = 0, 1, 2, 3 (in descending order).
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Figure 5.2: Graph of |f(x)−F25,4[f ](x)| for −1 ≤ x ≤ 1 (left), − 3
4 ≤ x ≤

3
4 (middle) and − 1

2 ≤ x ≤
1
2

(right), where f(x) = Ai(−3x− 4) and Ai is the Airy function [1].

or, given some arbitrary value ω = 2, 3, . . .,

m(r) = ωrN, r = 0, . . . , k − 1. (5.20)

However, Eckhoff’s method, when based on equal values c(r), and, in particular, m(r) =
N + r, r = 0, . . . , k − 1, conveys a significant advantage over polynomial subtraction, despite
necessitating higher regularity. It turns out that, even though the uniform and Hr(Ω) norm
errors remaining of the same order, the error in compact subsets of Ω is much smaller. In fact,
if the values m(r) = N + r are chosen, the error is O

(
N−3k−2

)
in comparison to O

(
N−2k−2

)
,

a full factor of Nk smaller.

In Figure 5.2, this auto-correction phenomenon is demonstrated numerically. In this ex-

ample, we use the values m(r) = N + r and cardinal polynomials p
[i]
r . As we observe, the

error away from the endpoints x = ±1 is much smaller. Figure 5.3 highlights the advantage
offered by Eckhoff’s method over polynomial subtraction in this respect; near the endpoints,
both approximations offer similar error, whereas inside the interval, Eckhoff’s method greatly
outperforms the latter.

In reference to Eckhoff’s method, the auto-correction phenomenon was observed numeri-
cally in [129] and demonstrated theoretically in the univariate, Fourier case in [138]. In Section
5.7, we extend this result to the multivariate modified Fourier setting.

This completes our discussion of the univariate version of Eckhoff’s method. We devote the
next part of this chapter to the significant generalisation of this method to functions defined
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Figure 5.3: Graph of log10 |f(x) − F15,k[f ](x)| for −1 ≤ x ≤ 1 and k = 2, 4, 6, where FN,k[f ] is
either the kth polynomial subtraction (thin line) or Eckhoff (thick line) approximation and f(x) =
Ai(−3x− 4).

in the d-variate cube. As in the univariate setting, our first consideration is the polynomial
subtraction technique and its multivariate extension.

5.4 Multivariate polynomial subtraction

To accelerate the convergence rate of multivariate modified Fourier expansions, it suffices to
interpolate the first k odd partial derivatives of the function f on the whole of the boundary
Γ (see Chapter 2). If this is achieved with a function gk, then the kth polynomial subtraction
approximation FN,k[f ] = FN [f − gk] + gk will converge to f at a faster rate. For ease
of reference, we now restate the result of Chapter 2 regarding the convergence rate of this
approximation. For the moment, we assume that a full index set (2.33) is employed (we
consider hyperbolic cross approximations in Section 5.8).

Theorem 5.8. Suppose that f ∈ H2k+2
mix (Ω) and that FN,k[f ] is the kth polynomial subtraction

approximation of f . Then ‖f − FN,k[f ]‖r is O(N r−2k− 3
2 ) for r = 0, . . . , 2k + 1 and ‖Dβ(f −

FN,k[f ])‖∞ is O
(
N |β|∞−2k−1

)
for |β|∞ ≤ 2k. If, additionally, f ∈ H2k+3

mix (Ω), then Dβ{f(x)−
FN,k[f ](x)} is O

(
N |β|∞−2k−2

)
uniformly in compact subsets of Ω for |β|∞ ≤ 2k + 1.

In the univariate setting, as demonstrated in Section 5.2.1, it is simple to construct the
function gk. With a little effort, this can also be accomplished in higher dimensions. Relevant
techniques originate in the field of computer-aided geometric design and are related to so-
called Coons patches [57]. In the context of modified Fourier expansions, this concept was
first studied in [87].7 A general construction was given in [4], and we shall closely follow this
approach.

To this end, suppose that p
[i]
r , r ∈ N0, are the univariate cardinal functions of Section

5.2.1. Given t ∈ [d], it ∈ {0, 1}|t| and rt ∈ N|t|0 , we define p
[it]
rt as the composition

p[it]
rt (xt) =

∏
j∈t

p
[ij ]
rj (xj).

7Bivariate polynomial subtraction for Fourier series has been the subject of a number of studies, including
[17]. However, to the best of our knowledge, the extension to arbitrary d ≥ 2 has not been studied rigorously.
Once more, we mention that the work of this chapter is easily adapted to Fourier series with only minor
modifications.
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We also recall the definition (2.25) of the operator B[it]
rt [f ] = B[it1 ]

rt1
[. . . [B

[it|t| ]
rt|t|

[f ]] . . .], where

(−1)rjB[ij ]
rj [f ] =f(x1, . . . , xj−1, 1, xj+1, . . . , xd)

+ (−1)ij+1f(x1, . . . , xj−1,−1, xj+1, . . . , xd),

for ij ∈ {0, 1}, rj ∈ N0 and j = 1, . . . , d.
A suitable function gk can now be immediately specified:

Lemma 5.9. Suppose that f ∈ H2k(Ω) and that

gk(x) =
∑
t∈[d]

∑
it∈{0,1}|t|

k−1∑
|rt|∞=0

(−1)|t|+1B[it]
rt [f ](xt̄)p

[it]
rt (xt), x ∈ Ω̄, (5.21)

Then f − gk satisfies the first k Neumann derivative conditions (2.12). Equivalently,

B[ij ]
rj [gk] = B[ij ]

rj [f ], rj = 0, . . . , k − 1, j = 1, . . . , d. (5.22)

Proof. It suffices to prove that gk satisfies (5.22) with j = 1, ij = 0 and rj = s. We split the
terms of (5.21) corresponding to different t ∈ [d] into the three following cases: (i) t = (1),
(ii) t = (1, u), where u ∈ [d], 1 /∈ u, and (iii) t = u.

Consider case (i). The contribution of the corresponding term to B[0]
s [gk] is

1∑
i1=0

k−1∑
r1=0

B[0]
s

[
B[i1]
r1 [f ](x2, . . . , xd)p

[i1]
r1 (x1)

]
(x2, . . . , xd) = B[0]

s [f ](x2, . . . , xd),

where equality follows directly from the properties of the cardinal functions p
[i]
r . It now suffices

to prove that the contributions of cases (ii) and (iii) cancel. For case (ii), this is

∑
iu∈{0,1}|u|

k−1∑
|ru|∞=0

1∑
i1=0

k−1∑
r1=0

(−1)|u|B[0]
s

[
B[it]
rt [f ](xt̄)p

[it]
rt (xt)

]
(x2, . . . , xd)

=
∑

iu∈{0,1}|u|

k−1∑
|ru|∞=0

(−1)|u|B[(0,iu)]
(s,ru) [f ](xū)p[iu]

ru (xu),

where (0, iu) = (0, iu1 , . . . , iu|u|) and (s, ru) = (s, ru1 , . . . , ru|u|). It is readily seen that this
term is precisely the negative of the contribution of case (iii).

As in Chapter 2, the bivariate case will serve as our primary example. In this setting, the
function gk is given explicitly by

gk(x) =
1∑

i1=0

k−1∑
r1=0

p[i1]
r1 (x1)B[i1]

r1 [f ](x2) +
1∑

i2=0

k−1∑
r2=0

B[i2]
r2 [f ](x1)p[i2]

r2 (x2)

−
1∑

i1,i2=0

k−1∑
r1,r2=0

B[i1]
r1

[
B[i2]
r2 [f ]

]
p[i1]
r1 (x1)p[i2]

r2 (x2). (5.23)
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We remark in passing that the phrase ‘polynomial subtraction’ is a misnomer in the multivari-
ate case: as evidenced by (5.23), the function gk is no longer a polynomial for d ≥ 2. Herein
lies the main problem with this device. Computation of the function gk, as given by (5.21),
requires knowledge of the exact derivatives of the function f over (d− 1)-dimensional subsets
of the boundary. Classically, this has been considered, somewhat erroneously, as a limitation
of this technique [62]. The intention of this chapter is to show that this is not, in fact, the
case: approximations of arbitrary order can be constructed using only multivariate modified
Fourier coefficients.

An obvious means to alleviate this problem (which we now introduce since it will be used in
the sequel) is to approximate such lower dimensional functions using polynomial subtraction
(an approach mentioned briefly, but not analysed, in [87]). Doing so requires knowledge of
functions over (d − 2)-dimensional subsets of the boundary. However, we may repeat the
same process, replacing exact functions by polynomial subtraction approximations, until we
obtain an approximation that uses only derivative values over the 0-dimensional subsets of
the boundary consisting of the vertices (±1,±1, . . . ,±1) and the modified Fourier coefficients
of higher dimensional derivative functions.

To differentiate between the two approaches, we refer to the approximation based on
(5.21) as exact polynomial subtraction and the approximation obtained by the above process
as approximate polynomial subtraction. We write gek, FeN,k[f ] and gak , FaN,k[f ] respectively.
Note that for d = 1 both approximations coincide.

In the bivariate setting, we merely replace the univariate functions B[i1]
r1 [f ] and B[i2]

r2 [f ] by
their kth polynomial subtraction approximations. This yields the new function gak given by

gak(x) =
1∑

i1=0

k−1∑
r1=0

p[i1]
r1 (x1)FN,k

[
B[i1]
r1 [f ]

]
(x2) +

1∑
i2=0

k−1∑
r2=0

FN,k
[
B[i2]
r2 [f ]

]
(x1)p[i2]

r2 (x2)

−
1∑

i1,i2=0

k−1∑
r1,r2=0

B[i1]
r1

[
B[i2]
r2 [f ]

]
p[i1]
r1 (x1)p[i2]

r2 (x2).

For d ≥ 3, we define the new approximation inductively. If FaN,k[·] is known for d − 1, we
define the d-variate approximate polynomial subtraction function gak by

gak(x) =
∑
t∈[d]

∑
it∈{0,1}|t|

k−1∑
|rt|∞=0

(−1)|t|+1FaN,k
[
B[it]
rt [f ]

]
(xt̄)p

[it]
rt (xt), x ∈ Ω̄. (5.24)

In its present form, this subtraction function is not fit for practical purposes. Instead, we seek
a version of gak that is not inductively defined. The derivation of such a form indicates the
appropriate generalisation of Eckhoff’s method to the multivariate case, as we subsequently
consider.

To obtain the function gak explicitly, it is first necessary to reintroduce the values A[i]
rt,nt̄ [f ],

which occur in the asymptotic expansion of the coefficients f̂
[i]
n (see Section 2.7 and, in par-

ticular, (2.26)). Given such values, it will also be of use to notice that we may re-write the

expansion (2.27) in terms of the functions p
[it]
rt (as in the univariate case (5.7)). If p̂rt

[it]
nt

is the

modified Fourier coefficient of p
[it]
rt corresponding to indices it and nt, then

f̂ [i]
n =

∑
t∈[d]∗

k−1∑
|rt|∞=0

A[i]
rt,nt̄

[f ]p̂rt
[it]
nt

+O
(
n−2k−2

)
.



142 5. Accelerating convergence

Once more, the remainder term vanishes, provided p
[it]
rt consists of cardinal polynomials.

With this in hand, we may now give an explicit expression for gak :

Lemma 5.10. The approximate polynomial subtraction function gak is given by

gak(x) =
∑

i∈{0,1}d

∑
t∈[d]

k−1∑
|rt|∞=0

N−1∑
|nt̄|∞=0

A[i]
rt,nt̄

[f ]p[it]
rt (xt)φ

[it̄]
nt̄

(xt̄). (5.25)

To prove this lemma, we require the following notation. Given t ∈ [d], we write [t] for the
set of tuples u ∈ [d] with u ⊆ t (in other words, if j ∈ u then j ∈ t). We write [t]∗ = [t] ∪ {∅}
and ū ∈ [t]∗ for the tuple of elements in t, but not in u. Further, given t, u ∈ [d]∗, we write
t ∪ u ∈ [d]∗ for the ordered tuple of elements j = 1, . . . , d in t or in u, t ∩ u for the tuple of
elements in both t and u and t\u for the tuple of elements in t, but not in u.

Proof of Lemma 5.10. We prove this result by induction on d. For d = 1, since gak = gek and

A[i]
r [f ] = B[i]

r [f ], there is nothing to prove. Now assume that the result holds for d− 1. Then,
by definition

gak(x) =
∑
t∈[d]

∑
it∈{0,1}|t|

k−1∑
|rt|∞=0

(−1)|t|+1FaN,k
[
B[it]
rt [f ]

]
(xt̄)p

[it]
rt (xt). (5.26)

Since B[it]
rt [f ] is a function of at most (d−1) variables, we may use the induction hypothesis to

derive an expression for FaN,k
[
B[it]
rt [f ]

]
(xt̄). To do so, we require several observations. First,

we note that

A[it̄]
ru,nū

[
B[it]
rt [f ]

]
= (−1)k|ū|

∏
j∈ū

(µ
[ij ]
nj )−k

∫
B[iu]
ru

[
D2k
ū B[it]

rt [f ]
]
φ[iū]
nū (xū) dxū, ∀u ∈ [t̄]∗.

Since ū = t̄\u = t ∪ u, and the operators B[iu]
ru and B[it]

rt commute with each other and with
differentiation in the independent variables, we have

A[it̄]
ru,nū

[
B[it]
rt [f ]

]
= (−1)k|ū|

∏
j∈ū

(µ
[ij ]
nj )−k

∫
B[it∪u]
rt∪u

[
D2k
ū f
]
φ[iū]
nū (xū) dxū = A[i]

rt∪u,nt∪u
[f ].

Our next observation is as follows: if h is a function of at most (d − 1) variables, and gak is
the approximate polynomial subtraction function for h, then

FN [h− gak ](x) =
∑

i∈{0,1}d−1

N−1∑
|n|∞=0

A[i]
n [h]φ[i]

n (x), x ∈ [−1, 1]d−1,

where A[i]
n [h] is the value A[i]

rt,nt̄ [h] defined in (2.26) corresponding to t = ∅. This follows
immediately from the induction hypothesis and the expressions (2.27) and (5.25).

Returning to B[it]
rt [f ], and using these observations, we obtain

FaN,k
[
B[it]
rt [f ]

]
(xt̄) =

∑
it̄∈{0,1}|t̄|

N−1∑
|nt̄|∞=0

A[i]
rt,nt̄

[f ]φ[it̄]
nt̄

(xt̄)

+
∑

it̄∈{0,1}|t̄|

∑
u∈[t̄]

k−1∑
|ru|∞=0

N−1∑
|nū|∞=0

A[i]
rt∪u,nt∪u

[f ]p[iu]
ru (xu)φ[iū]

nū (xū).
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Substituting this into (5.26) gives

gak(x) =
∑

i∈{0,1}d

∑
t∈[d]

(−1)|t|+1

{
k−1∑
|rt|∞=0

N−1∑
|nt̄|∞=0

A[i]
rt,nt̄

[f ]p[it]
rt (xt)φ

[it̄]
nt̄

(xt̄)

+
∑
u∈[t̄]

k−1∑
|rt∪u|∞=0

N−1∑
|nū|∞=0

A[i]
rt∪u,nt∪u

[f ]p[it∪u]
rt∪u (xt∪u)φ[iū]

nū (xū)

}
. (5.27)

To complete the proof, it suffices to show that, for any v ∈ [d], the coefficient of the corre-

sponding term A[i]
rv ,nv̄ [f ]p

[iv ]
rv (xv)φ

[iv̄ ]
nv̄ (xv̄) in (5.27) is precisely 1. The first term of (5.27) gives

a contribution of (−1)|v|+1. For the second, the terms that give contributions are those with

t ∪ u = v. Since t, u 6= ∅, and there are

(
|v|
l

)
possible choices of such u with |u| = l, this

gives a total contribution of

(−1)|v|
(
|v|
1

)
+ . . . .+

(
|v|
|v| − 1

)
= (−1)|v|+1

|v|−1∑
l=1

(
|v|
l

)
(−1)l = 1− (−1)|v|+1.

Summing together this and the previous contribution now yields the result.

The result of Lemma 5.10 not only gives an explicit way to compute the kth approximate
polynomial subtraction function, it also demonstrates that faster convergence can be achieved

by suitable approximation of the values A[i]
rt,nt̄ [f ]. We consider this task in the sequel. This is a

far less daunting prospect than the exact polynomial subtraction standpoint, where functions

of (d − 1) variables need to be approximated. For this reason, the values A[i]
rt,nt̄ [f ] can be

viewed as the appropriate generalisation of the univariate jumps A[i]
r [f ].

For approximate polynomial subtraction to serve as a potential alternative to its exact
counterpart (and since we shall require such estimates in the sequel), it remains to demonstrate
that the convergence rate is not affected. We have

Theorem 5.11. Suppose that f ∈ H2k+2
mix (Ω) and that FaN,k[f ] is the kth approximate polyno-

mial subtraction approximation of f . Then ‖f−FaN,k[f ]‖r is O(N r−2k− 3
2 ) for r = 0, . . . , 2k+1

and ‖Dβ(f − FaN,k[f ])‖∞ is O
(
N |β|∞−2k−1

)
for |β|∞ ≤ 2k. If, additionally, f ∈ H2k+3

mix (Ω),

then Dβ{f(x)−FaN,k[f ](x)} is O
(
N |β|∞−2k−2

)
uniformly in compact subsets of Ω for |β|∞ ≤

2k + 1.

Proof. By Theorem 5.8, it suffices to consider the difference FeN,k[f ]− FaN,k[f ]. We shall use
induction on d. For d = 1 there is nothing to prove. Now suppose that the result holds for
d− 1. We have

FeN,k[f ](x)−FaN,k[f ](x) = gek(x)− gak(x)−FN
[
gek − gak

]
(x).

Since F̂aN,k[h]
[i]

n
= F̂eN,k[h]

[i]

n
= ĥ

[i]
n for all i ∈ {0, 1}d, n ∈ IN and arbitrary functions h, it

follows that FN [gek − gak ] = 0. Hence

FeN,k[f ](x)−FaN,k[f ](x) = gek(x)− gak(x)

=
∑
t∈[d]

∑
it∈{0,1}|t|

k−1∑
|rt|∞=0

(−1)|t|+1
(
B[it]
rt [f ](xt̄)−FaN,k

[
B[it]
rt [f ]

]
(xt̄)

)
p[it]
rt (xt).



144 5. Accelerating convergence

For f ∈ H2k+2
mix (Ω), we have B[it]

rt [f ] ∈ H2k+2
mix (−1, 1)d−|t| (see Section 2.5 or [5]). Since |t| ≥ 1,

we may use the induction hypothesis on each such term to obtain the result.

In view of Theorem 5.8, we deduce that the various convergence rates remain the same.
However, although the approximate polynomial subtraction process achieves a significant
improvement over exact polynomial subtraction, it still requires explicit knowledge of the

values A[i]
rt,nt̄ [f ]. In general, these are unknown. Since there are

2d
d∑
j=1

(
d
j

)
kjNd−j = 2d

{
(k +N)d −Nd

}
= O

(
kNd−1

)
, k � N,

such values in total, the need for a method of approximation becomes more vital as d increases.
We shall achieve this by a suitable extension of Eckhoff’s method, which we now introduce.

5.5 Eckhoff’s method for multivariate expansions

We now extend Eckhoff’s method to the multivariate setting. The bivariate version of this
method was originally developed, without analysis, in [128, 130, 131]. In this section, we first
establish an extension for general d, and in Section 5.6, we provide pertinent analysis.

As indicated by the form of approximate polynomial subtraction function gak , we seek

approximations Ā[i]
r [f ] to the values A[i]

rt,nt̄ [f ]. To this end, we define the subtraction function

gk(x) =
∑

i∈{0,1}d

∑
t∈[d]

k−1∑
|rt|∞=0

N−1∑
|nt̄|∞=0

Ā[i]
rt,nt̄

[f ]p[it]
rt (xt)φ

[it̄]
nt̄

(xt̄), (5.28)

and the approximation FN,k[f ] = FN [f − gk] + gk. In the univariate setting, it follows from
(5.12) that the function gk satisfies the condition

ĝk
[i]
n = f̂ [i]

n , n = m(0), . . . ,m(k − 1), i ∈ {0, 1}. (5.29)

For the d-variate extension, we enforce a similar condition. Suppose that we define the finite
index set Mk ⊆ Nd by

Mk =
⋃
t∈[d]

{
n = (n1, . . . , nd) ∈ Nd : nj = m(rj), rj = 0, . . . , k − 1, j ∈ t, |nt̄|∞ < N

}
. (5.30)

We now impose the condition

ĝk
[i]
n = f̂ [i]

n , ∀n ∈Mk, i ∈ {0, 1}d. (5.31)

For d = 1, (5.31) reduces to (5.29). For d = 2, we obtain the following system of equations

ĝk
[i]
m(r1),m(r2) = f̂

[i]
m(r1),m(r2), r1, r2 = 0, . . . , k − 1, i ∈ {0, 1}2,

ĝk
[i]
m(r1),n2

= f̂
[i]
m(r1),n2

, r1 = 0, . . . , k − 1, n2 = 0, . . . , N − 1, i ∈ {0, 1}2,

ĝk
[i]
n1,m(r2) = f̂

[i]
n1,m(r2), n1 = 0, . . . , N − 1, r2 = 0, . . . , k − 1, i ∈ {0, 1}2. (5.32)
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Figure 5.4: Left diagram: the index set M5 with N = 25 and m(r) = N + 2r. Right diagram: the
index set M10 with N = 50 and m(r) = N + 2r.

Figure 5.4 shows the typical form of the index set Mk for d = 2. Note that, as in the univariate
case, the system of equations (5.31) completely decouples for different values of i ∈ {0, 1}d.

For both practical and analytical purposes, we need to expand the left-hand side of (5.31).
Given u ∈ [d], su ∈ {0, . . . , k − 1}|u| and nū ∈ {0, . . . , N − 1}|ū|, the corresponding term of
gk(x) is

Ā[i]
su,nū [f ]p[iu]

su (xu)φ[iū]
nū (xū) = Ā[i]

ru,nū [f ]
∏
j∈u

p
[ij ]
sj (xj)

∏
j /∈u

φ
[ij ]
nj (xj).

This term gives a non-zero contribution to the left-hand side of (5.31) precisely when t ⊆ u,
where t ∈ [d] is the tuple associated to n ∈Mk. Hence

ĝk
[i]
n =

∑
u∈[d]
t⊆u

k−1∑
|su|∞=0

Ā[i]
su,nū [f ]

∏
j∈u

p̂sj
[ij ]
nj

=
k−1∑
|st|∞=0

∏
j∈t

V
[ij ]
rj ,sj

{∑
t⊆u

k−1∑
|su\t|∞=0

Ā[i]
su,nū [f ]

∏
j∈u\t

p̂sj
[ij ]
nj

}
. (5.33)

Here rj , j ∈ t is the index used in the definition (5.30) of n ∈ Mk, and V [i] is the matrix
introduced in Section 5.3.1.

For d = 2, substituting (5.33) into (5.32) gives

k−1∑
s1,s2=0

V [i1]
r1,s1V

[i2]
r2,s2Ā

[i]
s1,s2 [f ] = f̂

[i]
m(r1),m(r2), r1, r2 = 0, . . . , k − 1,

k−1∑
s1=0

V [i1]
r1,s1

{
Ā[i]
s1,n2

[f ] +
k−1∑
s2=0

Ā[i]
s1,s2 [f ]p̂r2

[i2]
n2

}
= f̂

[i]
m(r1),n2

, r1 = 0, . . . , k − 1,

n2 = 0, . . . , N − 1,

k−1∑
s2=0

V [i2]
r2,s2

{
Ā[i]
s2,n1

[f ] +
k−1∑
s1=0

Ā[i]
s1,s2 [f ]p̂r1

[i1]
n1

}
= f̂

[i]
n1,m(r2), n1 = 0, . . . , N − 1,

r2 = 0, . . . , k − 1.
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In this case, it is obvious how to solve these equations. We first obtain Ā[i]
r1,r2 [f ] from the

first equation, and then substitute the result into the second and third equations, solving for

Ā[i]
r1,n2 [f ] and Ā[i]

r2,n1 [f ] respectively. The same can be done in d ≥ 3 dimensions. Starting

from the equation corresponding to t = (1, 2, . . . , d), we find Ā[i]
rt [f ]. Using this, we solve the

equations corresponding to |t| = d− 1, |t| = d− 2, and so on. Continuing in this manner, we

obtain all the coefficients Ā[i]
rt,nt̄ [f ].

Alternatively, it may be easier to use the following explicit expression for such values:

Ā[i]
rt,nt̄

[f ] =
∑
u∈[d]
t⊆u

(−1)|t|+|u|
k−1∑

|ru\t|∞=0

k−1∑
|su|∞=0

f̂
[i]
(m(su);nū)

∏
j∈u

(V [ij ])−1
rj ,sj

∏
j∈u\t

p̂rj
[ij ]
nj
, (5.34)

where (m(su);nū) has jth entry m(sj) if j ∈ u and nj otherwise. We defer a proof of this
formula until Section 5.8 (see Lemma 5.36).

Though straightforward in theory, it is fair to mention that the construction of Eckhoff’s
approximation becomes increasingly cumbersome to implement for large d. However, as we
demonstrate in the sequel by numerical example, it is certainly practical for d = 2, 3.

Observe that, to find the coefficients Ā[i]
rt,nt̄ [f ], we have to solve linear systems involving

the matrix V [i]. One immediate benefit of Eckhoff’s approach is that the coefficients can be
found by solving essentially one-dimensional linear systems. Since we need to solve many such
systems, it may be easiest to find (V [i])−1 first and use (5.34). On a related topic, we note
that the existence and uniqueness of a solution to the linear system (5.31) are completely
determined by the nonsingularity of the matrix V [i] (see Lemma 5.4).

In the univariate setting, the operational cost of forming Eckhoff’s approximation is
O
(
max{k2, kN}

)
. For the multivariate case, this value is O

(
max{kd+1, kdNd}

)
. When

k � N , this figure reduces to kdNd. In comparison, forming the approximation FN [f ] in-
volves O

(
Nd
)

operations, so the increase in complexity is relatively mild for moderate values
of k. Nonetheless, the value Nd grows exponentially with d. In Section 5.8, we assess how
this figure can be dramatically reduced by the use of hyperbolic cross index sets.

Having obtained Eckhoff’s approximation for arbitrary d ≥ 2, we now turn our attention
to the convergence analysis of this approximation.

5.6 Analysis of Eckhoff’s method

Here, and for the remainder of this chapter, we use the notation A . B to mean that there
exists a constant c independent of N such that A ≤ cB.

We commence our analysis of the multivariate version of Eckhoff’s method with the fol-
lowing lemmas, the first of which is a generalisation of Theorem 5.5:

Lemma 5.12. Suppose that h ∈ H2k+l+1
mix (Ω) obeys the first k Neumann derivative conditions

(2.12), where l is the number of equal values c(r), and that t ∈ [d]. Suppose further that the

values E [it]
rt,nt̄, rt ∈ {0, . . . , k − 1}|t|, nt̄ ∈ N|t̄|0 are defined by

k−1∑
|st|∞=0

∏
j∈t

V
[ij ]
rj ,sjE [it]

st,nt̄
= ĥ[i]

n ,
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where nj = m(rj), rj = 0, . . . , k − 1, when j ∈ t and nj ∈ N0 otherwise. Then∣∣∣E [it]
rt,nt̄

∣∣∣ . N2(|rt|−k|t|)n̄−2k−2
t̄

,

where n̄−2k−2
t̄

=
∏
j /∈t n̄

−2k−2
j .

To prove this result, we first require the following trivial lemma:

Lemma 5.13. Suppose that the coefficients an ∈ R, n ∈ Nd, satisfy |an| . n−2k−l−1 =∏d
j=1 n

−2k−l−1
j , where l is the number of equal values c(r). Then∣∣∣∣∣∣

k−1∑
|s|∞=0

d∏
j=1

(V [ij ])−1
rj ,sjan

∣∣∣∣∣∣ . N2(|r|−kd), where n = (m(s1), . . . ,m(sd)).

Proof. Using (5.15) and elements of the proof of Theorem 5.5, it is easily seen that (V [ij ])−1
rj ,sj =

O
(
N2rj+l+1

)
. The result now follows immediately.

Proof of Lemma 5.12. We first establish this result for t = (1, 2, . . . , d). In this case, we write

E [i]
r =

k−1∑
|s|∞=0

d∏
j=1

(V [ij ])−1
rj ,sj ĥ

[i]
n , where n = (m(s1), . . . ,m(sd)).

We now prove this result by induction on d. For d = 1, the result follows immediately from
Theorem 5.5. Now suppose that the result holds for d− 1. We first construct the subtraction
function gek,K so that gek,K interpolates those odd derivatives of h on the boundary Γ with
indices r = k, k + 1, . . . , k +K − 1, where 2K ≤ l + 1. It follows that

ĥ[i]
n = ĝek,K

[i]

n
+R[i]

n [f ], (5.35)

where

R[i]
n [h] =

d∏
j=1

(µ
[ij ]
nj )−k−KD̂k+Kh

[i]

n .

Note that |R[i]
n [h]| . n̄−2k−l−1. In particular, if nj = m(rj) for j = 1, . . . , d, then |R[i]

n [h]| .
N−(2k+l+1)d. The bound ∣∣∣∣∣∣

k−1∑
|s|∞=0

d∏
j=1

(V [ij ])−1
rj ,sjR

[i]
n [h]

∣∣∣∣∣∣ . N2(|r|−kd),

now follows immediately from Lemma 5.13. Hence, to establish the result, it suffices to
consider the term

d∏
j=1

(V [ij ])−1
rj ,sj ĝ

e
k,K

[i]

n
.
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By definition, the subtraction function gek,K is a sum of separable functions of the form g(x) =

g1(xu)g2(xū), where u ∈ [d] with |u| < d and g1 ∈ H2k+l+1
mix (−1, 1)|u|, g2 ∈ H2k+l+1

mix (−1, 1)d−|u|

(see Lemma 5.21). Hence, applying the induction hypothesis to the functions g1, g2 gives

k−1∑
|s|∞=0

d∏
j=1

(V [ij ])−1
rj ,sj ĝ

[i]
n =

k−1∑
|su|∞=0

∏
j∈u

(V [ij ])−1
rj ,sj ĝ1

[iu]
nu

k−1∑
|sū|∞=0

∏
j∈ū

(V [ij ])−1
rj ,sj ĝ2

[iū]
nū

. N2(|ru|−k|u|)N2(|rū|−k|ū|) = N2(|r|−kd),

which completes the proof in the case t = (1, . . . , d).

Now suppose that t ∈ [d] is arbitrary. The corresponding result is proved in an almost

identical manner. Once more, we use induction on d and write ĥ
[i]
n as in (5.35). As before,

|R[i]
n [h]| . N−(2k+l+1)|t|n̄−2k−2

t̄
. Hence, an application of Lemma 5.13 gives the requisite

bound for this term.

To bound the contribution of gek,K , we again write gek,K as a sum of terms g(x) =
g1(xu)g2(xū). The induction hypothesis therefore gives∣∣∣∣∣∣

k−1∑
|s|∞=0

∏
j∈t

(V [ij ])−1
rj ,sj ĝ

[i]
n

∣∣∣∣∣∣ . N2(|rt∩u−k|t∩u|)n̄−2k−2
u\t N2(|rt∩ū−k|t∩ū|)n̄−2k−2

ū\t

= N2(|rt|−k|t|)n̄−2k−2
t̄

,

as required.

Lemma 5.12 may appear somewhat abstract. Yet, its relevance will become apparent in
due course. Returning to Eckhoff’s method, we now require the following:

Lemma 5.14. Suppose that t ∈ [d], rt ∈ {0, . . . , k − 1}|t|, nt̄ ∈ {0, . . . , N − 1}|t̄| and

E [i]
rt,nt̄

[f ] =
∑
u∈[d]
t⊆u

k−1∑
|ru\t|∞=0

(
A[i]
ru,nū [f ]− Ā[i]

ru,nū [f ]
) ∏
j∈u\t

p̂rj
[ij ]
nj
, (5.36)

where the values Ā[i]
rt,nt̄ [f ] are the coefficients of Eckhoff’s approximation. Then

k−1∑
|st|∞=0

∏
j∈t

V
[ij ]
rj ,sjE [i]

st,nt̄
[f ] = −

∑
u∈[d]∗

t6⊆u

k−1∑
|su|∞=0

A[i]
su,nū [f ]p̂su

[iu]
nu
, n ∈Mk, i ∈ {0, 1}d. (5.37)

Proof. Consider the right-hand side of (5.31). Using the expansion (5.4) gives

f̂ [i]
n =

∑
u∈[d]
t⊆u

k−1∑
|su|∞=0

A[i]
su,nū [f ]p̂su

[iu]
nu

+
∑
u∈[d]∗

t6⊆u

k−1∑
|su|∞=0

A[i]
su,nū [f ]p̂su

[iu]
nu
, n ∈Mk, i ∈ {0, 1}d.

Equating this with (5.33) and rearranging yields the result.
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The terms E [i]
rt,nt̄ [f ] may, at first glance, appear obscure. However, as the following lemma

attests, they play a fundamental role in the analysis of convergence of Eckhoff’s approximation.
Before stating this lemma, we first mention that, to estimate the convergence rate of the
multivariate Eckhoff approximation FN,k[f ], it suffices to consider the difference FaN,k[f ] −
FN,k[f ], where FaN,k[f ] is the approximate polynomial subtraction approximation introduced
in Section 5.4 (see Theorem 5.11). In view of this, we have

Lemma 5.15. The difference FaN,k[f ](x)−FN,k[f ](x) is given by

FaN,k[f ](x)−FN,k[f ](x)

=
∑

i∈{0,1}d

∑
t∈[d]

k−1∑
|rt|∞=0

N−1∑
|nt̄|∞=0

E [i]
rt,nt̄

[f ]φ[it̄]
nt̄

(xt̄)
∏
j∈t

{
p

[ij ]
rj (xj)−FN [p

[ij ]
rj ](xj)

}
. (5.38)

Proof. We may write

FaN,k[f ](x)−FN,k[f ](x) = hk(x)−FN [hk](x), (5.39)

where hk is the smooth function

hk(x) =
∑

i∈{0,1}d

∑
t∈[d]

k−1∑
|rt|∞=0

N−1∑
|nt̄|∞=0

(
A[i]
rt,nt̄

[f ]− Ā[i]
rt,nt̄

[f ]
)
p[it]
rt (xt)φ

[it̄]
nt̄

(xt̄).

To prove the result, it suffices to demonstrate that the right-hand sides of (5.38) and (5.39)
have equal modified Fourier coefficients for all indices i ∈ {0, 1}d and n ∈ Nd0. It is readily
shown that both have vanishing coefficients whenever n ∈ IN , so we consider the case n /∈ IN .
In this setting, there is some u ∈ [d] such that nj ≥ N whenever j ∈ u, and nj = 0, . . . , N − 1
otherwise. Using identical arguments to those used to obtain (5.33), it can be shown that the
coefficient of the right-hand side of (5.39) is

ĥk
[i]

n =

k−1∑
|ru|∞=0

p̂ru
[iu]
nu
E [i]
ru,nū [f ]. (5.40)

We now consider the corresponding coefficient of (5.38). For each t ∈ [d], due to the function

φ
[it̄]
nt̄ , we must have u ⊆ t; otherwise, the corresponding term vanishes. However, due to the

product, it follows that t ⊆ u. Hence, t = u, and the modified Fourier coefficient of (5.38)
reduces to (5.40), completing the proof.

We are now in a position to provide analysis for Eckhoff’s approximation. Somewhat
counterintuitively, we first perform our analysis for a function f that satisfies the first k
derivative conditions. This is the content of the following two lemmas. The general case is
the verified upon writing f = (f − gek) + gek, where gek interpolates the first k odd derivatives
of f on the boundary Γ.

Lemma 5.16. Suppose that f ∈ H2k+l+1
mix (Ω) satisfies the first k derivative conditions and

that E [i]
rt,nt̄ [f ] is given by (5.36). Then

∣∣E [i]
rt,nt̄ [f ]

∣∣ . N2(|rt|−k|t|)n̄−2k−2
t̄

.
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Proof. Since f obeys the first k derivative conditions, A[i]
rt,nt̄ [f ] = 0 when t 6= ∅. Hence

k−1∑
|st|∞=0

∏
j∈t

V
[ij ]
rj ,sjE [i]

st,nt̄
[f ] = −A[i]

n [f ], n ∈Mk, i ∈ {0, 1}d.

Since A[i]
n [f ] = f̂

[i]
n in this case, an application of Lemma 5.12 now yields the result.

We are now able to provide an error estimate for such a function f :

Lemma 5.17. Suppose that f ∈ H2k+l+1
mix (Ω) obeys the first k derivative conditions, where l

is the number of equal values c(r), and that FN,k[f ] is the multivariate Eckhoff approximation
of f . Then ‖Dβ(f − FN,k[f ])‖∞ is O

(
N |β|∞−2k−1

)
for |β|∞ ≤ 2k and ‖(f − FN,k[f ])‖r is

O(N r−2k− 3
2 ) for r = 0, . . . , 2k + 1.

Proof. It suffices to consider the difference FaN,k[f ]−FN,k[f ]. Using Lemma 5.15, the bound

derived in Lemma 5.14, and the fact that ‖(p[i]
r −FN [p

[i]
r ])(s)‖∞ = O

(
N s−2r−1

)
, r, s ∈ N0 (see

(5.18)), we deduce that

‖Dβ(FaN,k[f ]−FN,k[f ])‖∞

.
∑

i∈{0,1}d

∑
t∈[d]

k−1∑
|rt|∞=0

N−1∑
|nt̄|∞=0

∣∣E [i]
rt,nt̄

[f ]
∣∣ ∥∥∥Dβt̄φ[it̄]

nt̄

∥∥∥
∞

∏
j∈t

∥∥∥∥(p[ij ]
rj −FN [p

[ij ]
rj ]
)(βj)

∥∥∥∥
∞

.
∑
t∈[d]

k−1∑
|rt|∞=0

N−1∑
|nt̄|∞=0

n̄
βt̄−2k−2
t̄

N2(|rt|−k|t|)
∏
j∈t

Nβj−2rj−1.

Since |β|∞ ≤ 2k, we have n̄
βt̄−2k−2
t̄

≤ n̄−2
t̄

. Hence

‖Dβ(FaN,k[f ]−FN,k[f ])‖∞ .
∑
t∈[d]

N2(|rt|−k|t|)N |βt|∞−2|rt|−2|t| . N |β|∞−2k−1,

which gives the result for the uniform error. The result for the Hr(Ω) norm is established in
an identical manner.

With this in hand, we are able to deduce the main result of this section:

Theorem 5.18. Suppose that f ∈ H2k+l+1
mix (Ω), where l is the number of equal values c(r),

and that FN,k[f ] is the multivariate Eckhoff approximation of f . Then ‖Dβ(f − FN,k[f ])‖∞
is O

(
N |β|∞−2k−1

)
for |β|∞ ≤ 2k and ‖f −FN,k[f ]‖r is O(N r−2k− 3

2 ) for r = 0, . . . , 2k + 1.

Proof. We proceed by induction on d. Since the univariate result has been proved, we assume
that the result holds for d− 1. Suppose that gek is the exact polynomial subtraction function
(5.21), so that f − gek satisfies the first k derivative conditions. Writing f = (f − gek) + gek
and using the linearity of FN,k[·], it follows from Lemma 5.17 that it suffices to consider the
difference gek −FN,k[gek].

The function gek is a finite sum of functions h(x) of the form h1(xt)h2(xt̄), t ∈ [d], |t| < d,
where h1 ∈ H2k+l+1

mix (−1, 1)|t| and h2 ∈ H2k+l+1
mix (−1, 1)|t̄|. Using linearity once more, it is

sufficient to prove the result for h. In the usual manner, we consider the difference FaN,k[h]−
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Figure 5.5: Pointwise error |f(x1, x2) − F25,k[f ](x1, x2)| for −1 ≤ x1, x2 ≤ 1 (top row) and − 1
2 ≤

x1, x2 ≤ 1
2 (bottom row), where FN,k[f ] is Eckhoff’s approximation based on values m(r) = N + r and

f(x1, x2) = (1− cosx1) sin 3x2.

FN,k[h], where FaN,k[h] is the approximate polynomial subtraction approximation of h. A
simple argument verifies that

FaN,k[h] = FaN,k[h1]FaN,k[h2], FN,k[h] = FN,k[h1]FN,k[h2].

Noting that a1b1 − a2b2 = (a1 − a2)b1 + a2(b1 − b2) for arbitrary a1, a2, b1, b2 ∈ R, we write

FaN,k[h]−FN,k[h] =
(
FaN,k[h1]−FN,k[h1]

)
FaN,k[h2] + FN,k[h1]

(
FaN,k[h2]−FN,k[h2]

)
.

By induction∥∥∥Dβt
(
FaN,k[h1]−FN,k[h1]

)∥∥∥
∞

. N |βt|∞−2k−1,
∥∥∥DβtFN,k[h1]

∥∥∥
∞

. 1,∥∥∥Dβt̄
(
FaN,k[h2]−FN,k[h2]

)∥∥∥
∞

. N |βt̄|∞−2k−1,
∥∥∥Dβt̄FaN,k[h2]

∥∥∥
∞

. 1.

Hence ∥∥∥Dβ
(
FaN,k[h]−FN,k[h]

)∥∥∥
∞

. N |βt|∞−2k−1 +N |βt̄|∞−2k−1 . N |β|∞−2k−1,

as required. The result for the Hr(Ω) norm is verified in an identical manner.

As in the univariate setting, we arrive at the following conclusion: approximating jump
values with Eckhoff’s method does not lead to any deterioration in the convergence rate. In
Figure 5.5 we demonstrate the benefit offered by the bivariate version of Eckhoff’s method.
For the function considered, we obtain 13 digits of accuracy using only k = 4 and N = 25.

Once more, additional smoothness is required for the multivariate version of Eckhoff’s
method over approximation by polynomial subtraction unless the values c(r), r = 0, . . . , k−1,
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are distinct. However, as we consider next, there is an advantage to choosing equal values
c(r): namely, a much faster convergence rate inside the domain Ω.

To sum up, a multivariate version of Eckhoff’s method can be easily developed for functions
defined on the d-variate cube. The resulting approximation attains a uniform convergence rate
of O

(
N−2k−1

)
using only modified Fourier coefficients. In contrast to previous assertions

(see, for example, [62]), we conclude that Eckhoff’s method is not limited to functions of one
variable.

5.7 The auto-correction phenomenon

As established in Theorems 5.8 and 5.11, polynomial subtraction (both exact and approxi-
mate) has a convergence rate one power of N faster inside the domain than on the boundary.
It transpires that, for the specific choice of the values m(r) = N + r (as mentioned in Section
5.3.2), Eckhoff’s approximation possesses the much faster convergence rate of O

(
N−3k−2

)
away from the boundary—a full O

(
Nk
)

faster than the corresponding approximation based
on exact jump values. This auto-correction phenomenon was observed numerically in [129]
and proved in the univariate, Fourier case in [138].8 The aim of this section is to extend
this result to the multivariate modified Fourier setting. Furthermore, we shall extend existing
theory of the auto-correction phenomenon in the following manner. We will establish that the
auto-correction phenomenon manifests itself not just in the convergence rate, but also in the
degree of convergence. In other words, as we shall prove, derivatives DβFN,k[f ](x) converge
to Dβf(x) away from the boundary Γ for higher values of |β|∞ than those guaranteed by
Theorem 5.18 (i.e. |β|∞ ≤ 2k).

In previous sections, we noted that Eckhoff’s approximation decouples into terms corre-
sponding to each particular value of i. The analysis of each term can be undertaken separately,
and, since each case is virtually identical, it suffices to consider only one particular value. For
the remainder of this section, we assume that f has only non-zero modified Fourier coefficients
when i = (0, 0, . . . , 0). Accordingly, we drop the [i] superscript.

Since uniform convergence of Eckhoff’s approximation on Ω̄ is assured by Theorem 5.18,
we may write

f(x)−FN,k[f ](x) =
∑
n/∈IN

v̂nφn(x) =
∑
t∈[d]

∑
nj≥N
j∈t

N−1∑
|nt̄|∞=0

v̂nφn(x), x ∈ Ω̄, (5.41)

where v(x) = f(x) − gk(x) and gk is given by (5.28). Following the same method of proof
as in [138], we first seek to expand the right-hand side of (5.41) using the so-called Abel
transformation. Given a sequence am ∈ R, m ∈ N, we define the operator 4r,n, r, n ∈ N, by

40,n[am] = an, 4r+1,n[am] = 4r,n[am] +4r,n+1[am], r, n ∈ N.

It is easily seen that

4r,n[am] =
r∑
s=0

(
r
s

)
an+s, r, n ∈ N. (5.42)

8The version of Eckhoff’s method based on discrete Fourier data also exhibits an auto-correction phe-
nomenon. In fact, the phenomenon is more pronounced in this case: the convergence rate away from the
endpoints is a factor of O(N2(k+1)) faster [139].
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Now suppose that am ∈ R, m ∈ Nd. We write 4j
r,n, j = 1, . . . , d, for the above operator

acting on the jth entry of n. Further, given t ∈ [d], r ∈ N|t| and n ∈ N|t| we define 4t
r,n by

the composition of |t| such operators:

4t
r,n[am] = 4t1

rt1 ,nt1

[
4t2
rt2 ,nt2

[
. . .4t|t|

rt|t| ,nt|t|
[am]

]]
.

It follows from (5.42) that

4t
r,n[am] =

rt1∑
st1=0

. . . .

rt|t|∑
st|t|=0

(
rt1
st1

)
. . .

(
rt|t|
st|t|

)
a(n+s;m), (5.43)

where (n+ s;m) has jth entry nj + sj if j ∈ t and mj otherwise.
Before using this transform, we need some additional notation. Given x, y ∈ Rd, we write

x.y for the dot product x1y1 + . . . xdyd, and, if y = (c, c, . . . , c) has equal entries, just x.c.

Moreover, given u ∈ [t]∗, ru ∈ N|u|0 and k ∈ N0, we define (ru; k) ∈ N|t|0 by the condition that
the jth entry of (ru; k), which we write (ru; k)j , takes value rj if j ∈ u and k otherwise.

Lemma 5.19. Suppose that g ∈ H1
mix(Ω), t ∈ [d] and that x ∈ Ω. Then, for k ∈ N0 and

nt̄ ∈ N|t̄|0 , we have∑
nj≥N
j∈t

ĝnφnt(xt) =

Re

{ ∑
u∈[t]∗

k∑
|ru|∞=0

eiπxu.(N−1)
∏
j∈t

(1 + e−iπxj )−(ru;k)j−1
∑
nj≥N
j∈ū

4t
(ru;k+1),(nū;N)[ĝm]eiπnū.xū

}
,

where (nū;N) ∈ N|t|0 has jth entry nj if j ∈ ū and N otherwise, and the values mt̄ = nt̄.

Proof. We proceed by induction on |t|. Suppose first that |t| = 1 and, without loss of gener-
ality, that d = 1. The verification of the lemma in this case is standard (see also [138]). We
have ∑

n≥N
ĝneinπx =

∑
n≥N

(41,n[ĝm]− ĝn+1) einπx

=
∑
n≥N
41,n[ĝm]einπx − e−iπx

∑
n≥N

ĝneinπx + ĝNei(N−1)πx.

Rearranging gives∑
n≥N

ĝneinπx =
ei(N−1)πx

1 + e−iπx
ĝN +

1

1 + e−iπx

∑
n≥N
41,n[ĝm]einπx,

which provides the result for k = 0. Iterating this process yields the result for general k.
Now let t ∈ [d] be of length |t| ≥ 2. Write t = (t1, t2, . . . , t|t|) and τ = (t2, . . . , t|t|) ∈ [d].

Then ∑
nj≥N
j∈t

ĝnφnt(xt) =
∑
nt1≥N

φnt1 (xt1)
∑
nj≥N
j∈τ

ĝnφnτ (xτ ).
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By induction hypothesis, we have

∑
nj≥N
j∈t

ĝnφnt(xt) =Re
∑
nt1≥N

eint1πxt1

{ ∑
u∈[τ ]∗

eiπxu.(N−1)

×
k∑

|ru|∞=0

∏
j∈τ

(1 + e−iπxj )−(ru;k)j−1
∑
nj≥N
j∈ū

4τ
(ru;k+1),(nū;N)[ĝm]eiπnū.xū

}

=Re
∑
u∈[τ ]∗

eiπxu.(N−1)
k∑

|ru|∞=0

∏
j∈τ

(1 + e−iπxj )−(ru;k)j−1

×
∑
nj≥N
j∈ū

eiπnū.xū
∑
nt1≥N

eint1πxt14τ
(ru;k+1),(nū;N)[ĝm]. (5.44)

Using the result for |t| = 1 gives∑
nt1≥N

eint1πxt14τ
(ru;k+1),(nū;N)[ĝn]

=
k∑

rt1=0

eiπxt1 (N−1)(1 + eiπxt1 )−rt1−14t1
rt1 ,N

[
4τ

(ru;k+1),(nū;N)[ĝm]
]

+
∑
nt1≥N

(1 + e−iπxt1 )−k−14t1
k+1,nt1

[
4τ

(ru;k+1),(nū;N)[ĝm]
]
. (5.45)

Substituting (5.45) into (5.44) now completes the proof. Note that if v ∈ [t]∗, then either
v ∈ [τ ]∗ or v = (t1, u) for some u ∈ [τ ]∗. The two terms of (5.45) correspond respectively to
these scenarios.

The crux of the auto-correction phenomenon is the following trivial observation:

Lemma 5.20. Suppose that v = f − gk, where gk is given by (5.28), and that m(r) = N + r,
r = 0, . . . , k − 1. Then 4t

rt,nt [v̂m] = 0 for all |rt|∞ ≤ k − 1, |nt|∞, |mt̄|∞ ≤ N and t ∈ [d].

Proof. Since v̂n = 0 for |n|∞ ≤ N + k − 1, the result follows directly from (5.43).

We may now re-write (5.41) as

f(x)−FN,k[f ](x) =
∑
t∈[d]

N−1∑
|nt̄|∞=0

hnt̄(xt)φnt̄(xt̄), (5.46)

where hnt̄(xt) is obtained from the expansion derived in Lemma 5.19:

hmt̄(xt)

= Re

{ ∑
u∈[t]∗

k∑
|ru|∞=0

eiπxu.(N−1)
∏
j∈t

(1 + e−iπxj )−(ru;k)j−1
∑
nj≥N
j∈ū

4t
(ru;k+1),(nū;N)[v̂m]eiπnū.xū

}
.
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Consider the term of hmt̄ corresponding to u = t separately. This is

eiπxt.(N−1)
k∑

|rt|∞=0

∏
j∈t

(1 + e−iπxj )−rj−14t
rt,N [v̂m],

where we write 4t
rt,N

instead of the full expression 4t
rt,(N,N,...,N). By Lemma 5.20, all terms

of this expression where |rt|∞ < k are zero. Hence, we define

Hmt̄(xt) = eiπxt.(N−1)
∑
|rt|∞=k

∏
j∈t

(1 + e−iπxj )−rj−14t
rt,N [v̂m], (5.47)

and

Gmt̄(xt) =
∑
u∈[t]∗

u6=t

{
k∑

|ru|∞=0

eiπxu.(N−1)
∏
j∈t

(1 + e−iπxj )−(ru;k)j−1

×
∑
nj≥N
j∈ū

4t
(ru;k+1),(nū;N)[v̂m]eiπnū.xū

}
, (5.48)

so that the function hnt may be expressed as hnt̄(xt) = Re
{
Gnt̄(xt) + Hnt̄(xt)

}
. To derive

an estimate for the error f(x)−FN,k[f ](x), we first require bounds for the functions Gnt̄ and
Hnt̄ . We derive such bounds in the sequel. First, however, it is useful to consider the case
d = 1, to demonstrate elements of the multivariate proof. This is given in a similar form in
[138].

5.7.1 The univariate case

Using (5.41) and the characterisation given in Lemma 5.19 with t = (1), we may write

f(x)−FN,k[f ](x) =
∑
n≥N

v̂nφn(x)

= Re

{
k∑
r=0

ei(N−1)πx

(1 + e−iπx)r+1
4r,N [v̂m] +

1

(1 + e−iπx)k+1

∑
n≥N
4k+1,n[v̂m]einπx

}
.

In light of Lemma 5.20, 4r,N [v̂m] = 0 for r = 0, . . . , k − 1, so this reduces to

f(x)−FN,k[f ](x) = Re

{
ei(N−1)πx

(1 + e−iπx)k+1
4k,N [v̂m] +

1

(1 + e−iπx)k+1

∑
n≥N
4k+1,n[v̂m]einπx

}
= Re [H(x) +G(x)] , (5.49)

where G(x) and H(x) are the univariate versions of Gnt̄ and Hnt̄ . Note that for d = 1 there
is only one t ∈ [d], namely, t = (1), and trivially t̄ = ∅.

We seek bounds for G and H. To do so, we require the following two lemmas:
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Lemma 5.21. Suppose that h ∈ L2(−1, 1), r ∈ N0 and n ∈ N0. Then

4r,n[ĥm] =

 Ĝr[h]n+ r
2

r even̂

Gr[h]n+ r+1
2

r odd
,

where Gr[h](x) = 2−r(cos 1
2πx)rh(x) and ǧn is the coefficient of a function g corresponding to

the Laplace–Dirichlet cosine function cos(n− 1
2)πx.

Proof. We proceed by induction on r. For r = 0, the result is trivial. Now suppose that the
result holds for r − 1. From the definition of 4r,n[·], we have

4r,n[ĥm] = 4r−1,n[ĥm] +4r−1,n+1[ĥm]

= 2−(r−1)

∫ 1

−1
(cos 1

2πx)r−1h(x)
{

cos(n+ 1
2(r − 1))πx+ cos(n+ 1 + 1

2(r − 1))πx
}
dx

= 2−r
∫ 1

−1
(cos 1

2πx)rh(x) cos(n+ r
2)πxdx,

as required.

The function Gr[h] has the following property, vital to our subsequent analysis:

Lemma 5.22. Suppose that h ∈ H2k+r(−1, 1) obeys the first k Neumann derivative conditions
h(2s+1)(±1) = 0, s = 0, . . . , k − 1. Then Gr[h] obeys the first k + r

2 Neumann derivative
conditions (2.12) if r is even, and the first k + r+1

2 Dirichlet derivative conditions (2.14)
otherwise.

Proof. This follows from the definition Gr[h](x) = 2−r(cos 1
2πx)rh(x), Leibniz’s rule, and the

fact that all even derivatives of cos 1
2πx vanish at x = ±1.

Corollary 5.23. Suppose that h is as in Lemma 5.22. Then |4r,n[ĥm]| . n−2k−r−2.

Proof. This follows immediately from Lemmas 5.21, 5.22 and standard properties of Laplace–
Neumann and Laplace–Dirichlet coefficients.

We are now able to provide bounds for G(x) and H(x). We have

Lemma 5.24. Suppose that f ∈ H3(k+1)(−1, 1) and that G(x), H(x) are as in (5.49). Then
|G(x)|, |H(x)| . N−3k−2 uniformly for x ∈ (−1, 1).

Proof. If v(x) = f(x)− gk(x), then

v̂n =
k−1∑
r=0

(
Ar[f ]− Ār[f ]

)
p̂rn +

k+K−1∑
r=k

Ar[f ]p̂rn +O
(
n−2(k+K)−l

)
, (5.50)

where K ∈ N0, l = 1, 2 and 2(k +K) + l = 3(k + 1). Hence

4s,n[v̂m] =
k−1∑
r=0

(
Ar[f ]− Ār[f ]

)
4s,n[p̂rm] +

k+K−1∑
r=k

Ar[f ]4s,n[p̂rm] +O
(
n−2(k+K)−l

)
.
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Using Theorem 5.5 and Corollary 5.23, we obtain

|4s,n[v̂m]| .
k−1∑
r=0

N2(r−k)n̄−2r−s−2 + n̄−2k−s−2 + n̄−2(k+K)−l.

Now, if k is even, we set 2K = k+ 2 and l = 1. Conversely, if k is odd, we define 2K = k+ 1
and l = 2. Substituting such values into the above expression, we obtain

|4k,N [v̂m]| . N−3k−2, |4k+1,n[v̂m]| . N−3k−1n−2, n ≥ N.

Recalling the definitions of G and H given in (5.49), this give the result.

A proof of the univariate auto-correction phenomenon now follows immediately:

Theorem 5.25. Suppose that f ∈ H3(k+1)(−1, 1) and that FN,k[f ] is the univariate Eckhoff
approximation based on the values m(r) = N + r, r = 0, . . . , k− 1. Then f(x)−FN,k[f ](x) is
O
(
N−3k−2

)
uniformly for x in compact subsets of (−1, 1).

5.7.2 Bounds for Gnt̄ and Hnt̄

With the univariate result to hand, we now return to the multivariate case. To derive bounds
for Gnt̄ and Hnt̄ , we commence with the following preliminary result:

Lemma 5.26. Suppose that t ∈ [d], rt ∈ N|t|0 , 2K ≥ k + 1 and that the function h ∈
H

2(k+K)+1
mix (Ω), satisfies the first sj ≤ k derivative conditions in each variable xj, j = 1, . . . , d.

Then ∣∣∣4rt,nt [ĥn]
∣∣∣ . d∏

j=1

n̄
2sj−2
j

∏
j∈t

n̄
−rj
j = n̄−2s−2n̄−rtt .

Proof. This result follows immediately after applications of Lemmas 5.21, 5.22 and Corollary
5.23 in each variable xj , j ∈ t.

With this in hand, we may estimate the functions Gnt̄ and Hnt̄ . For the latter, we have:

Lemma 5.27. Suppose that f ∈ H
3(k+1)
mix (Ω). Then the function Hnt̄ defined by (5.47) satisfies∣∣Hnt̄(xt)

∣∣ . N−3k−2n̄−2
t̄

uniformly for xt in compact subsets of (−1, 1)|t|.

Proof. For n ∈ Nd0 with nj ≥ N whenever j ∈ t and nj = 0, . . . , N−1 otherwise, the coefficient
v̂n satisfies

v̂n =

k−1∑
|st|∞=0

Est,nt̄ [f ]p̂stnt +
∑
v∈[d]∗

t6⊆v

k−1∑
|sv |∞=0

Asv ,nv̄ [f ]p̂svnv . (5.51)

We now substitute the two terms of (5.51) into the definition of Hnt̄ given by (5.47) and
consider them separately. For the first term, we have

4t
rt,N

[
Est,nt̄ [f ]p̂stnt

]
= Est,nt̄ [f ]4t

rt,N

[
p̂stnt

]
= Est,nt̄ [f ]

∏
j∈t
4j
rj ,N

[p̂sjnj
].
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Using Lemmas 5.14 and 5.26, we obtain the bound∣∣4t
rt,N

[
Est,nt̄ [f ]p̂stnt

]∣∣ . N2(|st|∞−k)
∏
j∈t

N−2sj−rj−2n̄−2
t̄

. N−2k−|rt|−2|t|n̄−2
t̄
.

Since |rt| ≥ |rt|∞ = k and |t| ≥ 1, this gives the required estimate for the first term.
Now consider the second term of (5.51) substituted into (5.47). For v ∈ [d]∗ with t 6⊆ v,

either (i) v ∩ t 6= ∅ or (ii) v ∩ t = ∅. Consider case (i) first. We have

4t
rt,N

[
Asv ,nv̄ [f ]p̂svnv

]
= 4t\v

rt\v ,N
[Asv ,nv̄ [f ]]4t∩v

rt∩v ,N [p̂svnv ].

Since Asv ,nv̄ [f ] = ĥnv̄ , where h is a function of xv̄ that obeys the first k derivative conditions,
we may apply Lemma 5.26 to give∣∣4t

rt,N

[
Asv ,nv̄ [f ]p̂svnv

]∣∣ . ∏
j∈t∩v

N−2sj−rj−2
∏
j∈t\v

N−2k−rj−2n̄
−2sv\t−2

v\t n̄−2k−2
t∪v

. N−|rt|−2|t∩v|−2(k+1)(|t\v|)n̄−2
t̄

. N−3k−2n̄−2
t̄
.

Here the final inequality follows since, by assumption, |t ∩ v|, |t\v| ≥ 1. Now consider case
(ii). Since t ∩ v = ∅, we have

4t
rt,N

[
Asv ,nv̄ [f ]p̂svnv

]
= 4t

rt,N [Asv ,nv̄ [f ]] p̂svnv .

Using Lemma 5.26, we obtain∣∣4t
rt,N

[
Asv ,nv̄ [f ]p̂svnv

]∣∣ .∏
j∈t

N−rj−2k−2
∏
j /∈v∪t

n̄−2k−2
j

∏
j∈v

n̄
−2sj−2
j

. N−|rt|∞−2k−2n̄−2
t̄

. N−3k−2n̄−2
t̄
.

This completes the proof.

Next we derive a bound for Gnt̄ :

Lemma 5.28. Suppose that f ∈ H
3(k+1)
mix (Ω). Then the function Gnt̄ defined by (5.48) satisfies∣∣Gnt̄(xt)∣∣ . N−3k−2n̄−2

t̄
, uniformly for xt in compact subsets of (−1, 1)|t|.

Proof. Since xt ∈ (−1, 1)|t|, it suffices to bound

∑
u∈[t]∗

u6=t

k∑
|ru|∞=0

∑
nj≥N
j∈ū

∣∣∣4t
(ru;k+1),(nū;N)[v̂m]

∣∣∣ , (5.52)

by N−3k−2n̄−2
t̄

(where mt̄ = nt̄). To do so, we substitute the two terms of (5.51) into (5.52)
and consider them separately. For the first term, we have

∑
u∈[t]∗

u6=t

k∑
|ru|∞=0

∑
nj≥N
j∈ū

k−1∑
|st|∞=0

∣∣∣4t
(ru;k+1),(nū;N)

[
Est,nt̄ [f ]p̂stnt

]∣∣∣ . (5.53)
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Since u ⊆ t, we observe that

4t
(ru;k+1),(nū;N)

[
Est,nt̄ [f ]p̂stnt

]
= Est,nt̄ [f ]

∏
j∈u
4j
rj ,N

[p̂sjnj
]
∏
j∈t\u

4j
k+1,nj

[p̂sjnj
].

Using Lemmas 5.14 and 5.26, we deduce that∣∣∣4t
(ru;k+1),(nū;N)

[
Est,nt̄ [f ]p̂stnt

]∣∣∣ . N2(|st|∞−k)n̄−2
t̄

∏
j∈u

N−2sj−rj−2n̄−2sū−k−3
ū .

Substituting this into (5.53), we obtain

∑
u∈[t]∗

u6=t

k∑
|ru|∞=0

∑
nj≥N
j∈ū

k−1∑
|st|∞=0

∣∣∣∣∣4t
(ru;k+1),(nū;N)

[
p̂stntEst,nt̄ [f ]

] ∣∣∣∣∣
.
∑
u∈[t]∗

u6=t

k∑
|ru|∞=0

∑
nj≥N
j∈ū

k−1∑
|st|∞=0

N2(|st|∞−k)
∏
j∈u

N−2sj−rj−2n̄−2
t̄
n̄−2sū−k−3
ū

. n̄−2
t̄

∑
u∈[t]∗

u6=t

k∑
|ru|∞=0

k−1∑
|st|∞=0

N2(|st|∞−k)
∏
j∈u

N−2sj−rj−2
∏
j∈t\u

N−2sj−k−2

. n̄−2
t̄

∑
u∈[t]∗

u6=t

k∑
|ru|∞=0

N−2k−|ru|−2|u|−(k+2)(|t|−|u|) . N−3k−2n̄−2
t̄
,

as required. Here the last inequality follows by noting that |t| − |u| ≥ 1.

We now consider the second term of (5.51) substituted into (5.52):

∑
v∈[d]∗

t6⊆v

k−1∑
|sv |∞=0

∑
u∈[t]∗

u6=t

k∑
|ru|∞=0

∑
nj≥N
j∈ū

∣∣∣4t
(ru;k+1),(nū;N)

[
Asv ,nv̄ [f ]p̂svnv

]∣∣∣ . (5.54)

As in the proof of Lemma 5.27, we split this into two cases: either (i) v∩ t 6= ∅ or (ii) v∩ t = ∅.
Suppose that we consider case (i). Since v ∩ t 6= ∅, we have

4t
(ru;k+1),(nū;N)

[
Asv ,nv̄ [f ]p̂svnv

]
= 4t∩v

(ru∩v ;k+1),(nū∩v ;N)

[
p̂svnv

]
4t∩v̄

(ru∩v̄ ;k+1),(nū∩v̄ ;N) [Asv ,nv̄ [f ]] .

Note that ∣∣∣4t∩v
(ru∩v ;k+1),(nū∩v ;N)

[
p̂svnv

]∣∣∣ . ∏
j∈u∩v

N−2sj−rj−2n̄−2sū∩v−k−3
ū∩v n̄

−2sv\t−2

v\t .

Furthermore ∣∣∣4t∩v̄
(ru∩v̄ ;k+1),(nū∩v̄ ;N) [Asv ,nv̄ [f ]]

∣∣∣ . ∏
j∈u∩v̄

N−2k−rj−2n̄−3k−3
ū∩v̄ n̄−2k−2

t∪v .
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Combining these two estimates yields∣∣∣4t
(ru;k+1),(nū;N)

[
Asv ,nv̄ [f ]p̂svnv

]∣∣
.
∏
j∈u∩v

N−2sj−rj−2
∏
j∈u∩v̄

N−2k−rj−2n̄−2sū∩v−k−3
ū∩v n̄−3k−3

ū∩v̄ n̄−2
t̄
.

Hence ∣∣∣∣∣
k−1∑
|sv |∞=0

∑
u∈[t]∗

u6=t

k∑
|ru|∞=0

∑
nj≥N
j∈ū

4t
(ru;k+1),(nū;N)

[
Asv ,nv̄ [f ]p̂svnv

] ∣∣∣∣∣
.

k−1∑
|sv |∞=0

∑
u∈[t]∗

u6=t

k∑
|ru|∞=0

{ ∏
j∈u∩v

N−2sj−rj−2
∏
j∈u∩v̄

N−2k−rj−2

×
∏
j∈ū∩v

N−2sj−k−2
∏
j∈ū∩v̄

N−3k−2n̄−2
t̄

}
.
∑
u∈[t]∗

u6=t

N−2(k+1)|u∩v̄|N−(k+2)|ū∩v|N−(3k+2)|ū∩v̄|n̄−2
t̄
.

We claim that this term is . N−3k−2n̄−2
t̄

. For each u, we have two possibilities: either
ū ∩ v̄ 6= ∅ or ū ∩ v̄ = ∅. If ū ∩ v̄ 6= ∅, then the result follows immediately. Now suppose that
ū ∩ v̄ = ∅. Since t 6⊆ v and u ⊂ t, we have

∅ 6= t ∩ v̄ = (ū ∩ v̄) ∪ (u ∩ v̄) = ∅ ∪ (u ∩ v̄) = u ∩ v̄.

Similarly, since u 6= t, it follows that ∅ 6= ū = (ū ∩ v)∪ (ū ∩ v̄) = ū∩v. Hence, u∩ v̄, ū∩v 6= ∅,
and the result follows in this case. This completes case (i).

Next, consider case (ii). Since v ∩ t = ∅, we have

4t
(ru;k+1),(nū;N)

[
Asv ,nv̄ [f ]p̂svnv

]
= 4t

(ru;k+1),(nū;N) [Asv ,nv̄ [f ]] p̂svnv .

In the standard manner, we obtain∣∣∣4t
(ru;k+1),(nū;N)

[
Asv ,nv̄ [f ]p̂svnv

]∣∣∣ .∏
j∈u

N−2k−rj−2n̄−3k−3
ū n̄−2k−2

v̄\t n̄−2sv−2
v

. N−2(k+1)|u|−|ru|∞ n̄−3k−3
ū n̄−2

t̄
.

Hence

k−1∑
|sv |∞=0

∑
u∈[t]∗

u6=t

k∑
|ru|∞=0

∑
nj≥N
j∈ū

∣∣∣4t
(ru;k+1),(nū;N)

[
Asv ,nv̄ [f ]p̂svnv

]∣∣∣ .∏
j∈ū

N−3k−2n̄−2
t̄

. N−3k−2n̄−2
t̄
,

where the final inequality follows, since |ū| ≥ 1. This completes the proof.
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(x1, x2) N = 10 N = 20 N = 30 N = 40 N = 50

(1, 1) 4.958× 10−8 1.307× 10−10 3.799× 10−12 3.022× 10−13 4.202× 10−14

(−1,−1) 6.341× 10−8 1.372× 10−10 3.723× 10−12 2.861× 10−13 3.898× 10−14

(1
2 ,

2
3) 1.189× 10−12 4.293× 10−15 2.039× 10−19 4.673× 10−19 1.485× 10−20

(0, 0) 9.542× 10−13 1.885× 10−16 9.473× 10−19 2.037× 10−20 1.002× 10−21

Table 5.1: Pointwise error |f(x1, x2) − FN,k[f ](x1, x2)| for various values of (x1, x2) and N , where
k = 4 and f(x1, x2) =

(
e3x1 + e−4x1

) (
sin 5x2 + 1

2

)
. Results to 4 significant digits.

5.7.3 Analysis of the auto-correction phenomenon and numerical results

We may now prove the key result of this section:

Theorem 5.29. Suppose that FN,k[f ] is the multivariate Eckhoff approximation of the func-

tion f ∈ H
3(k+1)
mix (Ω) based on the values m(r) = N+r, r = 0, . . . , k−1. Then f(x)−FN,k[f ](x)

is O
(
N−3k−2

)
uniformly for x in compact subsets of Ω.

Proof. Substituting the bounds derived in Lemmas 5.27 and 5.28 into the expansion (5.46)
immediately yields the result.

Though the analysis in this section was carried out for the approximation based on cardinal
polynomials, it is a simple exercise to extend it to the general subtraction bases described in
Section 5.2.1. Hence, we have established the existence of an auto-correction phenomenon for

arbitrary dimension d and arbitrary subtraction basis q
[i]
r .9

For general values m(r), it can be shown (by identical methods) that an auto-correction
phenomenon is present, provided the first l ≤ k values are chosen so that m(r) = N + r,
r = 0, . . . , l−1. In this case, the convergence rate away from the boundary isO

(
N−2k−l−2

)
. In

particular, if m(0) = N , as is the case with the choices (5.19) and (5.20), then the convergence
rate is O

(
N−2k−3

)
.

The univariate auto-correction phenomenon was demonstrated numerically in Figure 5.2 of
Section 5.3.2. For the particular choice of function and parameters, the error at the endpoints
is roughly 10−8. Conversely, in the interval [−0.5, 0.5] this value is much smaller, approxi-
mately 10−12. In Table 5.1, we present numerical results for the auto-correction phenomenon
in the bivariate setting. Once more, we observe that the error inside the domain is much
smaller than on the boundary. In particular, at the two points sampled inside the domain,
machine epsilon is achieved with k = 4 and N < 30. Another bivariate example is considered
in Figure 5.6. This figure also highlights that the convergence rate is slower on the whole of
the boundary, not just at the corners, as may be expected.

Numerical results aside, the theory of the auto-correction phenomenon warrants further
scrutiny. It is now apparent that Eckhoff’s method offers a significantly faster pointwise con-
vergence rate away from the boundary. Standard arguments demonstrate that this conver-
gence rate is not uniform in Ω̄. For example, consider the univariate scenario. If xN = 1− 1

N ,
then using the expression (5.49), the fact that e−iπxN = −1− iπN−1 +O

(
N−2

)
, and the esti-

mates of Section 5.7.1, it follows that f(xN )− FN,k[f ](xN ) = O
(
N−2k−1

)
. This observation

9Incidentally, the auto-correction phenomenon is also exhibited by the error f − FN,k[f ] measured in the
L2(Ω′) norm, where Ω′ is some set compactly contained in Ω. This has been studied in the univariate, Fourier
case in [138]. The extension to the multivariate, modified Fourier setting is straightforward.
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-1.0 -0.5 0.5 1.0
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2. ´ 10-13

4. ´ 10-13

6. ´ 10-13

8. ´ 10-13

-1.0 -0.5 0.5 1.0

5. ´ 10-13

1. ´ 10-12

1.5 ´ 10-12

2. ´ 10-12

2.5 ´ 10-12

-0.4 -0.2 0.2 0.4

5. ´ 10-14

1. ´ 10-13

1.5 ´ 10-13

2. ´ 10-13

2.5 ´ 10-13

-0.4 -0.2 0.2 0.4

2. ´ 10-18

4. ´ 10-18

6. ´ 10-18

8. ´ 10-18

1. ´ 10-17

1.2 ´ 10-17

1.4 ´ 10-17

-0.4 -0.2 0.2 0.4

5. ´ 10-18

1. ´ 10-17

1.5 ´ 10-17

2. ´ 10-17

2.5 ´ 10-17

Figure 5.6: Absolute error |f(x, y0) − F25,4[f ](x, y0)|, where f(x1, x2) = x21 cosh 3x1 cos 2x2 sin 3x2,
for −1 ≤ x ≤ 1 (top row) and − 1

2 ≤ x ≤
1
2 (bottom row) and y0 = 1, 23 ,

1
3 (left to right).

not only verifies the nonuniformality of the auto-correction phenomenon, it also establishes
quasi-optimality of the uniform error estimate of Theorem 5.18.

Since the auto-correction phenomenon concerns faster convergence inside the domain, it is
worth examining whether or not this corresponds to a higher degree of pointwise convergence:
in other words, whether higher-order derivatives of FN,k[f ] converge to the corresponding
derivatives of f . Uniform convergence of any partial derivative with index |β|∞ ≤ 2k is
guaranteed by Theorem 5.18. However, as we assess in the next section, pointwise convergence
away from the boundary occurs for any derivative β of the increased order |β|∞ ≤ 3k + 1.

5.7.4 Degree of convergence of Eckhoff’s approximation

We consider the univariate case. For the sake of simplicity we also assume that f ∈ C∞[−1, 1]
throughout this section. Simple adjustments can be made to address functions with lower
regularity.

Recall that

f(x)−FN,k[f ](x) = Re
∑
n≥N

v̂neinπx = Re [H(x) +G(x)] ,

where H(x) = eiπ(N−1)x(1 + e−iπx)−k4k,N [v̂n] and

G(x) = (1 + e−iπx)−(k+1)
∑
n≥N
4k+1,n[v̂n]einπx.

We wish to estimate the lth derivative of f(x) − FN,k[f ](x) for l ∈ N0 and x ∈ (−1, 1).
Trivially, using the bound for 4k,N [v̂n] derived in Lemma 5.24, we have∣∣∣H(l)(x)

∣∣∣ . N l−3k−2, ∀l ∈ N0. (5.55)

We now turn our attention to G(x). To attain a similar bound to (5.55), we seek an expression
for G that does not involve an infinite sum. This is given by the following lemma:
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Lemma 5.30. The function G(x) satisfies

Re [G(x)] =


Φ(x)

{
Gk+1[v](x)−FN+ k+1

2
[Gk+1[v]](x)

}
k odd

Φ(x)
{
Gk+1[v](x)− F̃N+ k

2
+1[Gk+1[v]](x)

}
k even,

where the function Gk+1[v](x) = 2−(k+1)(cos 1
2πx)k+1v(x), Φ(x) = (2 cos 1

2πx)−(k+1), and FN
and F̃N are the Laplace–Neumann and Laplace–Dirichlet projection operators respectively.

Proof. Both cases are similar, so we assume that k is odd. In this setting, Lemma 5.21 gives

that 4k+1,n[v̂n] = Ĝk+1[v]n+ k+1
2

. Hence

G(x) = (1 + e−iπx)−(k+1)
∑
n≥N
4k+1,n[v̂n]einπx

= (1 + e−iπx)−(k+1)e−i k+1
2
πx
∑
n≥N
Ĝk+1[v]n+ k+1

2
ei(n+ k+1

2
)πx.

Since (1 + e−iπx)−(k+1)e−i k+1
2
πx = (2 cos 1

2πx)−(k+1), it follows that

Re [G(x)] =
(
2 cos 1

2πx
)−(k+1)

∑
n≥N+ k+1

2

Ĝk+1[v]n cosnπx,

which completes the proof.

We next require the following standard lemma:

Lemma 5.31. Suppose that h ∈ C∞[−1, 1] obeys the first k Neumann or Dirichlet derivative
conditions. Then, for all l ∈ N0,∣∣∣h(l)(x)− (FN [h])(l)(x)

∣∣∣ . N l−2k−2,
∣∣∣h(l)(x)− (F̃N [h])(l)(x)

∣∣∣ . N l−2k−1, x ∈ (−1, 1),

respectively.

Proof. Both cases are identical, so we consider the former. If l ≤ 2k + 1, then the result
follows immediately from Theorem 2.22. Now suppose that l ≥ 2k + 2. By assumption,
ĥn = Ak[h](−1)n(nπ)−2k−2 +O

(
n−2k−4

)
. Hence

∣∣∣h(l)(x)− (F̃N [h])(l)(x)
∣∣∣ . ∣∣∣h(l)(x)

∣∣∣+

∣∣∣∣Ak[h]

∣∣∣∣
∣∣∣∣∣Re

N−1∑
n=1

(−1)n(nπ)l−2k−2einπx

∣∣∣∣∣+N l−2k−2.

Now

N−1∑
n=1

(−1)n(nπ)l−2k−2einπx = i2(k+1)−l dl−2k−2

dxl−2k−2

N−1∑
n=1

(−eiπx)n

= i2(k+1)−l dl−2k−2

dxl−2k−2

(
eiπx (−eiπx)N−1 − 1

eiπx + 1

)
,
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provided x ∈ (−1, 1). It is now readily seen that∣∣∣∣∣
N−1∑
n=1

(−1)n(nπ)l−2k−2einπx

∣∣∣∣∣ . N l−2k−2,

thus completing the proof.

We are now able to provide a bound for G(x):

Lemma 5.32. The function G(x) satisfies |G(l)(x)| . N l−3k−2 for all l ∈ N0.

Proof. We write

v(x) = f(x)− gk(x) =
k−1∑
r=0

(
Ar[f ]− Ār[f ]

)
pr(x) + [f(x)− gek(x)] ,

where gek(x) =
∑k−1

r=0 Ar[f ]pr(x) is the subtraction function based on exact jump values. This
gives

G(x) =Φ(x)

{
k−1∑
r=0

(
Ar[f ]− Ār[f ]

)
(Gk+1[pr](x)−FN [Gk+1[pr]](x))

+ (Gk+1[f − gek](x)−FN [Gk+1[f − gek]](x))

}
, (5.56)

where FN is either the Laplace–Dirichlet projector when k is even or the Laplace–Neumann
projector otherwise. Since f−gek obeys the first k derivative conditions, the result now follows
immediately from Theorems 5.1 and 5.5, as well as Lemmas 5.22 and 5.31.

The key result of this section is an immediate consequence of this lemma:

Theorem 5.33. Suppose that f ∈ C∞[−1, 1] and that FN,k[f ] is the Eckhoff approximation
of f based on the values m(r) = N+r, r = 0, . . . , k−1. Then (FN,k[f ])(l) converges uniformly
to f (l) in compact subsets of (−1, 1) for l = 0, . . . , 3k + 1. Moreover, for all l ∈ N0, the error
f (l)(x)− (FN,k[f ])(l)(x) is O

(
N l−3k−2

)
for such x.

This theorem establishes the existence of a higher degree of pointwise convergence of the
univariate Eckhoff approximation. Using similar arguments to those given previously, we may
also furnish the multivariate version of Eckhoff’s method with an analogous result. We shall
not do this. Instead, we state:

Theorem 5.34. Suppose that f ∈ C∞(Ω̄), where Ω = (−1, 1)d, and that FN,k[f ] is the Eckhoff
approximation of f based on the values m(r) = N + r, r = 0, . . . , k − 1. Then DβFN,k[f ]
converges uniformly to Dβf in compact subsets of Ω for |β|∞ ≤ 3k + 1. Moreover, for all
β ∈ Nd0, the error Dβf(x)−DβFN,k[f ](x) is O

(
N |β|∞−3k−2

)
for such x.

Aside from verifying a higher degree of pointwise convergence, these results demonstrate
the existence of a super-Gibbs phenomenon for (2k + 1)th order derivatives of Eckhoff’s ap-
proximation. Consider the univariate setting. As demonstrated, the derivative (FN,k[f ])(2k+1)

does not converge uniformly to f (2k+1), yet, away from the endpoints, the error f (2k+1)(x)−
(FN,k[f ])(2k+1)(x) = O

(
N−k−1

)
. One facet of the standard Gibbs phenomenon is an O (1)

uniform approximation error, but a pointwise convergence rate of O
(
N−1

)
away from the

endpoints. Evidently, for Eckhoff’s approximation, this effect is far more pronounced. Figure
5.7 demonstrates this phenomenon.
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Figure 5.7: Top row: graphs of f (3)(x) and (F25,1[f ])(3)(x) for 0 ≤ x ≤ 1 (left), 1
2 ≤ x ≤ 1

(middle), and 3
4 ≤ x ≤ 1 (right), where f(x) = x2 sin 5x + cos 6x. Bottom row: absolute error

|f (3)(x)− (F25,1[f ])(3)(x)|.

5.8 Eckhoff’s method and the hyperbolic cross

As in Chapters 2–4, a vast reduction in the number of approximation terms (and, as a direct
consequence, in the computational effort involved in forming the approximation) can be ef-
fectuated by replacing the full index set (2.33) in Eckhoff’s approximation by the hyperbolic
cross (2.41).10 There are two aspects of this. First, we replace the index set used in the op-
erator FN [·]. However, to take full advantage of the hyperbolic cross, we also suitably amend
the subtraction function gk. Instead of (5.28), we employ the function

gk(x) =
∑

i∈{0,1}d

∑
t∈[d]

k−1∑
|rt|∞=0

N−1∑
|nt̄|0=0

Ā[i]
rt,nt̄

[f ]p[it]
rt (xt)φ

[it̄]
nt̄

(xt̄), (5.57)

where the expression |n|0 = n̄1 . . . n̄d is as in Chapter 2.11 The new function gk satisfies the
conditions

ĝk
[i]
n = f̂ [i]

n , n ∈Mk, (5.58)

where Mk is the index set

Mk =
⋃
t∈[d]

{
n = (n1, . . . , nd) ∈ Nd : nj = m(rj), rj = 0, . . . , k − 1, j ∈ t, |nt̄|0 < N

}
.

The function gk and index set Mk differ from their ‘full’ counterparts (5.28) and (5.30) only
in the sense that |nt̄|∞ is replaced by |nt̄|0. With these definitions to hand, we now construct

10Naturally, we could also consider the optimized hyperbolic cross (2.51) with similar results. However, for
simplicity, we use (2.41) throughout.

11In this discussion, as well as subsequent analysis, we revert to full generality once more, neither assuming
that the values m(r) = N + r nor that the function f has only non-zero coefficients for one particular value of
i ∈ {0, 1}d. Having said this, numerical results will be presented for the choice m(r) = N + r, in accordance
with previous examples.
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k 10−2 10−4 10−6 10−8 10−10 10−12 10−14 10−16

1 121 1521 31329 — — — — —
89 513 3053 17461 97241 — — —

2 49 121 561 1849 10201 60025 — —
49 105 297 841 2269 6269 17501 48485

3 81 121 169 441 1225 3969 13689 47089
81 117 193 353 697 1333 2773 5585

4 81 121 169 289 529 1089 2401 5929
81 121 165 257 397 593 1005 1649

5 121 121 169 289 361 625 1089 2025
121 121 169 273 329 493 789 1145

Table 5.2: Number of terms in the full (top value) and hyperbolic cross (bottom value) versions of
Eckhoff’s approximation required to obtain an accuracy of ‖f −FN,k[f ]‖∞ < 10−2j for j = 1, 2, . . . , 8
and f(x1, x2) = e2x1 (cos 3x2 + sin 2x2) (the dash indicates where in excess of 100, 000 terms are
required to obtain the prescribed tolerance).

the approximation FN,k[f ] in the standard manner: FN,k[f ] = FN [f − gk] + gk, where FN [·]
is the modified Fourier projection operator based on the index set (2.41).

We remark in passing that, when d = 2, there is no difference between the subtraction
functions (5.28) and (5.57). The only difference between the two resulting approximations
arises from the index set used in FN [·]. However, for d ≥ 3, the functions (5.28) and (5.57)
are distinct, leading to further savings in computational cost.

5.8.1 Cost reduction and numerical results

The operational cost of forming the hyperbolic cross version of Eckhoff’s approximation is
O
(
max{kd+1, kdN(logN)d−1}

)
. For k � N , this represents a significant reduction over

the full index set version, where the corresponding figure, as mentioned in Section 5.5, is
O
(
max{kd+1, kdNd}

)
. No specific techniques are required either: as in the previous case, we

repeatedly solve one-dimensional linear systems involving the matrix V [i] (or alternatively,
compute (V [i])−1 and use (5.34)).

In Table 5.2, we highlight the improvement offered by the bivariate version of this method.
For example, when k = 3, around 14, 000 terms are required to obtain an error of approx-
imately 10−14 with the full index set Eckhoff method. The hyperbolic cross approximation
obtains the same accuracy using only 2, 800 terms.

When d = 3, the improvement offered is more substantial. In Figure 5.8, we compare the
error of the full and hyperbolic cross versions of Eckhoff’s method applied to the function

f(x1, x2, x3) =
(
x2

1 cos 5x1 + 46
125 sin 5− 4

25 cos 5
)

× (cosh 2x2 − cosh 1 sinh 1)
(
x3 sin 2x3 + 1

2 cos 2− 1
4 sin 2

)
. (5.59)

For k = 3, using roughly 5, 000 terms, the hyperbolic cross version yields an error roughly 104

times smaller than the full version. For k = 4, the hyperbolic cross approximation obtains an
error of 10−10 using only 1, 500 terms. The full index set approximation does not reach this
value until the number of terms exceeds 6, 000.
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Figure 5.8: Log error log10 ‖f−FN,k[f ]‖∞ against number of approximation terms for the full (circles)
and hyperbolic cross (squares) versions of Eckhoff’s method applied to (5.59).

The combination of Eckhoff’s method and the hyperbolic cross yields highly accurate ap-
proximations comprising only a relatively small number of approximation coefficients. Figure
5.8 also demonstrates the advantage offered by this approach over the standard (k = 0) mod-
ified Fourier expansion. To obtain an accuracy of 10−10 with k = 4 requires less than 2000
terms, whereas to do the same with the original approximation FN [f ] would require in excess
of 1012 terms—a completely infeasible value.

Key to the supremacy of the hyperbolic cross version over its full counterpart is that k
remains small in comparison to N . As k grows, the relative improvement lessens. Asymp-
totically, at least, the hyperbolic cross method will always outperform the corresponding full
index set approximation. However, for larger k, the function under consideration will often
be very accurately resolved before the onset of this regime. This effect is demonstrated in
Figure 5.8: when k = 4, as opposed to k = 2, the two graphs only begin to diverge once
the error is much smaller. Nonetheless, since no additional effort is required to devise the
hyperbolic cross version, its continued consideration is justified. However, it is only fair to
warn the reader that the relative improvement may not be as substantial as expected.

5.8.2 Analysis of the hyperbolic cross version of Eckhoff’s method

The framework introduced in Section 5.6 forms the basis for the analysis of the hyperbolic
cross version of Eckhoff’s method—a task we now pursue. As in previous cases, our intention
is to demonstrate that there is no deterioration of the convergence rate over polynomial
subtraction. To this end, we restate the following result, proved in Chapter 2:

Theorem 5.35. Suppose that f ∈ H2k+2
mix (Ω) and that FeN,k[f ] is the kth exact polynomial

subtraction approximation of f based on the hyperbolic cross (2.41). Then

‖f −FeN,k[f ]‖ . N−2k− 3
2 (logN)

d−1
2 ,

‖f −FeN,k[f ]‖r . N r−2k− 3
2 , r = 1, . . . , 2k + 1,

and ‖Dβ(f −FeN,k[f ])‖∞ . N |β|∞−2k−1(logN)d−1 for |β|∞ ≤ 2k.

As in the full index set case (Section 5.4), it is possible to introduce the notion of ap-
proximate polynomial subtraction based on the hyperbolic cross. However, since the resulting
approximation is not necessary to our subsequent analysis, we shall not pursue this further.

Our approach to analyse convergence is based on estimating the difference between the
full and hyperbolic cross versions of Eckhoff’s method. To this end, we write gk, FN,k[f ] and
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ghk , FhN,k[f ] for the full and hyperbolic cross versions of Eckhoff’s approximation respectively.
Fundamental to this approach, and easily confirmed by a brief study of (5.31) and (5.58), is

that the coefficients Ā[i]
rt,nt̄ [f ] of gk and ghk are identical. The sole difference between the two

functions is that we employ only those coefficients with |nt̄|0 < N in the latter, whereas in
the former, we use all coefficients with |nt̄|∞ < N . We make use of this fact later. For now,
we first notice that

FN,k[f ]−FhN,k[f ] = (gk + FN [f − gk])−
(
ghk −FhN [f − ghk ]

)
=
{
FN [f − gk]−FhN [f − gk]

}
+
{(
gk − ghk

)
−FhN [gk − ghk ]

}
, (5.60)

where FN [·] and FhN [·] are the modified Fourier projection operators based on the full and
hyperbolic cross index sets respectively. It therefore suffices to analyse each bracket separately,
a task we shall now perform.

An estimate for FN [f − gk]−FhN [f − gk]

Since

FN [f − gk](x)−FhN [f − gk](x) =
∑

i∈{0,1}d

∑
|n|∞<N
|n|0≥N

(
f̂ [i]
n − ĝk [i]

n

)
φ[i]
n (x), (5.61)

we first seek an expression for f̂
[i]
n − ĝk [i]

n . By definition, for |n|∞ < N , we have

f̂ [i]
n − ĝk [i]

n =
∑
t∈[d]

k−1∑
|rt|∞=0

(
A[i]
rt,nt̄

[f ]− Ā[i]
rt,nt̄

[f ]
)
p̂rt

[it]
nt

+A[i]
n [f ], (5.62)

where A[i]
n [f ] is the coefficient A[i]

rt,nt̄ [f ] corresponding to the tuple t = ∅. In other words,

A[i]
n [f ] =

d∏
j=1

(µ
[ij ]
nj )−kD̂2kf

[i]

n .

Our task now is to derive an expression for f̂
[i]
n − ĝk [i]

n , based on (5.62), that does not involve

the values Ā[i]
rt,nt̄ [f ]. To do so, we first obtain an expression for such values in terms of modified

Fourier coefficients of f only. This is provided by the following lemma:

Lemma 5.36. The values Ā[i]
rt,nt̄ [f ] satisfy

Ā[i]
rt,nt̄

[f ] =
∑
u∈[d]
t⊆u

(−1)|t|+|u|
k−1∑

|ru\t|∞=0

k−1∑
|su|∞=0

(V [iu])−1
ru,su f̂

[i]
(m(su);nū)p̂ru\t

[iu\t]

nu\t
, (5.63)

where (V [iu])−1
ru,su =

∏
j∈u(V [ij ])−1

rj ,sj and (m(su);nū) has jth entry m(su) if j ∈ u and nu
otherwise.
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Proof. Trivial calculations based on (5.31) and (5.33) verify the result for |t| = d. Now suppose
that (5.63) is true for all tuples of length at least l + 1, and let t ∈ [d] with |t| = l. Then, in
view of (5.31) and (5.33), we have

Ā[i]
rt,nt̄

[f ] +
∑
u∈[d]
t⊆u
t6=u

k−1∑
|ru\t|∞=0

Ā[i]
ru,nū [f ]p̂ru\t

[iu\t]

nu\t
=

k−1∑
|st|∞=0

(V [it])−1
rt,st f̂

[i]
(m(st);nt̄)

.

Since |u| ≥ |t|+ 1, we may substitute (5.63) into this formula and simplify, to give

Ā[i]
rt,nt̄

[f ] =

k−1∑
|st|∞=0

(V [it])−1
rt,st f̂

[i]
(m(st);nt̄)

−
∑
u∈[d]
t⊆u
t6=u

∑
v∈[d]
u⊆v

(−1)|u|+|v|
k−1∑

|rv\t|∞=0

k−1∑
|sv |∞=0

(V [iv ])−1
rv ,sv f̂

[i]
(m(sv);nv̄)p̂rv\t

[iv\t]

nv\t
.

After carefully rearranging the order of the outer two summations of the second term, we
obtain

Ā[i]
rt,nt̄

[f ] =

k−1∑
|st|∞=0

(V [it])−1
rt,st f̂

[i]
(m(st);nt̄)

−
∑
v∈[d]
t⊆v
t6=v

(−1)|v|
k−1∑

|rv\t|∞=0

k−1∑
|sv |∞=0

(V [iv ])−1
rv ,sv f̂

[i]
(m(sv);nv̄)p̂rv\t

[iv\t]

nv\t

∑
u∈[d]
t⊆u⊆v
u6=t

(−1)|u|. (5.64)

We now wish to determine the value of the final sum for each such v. If |v| = |t|+ l, then it

is readily seen that there are

(
l
j

)
choices of u with |u| = |t|+ j. Hence,

∑
u∈[d]
t⊆u⊆v
u6=t

(−1)|u| =
l∑

j=1

(
l
j

)
(−1)|t|+j = (−1)|t|+1

Upon substitution of this into (5.64), we obtain the result (observe that the first term of (5.64)
corresponds to v = t).

Note that this lemma establishes the previously stated formula (5.34). Not only is this
formula vital to the current analysis, it also presents a useful means by which to calculate the
coefficients of Eckhoff’s approximation, as mentioned in Section 5.5.

With this to hand, we may now provide a formula for f̂
[i]
n − ĝk [i]

n :

Lemma 5.37. For |n|∞ < N we have

f̂ [i]
n − ĝk [i]

n =
∑
t∈[d]∗

k−1∑
|rt|∞=0

k−1∑
|st|∞=0

(−1)|t|(V [it])−1
rt,stA

[i]
(m(st);nt̄)

[f ]p̂rt
[it]
nt
. (5.65)
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Proof. Suppose that we write f − gk = (gak − gk) + (f − gak), where gak is the approximate
polynomial subtraction function for f based on the full index set. Then gak−gk is a subtraction

function of the form (5.28), with coefficients Ã[i]
rt,nt̄ [f ] = A[i]

rt,nt̄ [f ] − Ā[i]
rt,nt̄ [f ]. Since the nth

modified Fourier coefficient of f − gak is A[i]
n [f ], the coefficients Ã[i]

rt,nt̄ [f ] satisfy the relation

(5.31) with right-hand side −A[i]
n [f ]. It now follows from Lemma 5.36 that

Ã[i]
rt,nt̄

[f ] =
∑
u∈[d]
t⊆u

(−1)|t|+|u|+1
k−1∑

|ru\t|∞=0

k−1∑
|su|∞=0

(V [iu])−1
ru,suA

[i]
(m(su);nū)p̂ru\t

[iu\t]

nu\t
.

Substituting this into (5.62) gives

f̂ [i]
n − ĝk [i]

n = A[i]
n [f ] +

∑
t∈[d]

∑
u∈[d]
t⊆u

k−1∑
|ru|∞=0

k−1∑
|su|∞=0

(−1)|t|+|u|+1(V [iu])−1
ru,suA

[i]
(m(su);nū)p̂ru

[iu]
nu

= A[i]
n [f ] +

∑
u∈[d]

(−1)|u|+1

∑
t∈[u]

(−1)|t|


k−1∑
|ru|∞=0

k−1∑
|su|∞=0

(V [iu])−1
ru,suA

[i]
(m(su);nū)p̂ru

[iu]
nu
.

Evaluating this sum now gives the result.

Having derived an expression for f̂
[i]
n − ĝk [i]

n , we now seek a bound for its absolute value:

Lemma 5.38. Suppose that f ∈ H2k+l+1
mix (Ω), where l is the number of equal values c(r). Then

the coefficients ĝk
[i]
n satisfy∣∣∣f̂ [i]

n − ĝk [i]
n

∣∣∣ . ∑
t∈[d]∗

k−1∑
|rt|∞=0

N2(|rt|−k|t|)n̄−2rt−2
t n̄−2k−2

t̄
.

Proof. Recall that A[i]
n [f ] is the modified Fourier coefficient of the function f − gek, where gek

is the exact polynomial subtraction function for f . Since f − gek satisfies the first k derivative
conditions, the result follows from (5.65) and Lemma 5.12.

This bound, upon substitution into (5.61), now provides the key result of this section:

Lemma 5.39. Suppose that f is as in Lemma 5.38. Then

‖FN [f − gk]−FhN [f − gk]‖ . N−2k− 3
2 (logN)

d−1
2 ,

‖FN [f − gk]−FhN [f − gk]‖r . N r−2k− 3
2 , r = 1, . . . , 2k + 1,

and ‖Dβ(FN [f − gk]−FhN [f − gk])‖∞ . N |β|∞−2k−1(logN)d−1 for |β|∞ ≤ 2k.

Proof. Since all cases are similar, we consider only the uniform norm. Using (5.61) and the
bound derived in Lemma 5.38, we obtain

‖Dβ(FN [f − gk]−FhN [f − gk])‖∞ .
∑
t∈[d]∗

k−1∑
|rt|∞=0

N2(|rt|−k|t|)
∑
|n|∞<N
|n|0≥N

n̄βt−2rt−2
t n̄

βt̄−2k−2
t̄

.

(5.66)
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Consider the inner sum. For fixed t ∈ [d]∗, suppose that we define the tuple u ∈ [t]∗ by the
criterion that j ∈ u provided βj − 2rj − 2 ≥ −1. Then∑

|n|∞<N
|n|0≥N

n̄βt−2rt−2
t n̄

βt̄−2k−2
t̄

≤
∑

|nu|∞<N

n̄βu−2rt−2
u

∑
|nū|∞<N
|nū|0≥N

n−2
ū

. N−1
∑

|nu|∞<N

n̄βu−2rt−2
u = N−1

∏
j∈u

N∑
nj=0

n̄
βj−2rj−2
j

. N |βu|−2|ru|−|u|−1(logN)d−1.

Substituting this into (5.66), we obtain

‖Dβ(FN [f − gk]−FhN [f − gk])‖∞ . (logN)d−1
∑
t∈[d]∗

k∑
|rt|∞=0

N2(|rt|−k|t|)+|βu|−2|ru|−|u|−1,

where, for each t ∈ [d]∗, u is as defined previously. Now, since |βu| ≤ |u||β|∞ ≤ 2k(|u| − 1) +
|β|∞, we have

2(|rt| − k|t|) + |βu| − 2|ru| − |u| − 1 ≤ 2|rt\u|+ 2k(|u| − |t| − 1) + |β|∞ − |u| − 1

≤ 2k(|t| − |u|) + 2k(|u| − |t| − 1) + |β|∞ − |u| − 1

≤ −2k + |β|∞ − 1.

This completes the proof.

We next progress to the second term of (5.60).

An estimate for
(
gk − ghk

)
−FhN [gk − ghk ]

Upon recalling that the coefficients Ā[i]
rt,nt̄ [f ] of gk and ghk are identical, we notice that

gk(x)− ghk (x) =
∑

i∈{0,1}d

∑
t∈[d]
|t|<d

k−1∑
|rt|∞=0

∑
|nt̄|0≥N
|nt̄|∞<N

Ā[i]
rt,nt̄

[f ]p[it]
rt (xt)φ

[it̄]
nt̄

(xt̄). (5.67)

From this, we immediately deduce that FhN [gk− ghk ] ≡ 0. Hence, it suffices to estimate (5.67).

To provide such an estimate, we first need a bound for Ā[i]
rt,nt̄ [f ]. To establish such a bound,

we require some additional notation. We define the operator C[i]
n [·] : L2(−1, 1)→ R, i ∈ {0, 1},

n ∈ N, by

C[i]
n [g] = ĝ[i]

n −
k−1∑
r=0

p̂r
[i]
n

k−1∑
s=0

(V [i])−1
r,s ĝ

[i]
m(s) =

∫ 1

−1
g(x)

{
φ[i]
n (x)−

k−1∑
r=0

p̂r
[i]
n

k−1∑
s=0

(V [i])−1
r,sφ

[i]
m(s)(x)

}
dx.
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If g ∈ L2(−1, 1)d, write C[ij ]
nj [g] for the above operator acting on the jth entry of g. Furthermore,

given t ∈ [d], we define

C[it]
nt [g](xt̄) = C[it1 ]

nt1

[
. . .

[
C

[it|t| ]
nt|t|

[g]

]
. . .

]
(xt̄)

=

∫ 1

−1
. . .

∫ 1

−1
g(x)

∏
j∈t

φ[ij ]
nj (xj)−

k−1∑
rj=0

p̂rj
[ij ]
nj

k−1∑
sj=0

(V [ij ])−1
rj ,sjφ

[ij ]

m(sj)
(xj)

 dxt,

in the standard manner. Note that C[it]
nt [g] is a function of xt̄. Finally, we let

D[i]
rt,nt̄

[g] = Ĉ[it̄]
nt̄ [g]

[it]

m(rt)
, where m(rt) = (m(rt1), . . . ,m(rt|t|)).

This notation permits the following succinct expression for Ā[i]
rt,nt̄ [f ]:

Lemma 5.40. The value Ā[i]
rt,nt̄ [f ] satisfies

Ā[i]
rt,nt̄

[f ] =
k−1∑
|st|∞=0

(V [it])−1
rt,stD

[i]
st,nt̄

[f ].

Proof. Given aj , bj , j ∈ t̄, we observe that∏
j∈t̄

(aj + bj) =
∑
u∈[t̄]∗

∏
j∈u

bj
∏
j∈ū

aj =
∑
u∈[d]
t⊆u

∏
j∈u\t

bj
∏
j /∈u

aj .

Suppose now that aj and bj are the operators L2(−1, 1)d → L2(−1, 1)d−1 defined by

g 7−→
∫ 1

−1
g(x)φ

[ij ]
nj (xj) dxj , g 7−→ −

k−1∑
rj=0

p̂rj
[ij ]
nj

k−1∑
sj=0

(V [ij ])−1
rj ,sj

∫ 1

−1
g(x)φ

[ij ]

m(sj)
(xj) dxj ,

respectively. Then, using the above expression, we obtain the formula

C[it̄]
nt̄

[f ] =
∑
u∈[d]
t⊆u

(−1)|t|+|u|
k−1∑

|ru\t|∞=0

k−1∑
|su\t|∞=0

(V [iu\t])−1
ru\t,su\t

p̂ru\t
[iu\t]

nu\t

×
∫ 1

−1
. . .

∫ 1

−1
f(x)φ

[it̄]
(m(su\t);nū)(xt̄) dxt̄.

Hence

D[i]
st,nt̄

[f ] =
∑
u∈[d]
t⊆u

(−1)|t|+|u|
k−1∑

|ru\t|∞=0

k−1∑
|su\t|∞=0

(V [iu\t])−1
ru\t,su\t

p̂ru\t
[iu\t]

nu\t
f̂

[i]
(m(su);nū),

and therefore

k−1∑
|st|∞=0

(V [it])−1
rt,stD

[i]
st,nt̄

[f ] =
∑
u∈[d]
t⊆u

(−1)|t|+|u|
k−1∑

|ru\t|∞=0

k−1∑
|su|∞=0

(V [iu])−1
ru,su f̂

[i]
(m(su);nū)p̂ru\t

[iu\t]

nu\t
.

Comparing this with the result of Lemma 5.36 now completes the proof.
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The operator C[it]
nt [g] possesses the following property, central to our analysis of Ā[i]

rt,nt̄ [f ].

Lemma 5.41. Suppose that t ∈ [d]∗, f ∈ H2k+l+1
mix (Ω), where l is as in Lemma 5.38, and that

gek,t is the kth subtraction function of f in the variables xj where j ∈ t. In other words,

B[ij ]
rj [f ] = B[ij ]

rj

[
gek,t
]
, rj = 0, . . . , k − 1, j ∈ t.

Then C[it]
nt [f ] = C[it]

nt

[
f − gek,t

]
.

Proof. Consider the univariate case first. The operator C[i]
n [f ] is precisely the difference be-

tween the nth modified Fourier coefficient of f and the coefficient of the corresponding Eckhoff
subtraction function gk. It is easily verified that Eckhoff’s method is exact for any function

of the same form as gk. In particular, it is exact for gek. Hence, C[i]
n [gek] = 0, and the result for

d = 1 follows from linearity. The extension to d ≥ 2 is attained by applying the univariate
result in each variable.

We are now in a position to derive a bound for Ā[i]
rt,nt̄ [f ]:

Lemma 5.42. Suppose that g ∈ H2k+l+1
mix (Ω), where l is as in Lemma 5.38. Then

∣∣∣Ā[i]
rt,nt̄

[f ]
∣∣∣ . ∑

u∈[d]
t⊆u

k−1∑
|ru\t|∞=0

N2(|ru\t|−k|u\t|)n̄
−2ru\t−2

u\t n̄−2k−2
ū . (5.68)

Proof. Using Lemmas 5.40 and 5.41, we may write

Ā[i]
rt,nt̄

[f ] =
k−1∑
|st|∞=0

(V [it]
rt,st)

−1D[i]
st,nt̄

[
f − gek,t̄

]
.

Hence, by reversing the arguments of Lemma 5.40, we obtain

Ā[i]
rt,nt̄

[f ] =
∑
u∈[d]
t⊆u

(−1)|t|+|u|
k−1∑
|su|∞=0

k−1∑
|ru\t|∞=0

(V [iu]
ru,su)−1 ̂(f − ge

k,t̄
)
[i]

(m(su);nū)
p̂ru\t

[iu\t]

nu\t
.

Since f − gek,t̄ obeys the first k derivative conditions in the variables xt̄, an application of
Lemma 5.12 now gives

∣∣∣Ā[i]
rt,nt̄

[f ]
∣∣∣ . ∑

u∈[d]
t⊆u

k−1∑
|ru\t|∞=0

N2(|ru\t|−k|u\t|)n̄
−2ru\t−2

u\t n̄−2k−2
ū ,

as required.

With this in hand, we now deduce the key result:
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Lemma 5.43. Suppose that f is as in Lemma 5.38. Then

‖(gk − ghk )−FhN [gk − ghk ]‖ . N−2k− 3
2 (logN)

d−1
2 ,

‖(gk − ghk )−FhN [gk − ghk ]‖r . N r−2k− 3
2 , r = 1, . . . , 2k + 1,

and ‖Dβ
(
gk − ghk

)
−DβFhN [gk − ghk ]‖∞ . N |β|∞−2k−1(logN)d−1 for |β|∞ ≤ 2k.

Proof. Once more, we consider only the uniform norm. Using (5.67) and the bound derived
in Lemma 5.42, we deduce that

‖Dβ
(
gk − ghk

)
−DβFhN [gk − ghk ]‖∞

.
∑
t∈[d]
|t|<d

∑
u∈[d]
t⊆u

k−1∑
|ru\t|∞=0

∑
|nt̄|0≥N
|nt̄|∞<N

N2(|ru\t|−k|u\t|)n̄
βu\t−2ru\t−2

u\t n̄βū−2k−2
ū

=
∑
t∈[d]
|t|<d

∑
|nt̄|0≥N
|nt̄|∞<N

n̄
βt̄−2k−2
t̄

+
∑
t∈[d]
|t|<d

∑
u∈[d]
t⊆u
t6=u

k−1∑
|ru\t|∞=0

N2(|ru\t|−k|u\t|)
∑
|nt̄|0≥N
|nt̄|∞<N

n̄
βu\t−2ru\t−2

u\t n̄βū−2k−2
ū . (5.69)

Since |β|∞ ≤ 2k and |t| ≥ 1, the first term is bounded by N |β|∞−2k−1(logN)d−1 (recall Lemma
2.30 regarding sums of inverse powers of n for values of n lying outside a hyperbolic cross).
Hence, it suffices to establish the same bound for the second term. If v is the tuple t ⊆ v ⊆ u
such that j ∈ v if either j ∈ t or βj − 2rj − 2 ≥ −1, then, much as in Lemma 5.39, the second
term of (5.69) is bounded by

∑
t∈[d]
|t|<d

∑
u∈[d]
t⊆u
t6=u

k−1∑
|ru\t|∞=0

N2(|ru\t|−k|u\t|)N |βv\t|−2|rv\t|−|v\t|−|v̄|(logN)d−1. (5.70)

Consider the exponent of N . Since |β|∞ ≤ 2k, we have

2(|ru\t| − k|u\t|) + |βv\t| − 2|rv\t| − |v\t| − |v̄|
= 2(|ru\v| − k|u\t|) + |βv\t| − |t̄|
≤ 2|ru\v| − 2k(|u| − |t|) + |β|∞(|v| − |t| − 1) + |β|∞ − |t̄|
≤ 2|ru\v|+ 2k(|v| − |u|) + |β|∞ − 2k − |t̄|
≤ |β|∞ − 2k − 1,

where the final inequality follows from the fact that |ru\v|∞ ≤ k− 1 and |t| < d. Substituting
this into (5.70) now completes the proof.

With Lemmas 5.39 and 5.43 to hand, we are now able to provide error estimates for the
hyperbolic cross version of Eckhoff’s approximation. In view of the decomposition (5.60),
such estimates follow immediately:



5.8 Eckhoff’s method and the hyperbolic cross 175

-1.0 -0.5 0.5 1.0

5. ´ 10-11

1. ´ 10-10

1.5 ´ 10-10

2. ´ 10-10

-1.0 -0.5 0.5 1.0

5. ´ 10-12

1. ´ 10-11

1.5 ´ 10-11

-1.0 -0.5 0.5 1.0

5. ´ 10-11

1. ´ 10-10

1.5 ´ 10-10

2. ´ 10-10

-0.4 -0.2 0.2 0.4

2. ´ 10-11

4. ´ 10-11

6. ´ 10-11

8. ´ 10-11

1. ´ 10-10

-0.4 -0.2 0.2 0.4

2. ´ 10-12

4. ´ 10-12

6. ´ 10-12

8. ´ 10-12

1. ´ 10-11

1.2 ´ 10-11

-0.4 -0.2 0.2 0.4

2. ´ 10-11

4. ´ 10-11

6. ´ 10-11

8. ´ 10-11

1. ´ 10-10

Figure 5.9: Absolute error |f(x, y0) − F25,4[f ](x, y0)|, where f(x1, x2) = x21 cosh 3x1 cos 2x2 sin 3x2,
for −1 ≤ x ≤ 1 (top row), − 1

2 ≤ x ≤
1
2 (bottom row), and y0 = 1, 23 ,

1
3 (left to right).

Theorem 5.44. Suppose that f ∈ H2k+l+1
mix (Ω), where l is the number of equal values c(r),

and that FN,k[f ] is the hyperbolic cross version of Eckhoff’s approximation to f . Then

‖f −FN,k[f ]‖ . N−2k− 3
2 (logN)

d−1
2 ,

‖f −FN,k[f ]‖r . N r−2k− 3
2 , r = 1, . . . , 2k + 1,

and ‖Dβ(f −FN,k[f ])‖∞ . N−2k−1(logN)d−1 for |β|∞ ≤ 2k.

The key result of this section is now apparent: hyperbolic cross index sets may be in-
corporated into Eckhoff’s approximation with only minor deterioration of the convergence
rate of the approximation. Furthermore, convergence rates are identical to those of exact
polynomial subtraction based on the hyperbolic cross (see Theorem 5.35). As is now familiar,
approximating jump values has no effect on the quality of the approximation.

Unfortunately, the hyperbolic cross version of Eckhoff’s approximation exhibits no auto-
correction phenomenon inside the domain. Much like polynomial subtraction, the pointwise
convergence rate away from the boundary is only one power of N faster.12 The lack of an auto-
correction phenomenon is exhibited in Figure 5.9. Though the error lessens away from the
boundary, the difference is much smaller than in corresponding results for the approximation
based on the full index set (see Figure 5.6).

This somewhat tempers the claims of the previous section. Measured in the uniform
norm, the hyperbolic cross approximation greatly outperforms its counterpart based on the
full index set. However, away from the boundary, the difference in errors is more marginal.
This is demonstrated in Figure 5.10 (using the same function as in Figure 5.8). We observe
that, for example, with k = 4 and roughly 5,000 terms, the hyperbolic cross approximation
yields a pointwise error only 103 times smaller than the full version. In comparison, the
difference in the uniform error is much larger: roughly 105.13

12This is readily determined upon exploiting the splitting (5.60) once more.
13We note, however, that the hyperbolic cross approximation will, asymptotically at least, always outperform
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the full (circles) and hyperbolic cross (squares) versions of Eckhoff’s method applied to (5.59).

5.9 Practical considerations

Thus far, we have concentrated on the analytical aspects of Eckhoff’s method. However, com-
puting Eckhoff’s approximation brings forth a number of important numerical considerations,
which must be properly addressed. Previous studies have indicated that such numerical fac-
tors present a significant barrier to the construction of effective approximations based on this
approach [62, 118]. In particular, empirical evidence suggests that the value k must remain
small, thereby limiting the convergence rate of the approximation. In this section, we demon-
strate how such issues can be resolved, including this particular restriction, leading to both
an accurate and robust approximation scheme.

Our primary focus in this section is the univariate setting. As demonstrated in Section 5.5,
construction of the multivariate Eckhoff approximation involves essentially one-dimensional
techniques. Hence, a proper understanding of this case is first necessary. At the end of this
section, we present several multivariate examples.

5.9.1 Ill-conditioning

Recall that the construction of Eckhoff’s approximation mandates solving a linear system

involving the k×k matrix V [i]. The entries of this matrix are either p̂s
[i]
m(r) or q̂s

[i]
m(r), depending

on whether the cardinal formulation is used or not (see Section 5.3.1). Our first result is of a
negative nature: this matrix is extremely ill-conditioned.

Lemma 5.45. Suppose that V [i] is the matrix with (r, s)th entry p̂s
[i]
m(r) or q̂s

[i]
m(r), where p

[i]
r

is any cardinal basis and q
[i]
r is any subtraction basis. Suppose further that at most l ≤ k of

the values c(r) are equal, but otherwise the values m(r) are chosen arbitrarily. Then the L∞

condition number of V [i], κ∞(V [i]), is O
(
N2k+l−3

)
.

Proof. Due to (5.8), it suffices to consider the cardinal basis formulation. Since p̂s
[i]
m(r) =

O
(
N−2

)
, we immediately deduce that ‖V [i]‖∞ = O

(
N−2

)
. Next we consider ‖(V [i])−1‖∞.

its full counterpart. Suppose that the number of approximation terms M is fixed. Then, since M = O
(
Nd

)
or

M = O
(
N(logN)d−1

)
for the full or hyperbolic cross approximations respectively, this gives effective pointwise

convergence rates of O(M−
1
d

(3k+2)) and O
(
M−2k−2

)
(ignoring the logN term). Since 2k + 2 > 1

d
(3k + 2) for

d ≥ 2 and k ≥ 1, we deduce faster convergence of the hyperbolic cross approximation.
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As in Lemma 5.4, we write p
[i]
r for arbitrary cardinal functions and P

[i]
r for cardinal polynomi-

als. This gives V [i] = W [i] + (V [i] −W [i]), where W [i] is the matrix with (r, s)th entry P̂s
[i]

m(r).

Since (W [i])−1(V [i]−W [i]) = o(1) (see Lemma 5.4), it suffices to consider ‖(W [i])−1‖∞. Recall

that W
[i]
r,s = P̂s

[i]

m(r) = (−1)m(r)(µ
[i]
m(r))

−(s+1). Hence W [i] = D[i]W̃ [i], where D[i] is the diago-

nal matrix with entries (−1)m(r)(µ
[i]
m(r))

−1 and W̃ [i] is the Vandermonde matrix with entries

(µ
[i]
m(r))

−s. For a general k × k Vandermonde matrix V with entries xsr, it is known that

max
r=0,...,k−1

k−1∏
s=0
s 6=r

max{1, |xs|}
|xr − xs|

≤ ‖V −1‖∞ ≤ max
r=0,...,k−1

k−1∏
s=0
s 6=r

1 + |xs|
|xr − xs|

(5.71)

with equality on the right if all the xr have the same sign (see, for example, [61]). For the
matrix W̃ [i], we have |xr − xs| = O

(
N−2

)
when c(r) 6= c(s) and |xr − xs| = O

(
N−3

)
other-

wise. Hence, using (5.71), we deduce that ‖(W̃ [i])−1‖∞ = O
(
N2k+l−3

)
. Since ‖(D[i])−1‖∞ =

O
(
N2
)
, we obtain the result.

Since the values m(r) are essentially arbitrary, it may appear possible that a judicious
choice of such values leads to improved conditioning. However, this is not the case:

Lemma 5.46. Suppose that V [i] is as in Lemma 5.45. Then there is no choice of distinct
values m(r) satisfying N ≤ m(r) ≤ aN such that the condition number of V [i] is o(N2(k−1)).

Proof. This result follows immediately from the lower bound in (5.71).

Regardless of these lemmas, when cardinal polynomials are used, reasonably accurate
numerical results can often be obtained using the Björk–Pereyra algorithm for Vandermonde

matrices [27]. In this manner, the values Ā[i]
r [f ] can be found in O

(
k2
)

operations. As is
well known, this algorithm produces surprisingly good accuracy even when the underlying
matrix is ill-conditioned (see [84, chapter 22]).14 However, as we now demonstrate, a vast
improvement in the condition number can be attained with the non-cardinal formulation.

5.9.2 Subtraction bases and improved conditioning

Since V [i] is essentially a Vandermonde matrix, ill-conditioning is unsurprising: such matrices
have a well-earned reputation in this respect. A standard tool to diminish this effect is to
replace the original Vandermonde system with a so-called generalised Vandermonde system
[84]. This equates to replacing the cardinal basis of polynomials with, for example, the Cheby-
shev polynomials (5.9).15 Although the condition number of the resulting matrix remains of
the same order (as demonstrated in Lemma 5.45), the constant of proportionality is typically
greatly reduced.

14In fact, in some cases, the magnitude of the numerical error in the Björk–Pereyra algorithm depends only
on the machine precision used. In particular, it is independent of the condition number of the matrix [84].
Unfortunately, the corresponding matrix of Eckhoff’s method does not satisfy the necessary assumptions for
this to be the case, and so the condition number plays a role in the numerical error.

15As described in [84], we could also use Legendre or, in general, Jacobi polynomials with similar results.
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k = 4 k = 6 k = 8 k = 10 k = 12

(a) 1.6× 102 7.9× 102 1.8× 103 2.5× 103 2.2× 103

(b) 4.0× 100 6.0× 10−1 3.2× 10−2 8.5× 10−4 1.3× 10−5

(c) 1.9× 10−2 3.5× 10−6 6.3× 10−11 2.1× 10−16 2.0× 10−22

Table 5.3: Condition number constant for the matrix V [0] based on values m(r) = N + r and using
(a) cardinal polynomial basis, (b) Chebyshev subtraction basis (5.9), and (c) Laplace–Dirichlet basis
(5.10). All values to 2 significant digits.
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Figure 5.11: Log error log10 ‖f − FN,k[f ]‖∞ against N = 1, . . . , 100 for Eckhoff’s approximation
using three different bases: cardinal polynomial basis (squares), Chebyshev polynomial basis (crosses)

and the Laplace–Dirichlet basis (circles). Here f(x) = cosh 6x (top diagrams), f(x) = 5ecos 5π(1−x
2)

(bottom diagrams), and m(r) = N + r, r = 0, . . . , k − 1. Numerical results obtained in standard
precision, using the LinearSolve routine in Mathematica.

Having said this, replacement of the cardinal polynomial formulation with a linear system
based on Laplace–Dirichlet eigenfunctions (5.10) induces an even more substantial improve-
ment in the condition number. In Table 5.3, we give values for the condition number constant
for the matrix V [i] formulated using the cardinal polynomial, Chebyshev (5.9) and Laplace–
Dirichlet (5.10) bases. The advantage offered by (5.10) is dramatic. For example, when
k = 10, this constant is roughly 10−16. In comparison, for the cardinal polynomial or Cheby-
shev bases, these figures are 103 and 10−4 respectively, the former being roughly 1019 times
larger.16

This effect is perhaps not surprising: the underlying matrix of the linear system (5.13)
is a Cauchy matrix (see Lemma 5.4). Typically such matrices, though often ill-conditioned
themselves, are less poorly conditioned than (generalised) Vandermonde matrices [84]. Note
that such a linear system can also be solved in O

(
k2
)

operations.

The effect of this improvement in conditioning is manifested in numerous examples. In
Figure 5.11, we give numerical results for Laplace–Dirichlet, Chebyshev and cardinal polyno-
mial bases applied to several functions. Undeniably, the approximation based on (5.10) offers

16The idea of using trigonometric functions as subtraction bases was suggested in [126]. However, no de-
scription of their superior numerical behaviour was given.
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m(r) N = 25 N = 50 N = 100 N = 150 N = 200

N + r 1.215× 1024 1.808× 1031 7.398× 1038 2.784× 1043 5.335× 1046

(r + 1)N 8.688× 1030 2.147× 1036 5.552× 1041 8.185× 1044 1.451× 1047

2rN 2.933× 1042 7.206× 1047 1.861× 1053 2.742× 1056 4.859× 1058

Table 5.4: L∞ condition number of the linear system (5.13) using the functions (5.10) with k = 10
and values m(r) given by (5.72)–(5.74). All values to 4 significant digits.

the smallest error. Moreover, unlike the cardinal polynomial basis, the error remains bounded
for all N . Note that the functions used here exhibit two features, large derivatives and high
oscillation, making their approximation prone to numerical errors. However, simply by select-
ing an appropriate subtraction basis, we are able to obtain vastly superior approximations.
In view of these examples, we arrive at a surprising conclusion: polynomial subtraction is best
achieved without using polynomials!

5.9.3 Choice of the values m(r)

The values m(r) ≥ N can be chosen arbitrarily, provided they are distinct and satisfy m(r) =
c(r)N+O (1) for some c(r) ≥ 1. Numerous choices are possible, including the aforementioned
values

m(r) = N + r, r = 0, . . . , k − 1. (5.72)

In this case c(r) = 1 for all r, so the function f being approximated must have H3k+1(−1, 1)-
regularity to ensure an O

(
N−2k−1

)
uniform convergence rate. Other possibilities that require

only H2k+2(−1, 1)-regularity are also permitted, including

m(r) = (r + 1)N, r = 0, . . . , k − 1, (5.73)

m(r) = ωrN, r = 0, . . . , k − 1. (5.74)

One immediate disadvantage of these choices is that they do not lead to a full auto-correction

phenomenon (see Section 5.7). Moreover, the values f̂
[i]
n , n = 0, . . . , N − 1, n = m(r),

r = 0, . . . , k−1, required to form the approximation are not contiguous, in contrast to (5.72).
Finally, as we now demonstrate, (5.73) and (5.74) both lead to inferior numerical stability in
comparison to (5.72).

In all numerical results thus far, we have employed the values (5.72). Seemingly, the
condition number of the linear system (5.12) can be vastly improved from O

(
N3(k−1)

)
to

O
(
N2(k−1)

)
by using the values (5.73) or (5.74) instead (see Lemma 5.45). However, though

true in theory, in practice, the constant is so overbearingly large that it nullifies this effect. In
Table 5.4, we give numerical results for the condition number of this linear system using the
values (5.72)–(5.74). We observe that N must exceed 200 before the values (5.73) begin to
offer an advantage (for the values (5.74), the scenario is much worse). However, since k = 10
in this example, any reasonable function will be well resolved by Eckhoff’s approximation for
a much smaller value of N .

A theoretical explanation of this effect is readily provided. Suppose that W [i] is the matrix
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Figure 5.12: L2 (left) and uniform (right) errors against N = 1, . . . , 100 for Eckhoff’s approximation
with k = 8 applied to the function f(x) = Ai(−6x−4). Coefficients are calculated by the Mathematica
routines LeastSquares (squares) and LinearSolve (circles).

with (r, s)th entry (µ
[i]
m(r))

−s. In this case, since µ
[i]
m(r) > 0, the estimate (5.71) gives

‖(W [i])−1‖∞ = max
r=0,...,k−1

k−1∏
s=0
s 6=r

1 + (µ
[i]
m(s))

−2∣∣(µ[i]
m(r))

−2 − (µ
[i]
m(s))

−2
∣∣ .

Now suppose that m(r) = c(r)N +O (1) with all the values c(r) distinct. Then (µ
[i]
m(r))

−2 −

(µ
[i]
m(s))

−2 = (Nπ)−2
(
c(r)−2 − c(s)−2

)
+O

(
N−3

)
, and we see that

‖(W [i])−1‖∞ = c(Nπ)2(k−1) +O
(
N2(k−2)

)
,

where the constant c is determined by the condition number of the Vandermonde matrix based
on nodes xr = c(r)−2. Conversely, when all the values c(r) are equal and m(r) = c(r)N +d(r)
for distinct d(r) ∈ N0, an identical argument demonstrates that ‖(W [i])−1‖∞ = c(Nπ)3(k−1) +
O
(
N3(k−2)

)
, with constant determined by the Vandermonde matrix based on the interpolation

points xr = d(r).

For (5.72)–(5.20), we conclude that the condition number constant is determined by the
Vandermonde matrix based on nodes xr = r, xr = (r + 1)−2 and xr = ω−2r respectively. For
the latter two, interpolation nodes become clustered near the origin as k increases, leading to
ill-conditioning. Conversely, for (5.72), there is no such clustering.

5.9.4 Least squares

Numerical results can be further improved by replacing (5.12) with an overdetermined linear
system and using least squares. This approach is fairly standard [16, 54]. We illustrate the
improvement offered by this approach in Figure 5.12. In this and all subsequent examples,
we overdetermine by a factor of two, leading to two 2k × k linear systems (corresponding to
i = 0, 1) that are solved in parallel.

As exhibited, the approximation obtained from the least squares procedure offers a lower
error (by several orders of magnitudes) than the approximation formed by solving a square
linear system. This is somewhat predictable: it has been widely reported that least squares
can improve the performance of both this and related techniques for convergence acceleration



5.9 Practical considerations 181

10 20 30 40 50

-14

-12

-10

-8

-6

-4

-2
10 20 30 40 50

-14

-12

-10

-8

-6

-4

-2

f(x) = x2 sin 5x+ cos 6x f(x) = e−x cos 6x

Figure 5.13: The error log10 ‖f − FN,k[f ]‖ against N = 1, . . . , 100 for k = 2, 4, 6, 8 (in descending
order).

of Fourier series (see [32, 39, 86] for the use of similar techniques in so-called Fourier extension
methods17).

Nonetheless, the application of a least squares procedure to compute Eckhoff’s approxi-
mation yields an effective numerical approximation. Consider, for example, the two functions
approximated in Figure 5.13. Using only k = 8 and N = 10, we obtain L2(−1, 1) errors of
approximately 10−14. In comparison, when k = 2, the corresponding errors are only 10−6, a
factor of 108 times larger. Furthermore, Eckhoff’s method, in conjunction with least squares,
can now be successfully applied to a raft of poorly behaved functions. For example, the
functions considered in Figure 5.14 both exhibit (irregular) oscillations inside the interval,
thus making their approximation prone to numerical errors. However, once again, Eckhoff’s
approximation obtains good accuracy using only moderate parameter values (note that the
first function approximated in this figure was used as an example in [39] to test the robustness
of the Fourier extension method).

As previously noted, common consensus is that the parameter k ought to be kept small
in order to mitigate the effect of numerical instability when approximating functions with
Eckhoff’s method [62]. However, with the approach developed in this section, it is permissible
to take much larger values. In Figure 5.13, for example, we used k = 20, giving a theoretical
uniform convergence rate of N−41!

We are therefore led to a somewhat surprising conclusion: although Eckhoff’s method
requires the solution of an incredibly ill-conditioned linear system, extremely high accuracy can
be obtained through the use of appropriately chosen subtraction bases, parameters m(r), and
the solution of an overdetermined least squares system. Furthermore, the practical techniques
developed in this section are readily carried over to functions of two or more variables. This
is demonstrated in Figure 5.15. For example, when k = 8 and N = 10, we obtain at least
11 digits of accuracy, in comparison to only 1 for the original (k = 0) modified Fourier
approximation.

This section completes our study of Eckhoff’s method and its multivariate generalisation.
We conclude this chapter with a discussion of the Gibbs phenomenon and techniques for its
resolution (into which the topic of convergence acceleration of Fourier-like series naturally
falls). In doing so, we discuss a number of different approaches and their comparative aspects
in relation to Eckhoff’s method.

17We discuss such methods in greater detail in Section 5.10.3.
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Figure 5.14: Top row: plot of the function f(x). Bottom row: the errors log10 ‖f −FN,20[f ]‖ (circles)
and log10 ‖f −FN,20[f ]‖∞ (crosses) against N = 1, . . . , 100.

5.10 The Gibbs phenomenon and its resolution

The Gibbs phenomenon has a rich and interesting history. It was observed by Euler in 1755
that the function f(x) = x could be represented on the interval [−1, 1] as an infinite sum of
trigonometric functions. Almost a century later, Wilbraham analysed this series, including
a description of the overshoot near the endpoints [160]. Forgotten for half a century, this
phenomenon was reconsidered by Michelson [122]. The ensuing debate regarding convergence,
or lack thereof, between Michelson and Love, carried out in Nature, was eventually settled by
Gibbs [64, 65] in 1899, with the arbitration of Poincaré. Gibbs’ contribution to this problem
was first recognised by Bôcher in 1906 [28], who introduced the term the Gibbs phenomenon.18

A detailed and fascinating review of the Gibbs phenomenon and its history is provided in [83],
with shorter summaries appearing in [43, 72].

The Gibbs phenomenon is certainly not restricted to Fourier expansions. As we have seen,
it appears not only in various Laplace eigenfunction expansions, but also in expansions in
eigenfunctions of polyharmonic operators. Numerous other instances have also been recorded
(see [72] and references therein).

The original viewpoint of the Gibbs phenomenon focuses on the non-uniform convergence
of Fourier series and, in particular, the nature of the overshoot and oscillations near the
boundary of the domain. As discussed in [72], a slightly different point of view is that the
Gibbs phenomenon concerns the issue of recovering a function from a finite number of its
Fourier coefficients. In other words, the recovery of local information (pointwise values) from
global information (Fourier coefficients). This standpoint raises the question of how the Gibbs

18To acknowledge the contribution of Wilbraham, it is also referred to as the Gibbs–Wilbraham phenomenon.
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phenomenon can be circumvented.

5.10.1 Resolution of the Gibbs phenomenon

The resolution of the Gibbs phenomenon was first considered by Fejér in 1900. His discovery
of uniform convergence of Cesàro means can be viewed as the first construction of a Fourier
filter. Indeed, the Cesáro sum is equivalent to a first-order filter [156]. The topic of filtering
has been extensively studied since this point, and we refer the reader to [156] for a substantial
review of the subject.19

Filters successfully enhance the accuracy of Fourier approximations. One immediate ad-
vantage is that the approximation remains a sum of trigonometric functions, and hence can
be evaluated rapidly with the FFT. However, this increase in accuracy only occurs away from
the discontinuity of the function (in other words, the endpoints, for a smooth, nonperiodic
function).

In view of this fact, a re-projection method to fully resolve the Gibbs phenomenon was
suggested by Gottlieb [73]. The basic idea is to re-expand the Fourier sum of a function
in a particular orthonormal basis, the so-called Gibbs complementary basis. For a suitably
chosen basis, the convergence of the re-projection is exponential (assuming analyticity of the
function in some region containing the prescribed interval). Hence, the Gibbs phenomenon can
be completely resolved. For Fourier approximations, a suitable basis consists of Gegenbauer
polynomials [20], whose parameter λ is varied with the truncation parameter N of the Fourier
sum. This process is commonly referred to as Gegenbauer reconstruction [72].

This idea has been extended in various ways to include, for example, re-projections of
Fourier interpolation approximations [70] and re-projections for expansions in other bases (in
particular, bases of Chebyshev and Legendre polynomials) [69, 71]. A review is given in [72]
and a general framework in [74]. To date, the most pertinent applications of this method
have been in image processing [9, 10] and the spectral approximation of partial differential
equations with discontinuous solutions [82].

19We mention in passing that, in general, there are two components to resolving the Gibbs phenomenon:
detection (location of singularities) and reconstruction. We do not address the former in this thesis. Indeed,
we assume that the approximated function is smooth and nonperiodic: in other words, singularities only occur
on the boundary of the domain (in the sense of the Fourier extension). There are numerous techniques for
singularity detection, and these form an central component in many practical applications, including signal
processing. We refer the reader to [156] for further details.



184 5. Accelerating convergence

Unfortunately, there are a number of problems associated with the implementation of this
technique. In particular, the method is liable to round-off error [11, 62], and care must be
taken to ensure convergence of the re-projection [33].20 This approach also has a number of
inherent disadvantages: it is reasonably computationally expensive (the number of operations
is O

(
N2
)
), the resolution power is rather poor21, and the final approximation, being a sum

of Gegenbauer polynomials, cannot be evaluated rapidly using, for example, the FFT.

5.10.2 Polynomial subtraction

Around the same time as Fejér, Krylov introduced the idea of polynomial subtraction. This
was later formalised in [102] and [112]. Eckhoff’s approach, which we have extended in this
chapter, was originally detailed in [52], but the idea behind it has much older origins. The
foundation, as commented by Lax [113], is that the Fourier coefficients themselves contain
sufficient information to produce accurate representations of the function f . We note that
this rather general viewpoint also forms the basis of Gegenbauer reconstruction, yet the path
taken to extract such information is different.

As stated, a classical recommendation is that the parameter k should remain small [62],
thus ameliorating the Gibbs phenomenon rather than resolving it completely. Through the
work of this chapter, however, we have demonstrated how much larger values can be taken.
Indeed, though we have focused on the case of finite, fixed k in this study, there is no reason
not to consider the choice k = N , leading to exponentially accurate approximations. However,
as we now describe, this particular parameter value naturally lends itself to a different inter-
pretation, thereby relating this version of Eckhoff’s method to an alternative (and relatively
unfamiliar) convergence acceleration device.

5.10.3 Fourier extension methods

Consider, for example, the univariate case. Eckhoff’s method, when constructed from Laplace–
Neumann and Laplace–Dirichlet eigenfunctions with parameter k = N , computes an approx-
imation to a function f from the set

SN =
{

cos 1
2nπx : n = 0, . . . , N

}
∪
{

sin 1
2nπx : n = 1, . . . , N

}
. (5.75)

Written in this form, we are immediately struck by the following observation. The set SN
is precisely the set of classical Fourier basis functions (with index n ≤ N) on the extended
domain [−2, 2]. Hence, to find an accurate approximation to f , we seek a smooth function,
periodic on [−2, 2], that matches f on [−1, 1]. We then approximate f by the truncated
Fourier expansion of this function.

The question of computing a periodic extension of f is known as the Fourier extension
problem. A simple criterion to devise a suitable extension was introduced in [32, 39]. We

20Nonetheless, a substantially more resilient technique has recently been suggested in [63]. The so-called
inverse Gegenbauer reconstruction method [98, 99] also appears to offer some advantages, albeit at additional
computational expense.

21As discussed in [11, 68], at least 22.2 modes per wavelength are needed to ensure exponential convergence of
the Gegenbauer method. In comparison, methods based on Fourier series or Chebyshev polynomials require 2
and π modes respectively. Eckhoff’s method performs similarly to the Fourier method in this respect, requiring
only 2 modes per wavelength, once more, provided k � N .
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define
fN = arg min

g∈SN
‖f − g‖, (5.76)

where ‖·‖ is the standard L2(−1, 1) norm. Explicit computation of fN is now easily achieved.
In fact, in the language of spectral methods, the optimization criterion (5.76) is identical to
the problem

find fN ∈ SN : (fN , φ) = (f, φ), φ ∈ SN . (5.77)

Hence, the Fourier extension method is a Galerkin method for computing the approximation
fN from the (albeit non-orthogonal) set SN .

Note that fN , as defined by (5.76), is not the Eckhoff approximation of f with k =
N . In the same language as above, Eckhoff’s method can be viewed as a Petrov–Galerkin
method for computing f with trial space SN and test space being the set of Laplace–Neumann
eigenfunctions with index n ≤ 2N .22 Hence, Eckhoff’s method with this particular choice of
parameters can be viewed as a novel approach to computing the Fourier extension. We
remark in passing, however, that although there exists a standard theory for Petrov–Galerkin
approximations [14], this does little to illuminate the analysis of Eckhoff’s approximation.

Returning to Fourier extension methods, it transpires that the approximation fN has a
rather elegant interpretation in terms of orthogonal polynomials, as demonstrated by Huy-
brechs [86]. Indeed, fN can be viewed as the expansion of f in certain half-range Cheby-
shev polynomials with arguments cos 1

2πx or sin 1
2πx. Analysis of convergence therefore fol-

lows from standard polynomial approximation results. Indeed, assuming sufficient analytic-
ity of f in a complex neighbourhood of [−1, 1], exponential convergence is now witnessed:
f(x)− fN (x) ∼ (3 + 2

√
2)−N .

We shall return to Fourier extension methods briefly in Chapter 6. It remains to be seen
whether such methods possess significant benefits over this version of Eckhoff’s method. Cer-
tainly, their simple interpretation in terms of orthogonal polynomials makes such techniques
immediately attractive (at the expense, however, of having to know both the Laplace–Dirichlet
and Laplace–Neumann coefficients of a given function f). Yet this formulation is lost once
other eigenfunction bases and subtraction functions are employed. We mention in passing
that a brief comparison of the two approaches was carried out in [7], in which both methods
behaved in a roughly similar manner.

To conclude this discussion of convergence acceleration techniques, we remark that Eck-
hoff’s method, Fourier extension methods, Gegenbauer reconstruction and filtering are just
some of a virtually endless number of techniques to accelerate convergence of Fourier-like se-
ries. There are numerous alternative approaches, which we do not intend to discuss in greater
detail, including Fourier–Padé methods [49] and techniques from sequence acceleration [36],
to name but two (for a more detailed list, see [34] and references therein). Certainly, differ-
ent techniques are more suitable for particular problems, yet a thorough comparison of such
methods would require a lengthy review. A particular motivation for developing Eckhoff’s
method here is due to its potential application to boundary value problems, a topic we discuss
briefly in Chapter 6. Moreover, its simple generalisation to the d-variate cube, as well as its
potential application in more complex geometries, signal it as an appropriate choice for both
current and future purposes.

22A Petrov–Galerkin method is similar to a Galerkin method, except that the trial space (the space of
functions to which the solution belongs) and test space (the space of functions with respect to which inner
products are taken) can be distinct [142].





Chapter 6

Conclusions and future work

6.1 Summary of the thesis

The intent of this thesis was the development and analysis of approximation schemes based on
certain eigenfunction bases, with particular application to the numerical solution of boundary
value problems. Such an approach incorporates a number of novel numerical techniques,
including a mixture of classical and highly oscillatory quadratures to evaluate coefficients, as
well as the use of hyperbolic cross index sets to considerably decrease computational cost.

Chapter 2 introduced a theory for so-called modified Fourier expansions. Key results
included a proof of uniform convergence and estimates for the rate of pointwise convergence.
Explicit criteria that determine both the rate and degree of convergence were derived in terms
of odd derivatives evaluated on the boundary of the domain.

Modified Fourier expansions were generalised in Chapter 3 to expansions based on eigen-
functions of univariate polyharmonic operators. This led to a one-parameter family of approxi-
mation bases with a convergence rate that scaled with the parameter. A thorough convergence
analysis was provided. As a by-product, several new results concerning the asymptotic nature
of the eigenfunctions and eigenvalues were established. A generalisation to the d-variate cube
via Cartesian products was then investigated, culminating in expansions in eigenfunctions of
certain subpolyharmonic operators.

In Chapter 4, we assessed the application of Laplace eigenfunctions to the spectral–
Galerkin discretisation of boundary value problems defined in the d-variate cube. This ap-
proach results in well-conditioned matrices with corresponding linear systems that can be
solved inexpensively using generic iterative techniques. The ensuing method possesses sev-
eral advantages over standard polynomial-based techniques, as substantiated by numerical
examples.

Finally, the topic of convergence acceleration was broached in Chapter 5. Using only the
modified Fourier coefficients of a function, we constructed approximations with arbitrary rates
and degrees of convergence. When combined with a hyperbolic cross, this facilitated the con-
struction of accurate approximations comprising relatively small numbers of terms. Numerical
stability was also markedly improved by the appropriate selection of various parameters and
the use of a least squares procedure, thus effecting an efficient numerical method possessing
both robustness and high accuracy.

There are numerous avenues to pursue in order to extend this work, as we henceforth
describe.
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6.2 Expansions in the equilateral triangle and higher dimen-
sional simplices

Eigenfunctions of the Laplace operator subject to either homogeneous Neumann or Dirichlet
boundary conditions are known to have explicit representations (as sums of trigonometric
functions) in a variety of non-tensor-product domains. In the plane, the list includes ellipses,
annuli and three types of triangles: the equilateral and right isosceles triangles, and the
triangle with angles π

2 , π
3 and π

6 . This has important consequences for practical applications
of modified Fourier expansions. Triangular elements can be used to decompose complex, often
polygonal geometries, and possess far more flexibility than rectangular elements.

The current dearth of high-order approximation schemes in triangular domains is a com-
pelling motive for the continued development of modified Fourier expansions. As described
in Chapter 1, the lack of a simple high-order scheme based on orthogonal polynomials neces-
sitates the introduction of other techniques. In this regard, the particularly simple nature of
Laplace eigenfunctions presents a significant advantage of modified Fourier expansions.

Though a study of modified Fourier expansions in triangular domains has been initiated
in [88], including techniques to evaluate coefficients numerically, there remain many open
problems and challenges. New hurdles that appear as a consequence of the non-tensor-product
structure require a great deal of further insight before such expansions can be converted into
effective approximations.

To highlight this, we now present the following (inexhaustive) list of open problems and
future challenges within this topic:

1. Uniform convergence. A key question we have addressed in this thesis is the uniform
convergence of multivariate modified Fourier expansions in the d-variate cube. Intuition
and numerical examples suggest that modified Fourier expansions defined in triangular
elements behave in a similar manner to corresponding expansions in the unit square.
Specifically, expansions converge uniformly throughout the domain. As of this moment,
we have no proof of this fact.1

2. Rate of convergence. Numerical examples suggest that expansions in triangles also mir-
ror expansions in tensor-product domains in terms of their rates of convergence. In
particular, faster convergence occurs inside the domain than on the boundary. Esti-
mates for rates of convergence in various norms have previously been obtained in [155].
However, these results are restricted to classes of functions with vanishing Neumann data
on the boundary (in analogy with the standard periodic spaces Hk(T)), and therefore
fail to describe the approximation error for an arbitrary function.

3. Mixed Sobolev spaces for triangular domains. In the d-variate cube, the Sobolev spaces
Hk

mix(−1, 1)d are fundamental to the analysis of modified Fourier approximations. We
may define mixed spaces for triangular domains in an identical manner. However, the
spaces Hk

mix(−1, 1)d have a tensor-product structure (see Section 2.5), a property which
is lost when passing to the triangle. This indicates that new spaces are necessary for an
accurate study of expansions in triangles.

1Nonetheless, when the function f has vanishing normal derivative on the whole of the boundary, this
result is easily established. In this case, Stokes’ theorem verifies that FN [4f ] = 4FN [f ], where FN [f ] is the
modified Fourier expansion of f ∈ H2(Ω) and Ω is the triangle. Hence, FN [f ]→ f in the H2(Ω) norm. Uniform
convergence follows at once from the continuous embedding H2(Ω) ↪→ C(Ω̄). The general case, however, remains
unproven.
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4. Gibbs phenomena. Classical Gibbs phenomena are extremely well understood in the
unit interval and d-variate cube. As far as we can ascertain, nothing is known about
corresponding (weak) Gibbs phenomena for expansions in triangular domains. Intuition
suggests that such phenomena will possess a more complex structure than the simple
tensor-product case. Yet, at present, we have no results in this respect.

5. The hyperbolic cross. In [88], a hyperbolic cross was derived for modified Fourier coef-
ficients in the equilateral triangle. Little has been established, however, regarding the
potential advantage of the resulting index set. In particular, issues concerning rates of
convergence are largely unexplored.

6. Convergence acceleration. Polynomial subtraction for modified Fourier expansions in
multivariate domains with tensor-product structure is now well established. The first
steps towards such a construction for the equilateral triangle were undertaken in [88],
where a subtraction function was derived for the first derivative condition. Many ques-
tions remain, however, as regards this technique. These include the as of yet undeter-
mined convergence rate that results from this device, and how such a construction can
be generalised to arbitrary numbers of derivatives.

Polynomial subtraction also requires explicit derivative information. Having analysed
this device, it is logical to consider the approximation of such derivatives by an Eckhoff-
type approach. The eventual aim, as in the case of the d-variate cube, is to obtain rapid
approximations using only the modified Fourier coefficients of a given function.

Future study in this topic need not be restricted to Eckhoff-type methods, how-
ever. Numerous other devices, including filters and Fourier extension methods2, can, in
theory at least, be generalised to expansions in the equilateral triangle. Naturally, prac-
tical schemes will incorporate only the most effective convergence acceleration strategy.
Proper extension of a variety of techniques, and a thorough comparative study therein,
are both important avenues for future research.

The classification of domains for which Laplace eigenfunctions are explicitly known is an
interesting mathematical problem. Already in the 1800s Laplace eigenfunctions had been
determined for the equilateral triangle [111]. Since this time, alternate constructions via the
method of images [104] have been used repeatedly to obtain eigenfunctions [137, 141] (for a
more detailed review, see [151]).

A close connection with group theory is revealed, however, upon realising the equilat-
eral triangle (as well as the square, right isosceles triangle, etc) as a member of the family
of domains consisting of so-called fundamental regions of root systems [7]: that is to say,
those domains that can be repeatedly reflected across their boundaries to tile Rd. For such
domains, Laplace eigenfunctions can be derived by applying the symmetries described by
the corresponding root system to the classical Fourier basis. Future work will also aim to
incorporate this theory into the design of modified Fourier approximations in a variety of
higher-dimensional simplices.

In [100, 101] families of Laplace eigenfunctions corresponding to Dirichlet, Neumann,
Robin and certain Poincaré boundary conditions were obtained using the so-called Fokas
method. Such results may have direct impact on the understanding of modified Fourier ex-
pansions in triangular domains. Evidence suggests that any duality (in the sense of Chapter
2) enjoyed by Laplace–Neumann eigenfunctions in these domains, as opposed to the unit cube,

2This is also currently under investigation by D. Huybrechs [7].
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will involve families of Laplace eigenfunctions corresponding to more complicated boundary
conditions. This work may provide the key to such an understanding.

6.3 Accelerating convergence of modified Fourier–Galerkin ap-
proximations

Numerous attempts have been previously made towards the rapid approximation of solutions
of boundary value problems of the form (4.5) in one, two, or three dimensions using Fourier
or Fourier-like series. Most previous techniques use a variant of the polynomial subtraction
process [12, 35, 67, 126, 144, 149], and suffer from the dual restrictions of being commonly
limited to the constant coefficient Helmholtz (a = 0) problem and requiring exact knowledge
of the derivative information of the inhomogeneous term f .

However, bearing in mind the work of Chapter 5, effective treatment of the Helmholtz
problem is now straightforward: when a = 0, the modified Fourier coefficients of the solution
u are known explicitly (in terms of the coefficients of f , see Section 4.3.1). Hence, the rapid
approximation of u without derivatives is easily acquired via Eckhoff’s method [126].

Outside of this trivial case, accurate approximations can be designed for the solution of
problems of the form (4.5) with arbitrary (not necessarily constant) coefficients. Theoretically,
this is very simple. For example, if uN,k is an Eckhoff-type approximation, then we specify
the coefficients of uN,k by the relation

T
(
uN,k, φ

[i]
n

)
= f̂ [i]

n , ∀n ∈ IN ∪Mk, i ∈ {0, 1}d,

where Mk is the index set (5.30) and T is the bilinear form appearing in the weak formulation

of the problem (4.5). Note that, upon defining the space YN = span{φ[i]
n : n ∈ IN ∪Mk, i ∈

{0, 1}d}, this approach can be immediately interpreted as the Petrov–Galerkin method

find uN,k ∈ XN : T (uN,k, v) = (f, v), ∀v ∈ YN , (6.1)

where XN is space of Eckhoff-type approximants (i.e. functions consisting of a truncated
modified Fourier sum and a subtraction function). Observe the generality of this approach:
no stipulations have been made in (6.1) regarding either the operator or boundary conditions.3

Several key issues immediately present themselves. First, ill-conditioning that was origi-
nally confined to a k× k matrix now permeates throughout the K ×K discretisation matrix,
where K = |IN |+ |Mk| = O

(
(N + k)d

)
. Second, since this matrix is dense, it is not yet clear

how to rapidly compute the approximation uN,k. Noting that Eckhoff’s approximation to the
Helmholtz problem can be easily constructed suggests that the operator splitting L = L0 +L1

could be employed once more (as in Chapter 4). However, it remains to be seen whether
this approach is effective or not. We remark in passing that no analysis of the approxima-
tion (6.1) has yet been devised4, although numerical experiments demonstrate the increase in
convergence.

3Of course, such issues are of paramount importance as regards the implementation of such schemes.
4Petrov–Galerkin methods have a standard analysis, including a statement analogous to Céa’s lemma,

provided the finite-dimensional spaces XN and YN satisfy a so-called inf-sup condition [14, 142]. Verification
of this condition for these particular spaces would immediately lead to error estimates for uN,k.
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In the univariate case, at least, the significant issue of ill-conditioning can be circumvented.
For the problem −u′′(x) + a(x)u′(x) + b(x)u(x) = f(x), x ∈ [−1, 1], u′(±1) = 0, the odd
derivatives of the solution u satisfy a linear relation of the form u(2r+1)(±1)− c±r u(±1) = d±r ,
where the values c±r ∈ R depend only on the functions a(x) and b(x) and their first 2r
derivatives evaluated at x = ±1, and the d±r depend only on f and its first 2r− 1 derivatives
(such derivatives can, of course, be approximated by applying Eckhoff’s method in turn to
a, b and f). The method proposed in [3] is to approximate u by a function uN,k ∈ XN that
satisfies both Galerkin’s equations and these relations:

T (uN,k, φ
[i]
n ) = f̂ [i]

n , n = 0, . . . , N, i ∈ {0, 1},

u
(2r+1)
N,k (±1)− c±r uN,k(±1) = d±r , r = 0, . . . , k − 1. (6.2)

As proved in [3], this approximation not only accelerates convergence, the error ‖u− uN,k‖∞
is O

(
N−2k−3

)
, but the condition number of the linear system also remains O

(
N2
)
, and the

solution uN,k can be constructed in O
(
N2
)

operations (provided k � N). It remains to be
seen, however, whether this approach scales to higher dimensions. Certainly, the linear rela-
tions obeyed by the partial derivatives of u will become increasingly complicated for problems
in two or more variables, thus potentially limiting the scope of this approach. Conversely,
Eckhoff’s approach, whilst exhibiting ill-conditioning, is, theoretically at least, much simpler
to construct for a wide variety of problems.

An alternative to an Eckhoff-type approach is to employ Fourier extension methods.5 This
leads to a Galerkin approximation, with ensuing simple analysis. In fact, if uN ∈ SN is the
approximant, where SN is defined in (5.75), then uN satisfies the equations T (uN , φ) = (f, φ),
∀φ ∈ SN . As with the Eckhoff-type approach, issues of ill-conditioning and computational cost
persist. However, since this is a Galerkin approximation (in contrast to the more complicated
Petrov–Galerkin setting), convergence can be immediately guaranteed. In fact, exponential
convergence is observed, provided u is analytic.

Future work will address the continuing development of fast approximations to partial
differential equations based on the aforementioned techniques. As discussed in Chapter 4, by
designing effective approximations based on modified Fourier expansions, we aim to extend
the range of applicability of modified Fourier methods to a wider variety of problems.

Naturally, this work is not necessarily restricted to tensor-product domains. Upon devel-
opment of convergence acceleration techniques for expansions in the equilateral triangle, for
example, the next step for future research will be the application to boundary value prob-
lems in such domains. Combined with a suitable domain decomposition strategy [44, 143],
the eventual intent of this work is the construction of high-order approximations in complex
geometries. Needless to say, applications are potentially broad-reaching. They include the
numerical solution of many problems in fluid dynamics and electromagnetism, for example,
more commonly tackled by low-order finite element methods.

6.4 Numerical evaluation of coefficients

Combinations of highly oscillatory and nonstandard classical quadratures form the mainstay
of techniques to evaluate the modified Fourier coefficients of a given function. As previously

5Methods for differential equations based on univariate Fourier extensions have been studied in [39].
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alluded to, the development of efficient, robust techniques based on such quadratures is the
main bottleneck towards the development of effective algorithms based on modified Fourier
expansions. Herein numerous questions and open problems remain.

Currently, there are few accurate and reliable bounds for either Filon-type or exotic
quadratures, nor has the stability of such methods for large numbers of nodes and multi-
plicities been established.6 Standard classical quadrature has an extremely well-understood
theory, including simple criteria for selecting optimal node locations to obtain highest possible
orders. No such theory yet exists for exotic quadrature: as described in [8], an optimal choice
of internal nodes was possible in some examples, whereas in others, no choice would increase
order. The Peano kernel theorem [140] was proposed as a potential means to tackle such
issues in [8]. One intent of future work is to scrutinise this option.

6.5 Other open problems and challenges

Within the topics considered in this thesis themselves, there remain numerous areas for future
research, as we now detail.

6.5.1 Polyharmonic expansions

The main stumbling block in the practical application of polyharmonic eigenfunctions involves
issues relating to the computation of eigenfunctions for moderate values of the parameter q.
Both increased computational cost and susceptibility to round-off error may limit the scope
of such techniques. Nonetheless, future work will aim to determine the impact of such issues,
and establish potential means for fast, accurate computation for a larger range of q.

Herein we highlight one potential option for further scrutiny. As described in Section 3.2.4,
the exponentially accurate estimates for eigenvalues provide sufficiently good approximations
for even moderate values of the index n. A closer study may reveal higher-order terms in this
expansion, thus circumventing the need for any iterative techniques (outside the first handful
of values n = 1, 2, . . .). Moreover, improved estimates for the coefficients of the individual
eigenfunctions may provide an effective means to construct such functions without having to
solve as many q × q linear systems.

Aside from this topic, it is of both practical and theoretical interest to determine whether
subpolyharmonic eigenfunctions can be constructed in, for example, the equilateral triangle.
Evidently, the lack of L2(Ω)-orthogonal approximation bases in such a domain motivates
this particular endeavour. In [155], Laplace eigenfunctions in the equilateral triangle were
obtained by directly solving a particular boundary value problem. Such an approach may
also be applicable in this setting.

6.5.2 Eckhoff’s method

Eckhoff’s method is extremely general in the sense that it can be applied to a large variety
of orthogonal expansions with subtraction bases that can be chosen almost arbitrarily. In
Chapter 5, we presented numerical results indicating how to best choose such a basis for
modified Fourier expansions, yet we have no firm theory establishing this as the optimal choice.

6Some recent progress has been made in [121] as regards these issues. A number of suboptimal bounds were
also given in [133].
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This has potential practical consequences: increasing (or, indeed, guaranteeing) numerical
stability renders the resulting methods more effective for a wider range of problems.

On a related topic, the numerical experiments of Section 5.9 exhibit at least one common
feature: namely, the error levels off at some particular value. Often, especially for univariate
functions, this value is close to machine precision. However, in some cases, it is several
orders of magnitude larger (this feature is reasonably common for such approximations [32]).
Addressing this barrier is a topic of future research. Least squares routines for ill-conditioned
problems are amenable to a whole host of numerical tricks—including cut-offs and iterative
refinement [32]—and thus offer a potential solution to this problem.

6.5.3 Applications

Aside from the boundary value problems studied in Chapter 4 and the integral equations
of [38], modified Fourier expansions may have applications in a variety of other problems.
For example, standard spectral methods for nonperiodic time-dependent partial differential
equations often suffer from severe time-step restrictions [42, 142], thus necessitating the use of
expensive implicit time-stepping routines. Conversely, Fourier methods for periodic problems
offer better stability. Correspondingly, due to the similarity with the modified Fourier basis,
there is reason to expect that modified Fourier methods may have application to nonperi-
odic problems. Needless to say, future work will not only consider time-dependent problems
in tensor-product spatial domains, but also the development of modified Fourier–Galerkin
approximations for triangular regions.

Outside of differential equations, the convergence acceleration techniques of Chapter 5 may
also have application in image and signal processing. The Gegenbauer method (as discussed in
Section 5.10) has been successfully applied to such problems [9, 10] (see also [33] and references
therein). Yet its drawbacks, as discussed in Section 5.10, indicate that other methods may be
better suited for such problems.

Univariate Laplace–Dirichlet and Laplace–Neumann expansions have also been considered
in [150], where a numerical method was developed for the solution of Laplace and modified
Helmholtz problems defined in convex polygonal domains. The fundamental component of
this method is the so-called global relation, formulated in the complex plane, which, when
discretised, provides a finite collection of Fourier coefficients from which the solution is re-
covered. In essence, this component of the method is a reconstruction problem: given the
first N Fourier (or Fourier-like) coefficients of a function f , recover f to high accuracy. It is
eminently possible that both the theory of modified Fourier expansions and the techniques
for convergence acceleration have useful application in this area. This remains an object of
future research.

6.6 Concluding thoughts

The steadily growing list of papers on the topic of modified Fourier expansions marks a sig-
nificant attempt to provide new numerical methods for the approximation of functions in
bounded domains and their applications, including the numerical solution of differential and
integral equations. Many competitive algorithms exist for such problems, including finite ele-
ment methods, spectral methods and wavelets, to name but a few. However, modified Fourier
expansions have thus far proved fruitful in conferring a number of advantages over these more
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standard techniques. Clearly, neither modified Fourier nor more established methods present
a panacea for all problems. At the same time, in view of the potential benefits outlined previ-
ously, these are only the first promising steps towards the development of robust algorithms
with a large range of potential applications.
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