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(Université Paris Dauphine) and Chen Li (USTC)

1 / 51



Compressed sensing The need for local structure A level-based theory Applications and benefits Conclusions

Outline

Compressed sensing

The need for local structure

A level-based theory of compressed sensing

Applications and benefits

Conclusions

2 / 51



Compressed sensing The need for local structure A level-based theory Applications and benefits Conclusions

Outline

Compressed sensing

The need for local structure

A level-based theory of compressed sensing

Applications and benefits

Conclusions

3 / 51



Compressed sensing The need for local structure A level-based theory Applications and benefits Conclusions

The aim of compressed sensing

Goal: To recover a vector x = (x1, x2, . . . , xN )> ∈ CN from the limited
set of measurements

y = Ax + e,

where

• A ∈ Cm×N is the measurement matrix,

• y = (y1, . . . , ym)> ∈ Cm are the measurements,

• e ∈ Cm, ‖e‖l2 ≤ η is noise,

• the number of measurements satisfies m� N.
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Compressed sensing: the highlights

Subject to appropriate conditions on x and A we can recover x from y .
Moreover, this can be done with efficient numerical algorithms.

• Origins (≈ 2004): Candès, Romberg & Tao, Donoho

• Since then, the subject of thousands of papers, dozens of survey articles,

and one textbook (Foucart & Rauhut, Birkhauser, 2013).

• Applications: medical imaging, seismology, analog-to-digital conversion,

microscopy, radar, sonar, communications,...

• Important philosophical shift in how we view the task of

reconstruction/inference.
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A standard CS setup

Consider an isometry U ∈ CN×N . Suppose that

Ω ⊆ {1, . . . ,N}, |Ω| = m,

is an index set. Then the measurements are

y = PΩUx + e,

where PΩ ∈ Cm×N selects entries corresponding to indices in Ω.

Conditions: We now seek conditions on x , U and Ω to ensure recovery.
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The condition on x : Sparsity

Definition

A vector x ∈ CN is s-sparse if it has at most s nonzero entries.
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For an arbitrary x ∈ CN , define the best s-term approximation error

σs(x) = min {‖x − z‖1 : z is s-sparse} .
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The condition on U : Incoherence

Definition

The coherence of an isometry U ∈ CN×N is

µ = µ(U) = max |uij |2 ∈ [N−1, 1].

The matrix U is incoherent if µ(U) = O
(
N−1

)
.

Discrete uncertainty principle: if x is sparse, then Ux cannot be sparse.
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The condition on Ω: Uniform random subsampling

We choose Ω ⊆ {1, . . . ,N}, |Ω| = m uniformly at random.

Informal explanation:

• Incoherence means the information about x is distributed uniformly
amongst the measurements Ux .

• Hence, any m = O (s) ‘representative’ measurements should contain
sufficient information to recover x .
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A recovery guarantee

Theorem (Candès & Plan (2011), BA & Hansen (2011))

Let x ∈ CN , ε > 0 and suppose that Ω ⊆ {1, . . . ,N}, |Ω| = m is chosen
uniformly at random, where

m & s · N · µ(U) · log(ε−1) · log N.

Then with probability greater than 1− ε any minimizer x̂ of the problem

min
z∈CN

‖z‖l1 subject to ‖PΩUz − y‖l2 ≤ η,

satisfies
‖x − x̂‖l2 . σs(x) +

√
sη.

If U is incoherent, then m ≈ s log N � N.

• No Restricted Isometry Property (RIP) – so-called ‘RIPless’ CS.

• Candès & Plan: more general than subsampled isometries, plus a

somewhat improved error bound.
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Fourier sampling

Examples: Magnetic Resonance Imaging (MRI), X-ray Computed
Tomography, Electron Microscopy, Radio Interferometry,....

CS has been applied in/proposed for all these problems.

• For MRI, see Lustig, Donoho & Pauli (2007), Lustig et al. (2008)

Let f be the image to recover. Mathematically, all these problems can be
reduced to the following:

Given {f̂ (ω) : ω ∈ Ω}, recover f .

Here Ω ⊆ R̂d is a finite set of frequencies, and f̂ is the Fourier transform.

Note: the sampling operator is fixed, and cannot be altered.
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Standard compressed sensing setup

We let

• Ψ ∈ CN×N be the Discrete Fourier Transform (DFT),

• Φ ∈ CN×N be a Discrete Wavelet Transform (DWT),

• U = ΨΦ∗,

and solve
min
z∈CN

‖z‖l1 subject to ‖PΩUz − y‖l2 ≤ η,

where
y = {f̂ (ω) : ω ∈ Ω}+ e,

is the vector of noisy measurements with ‖e‖l2 ≤ η. If x̂ is a minimizer,
we form the approximation f ≈ Φ∗x̂ .
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Warning

This setup is a discretization of the continuous model:

continuous FT ≈ discrete FT ⇒ measurements mismatch

Issues:

1. If measurements are simulated via the DFT ⇒ inverse crime.
• In MRI, see Guerquin–Kern, Lejeune, Pruessman, Unser (2012)

2. If measurements are simulated via the continuous FT, the
minimization problem has no sparse solution ⇒ poor reconstructions.
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How to avoid this: infinite-dimensional CS

Extends the standard CS setup:

• Vector spaces → Hilbert spaces, Matrices → Bounded operators

Key issues:

• Dealing with infinite, and unknown, tails.

• Truncation of U via uneven sections and balancing property.

Original (zoomed) Fin. dim. CS, Err = 12.7% Inf. dim. CS, Err = 0.6%

BA & Hansen, Generalized sampling and infinite-dimensional compressed sensing,
Found. Comput. Math. (to appear), 2015.
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Back to the finite-dimensional case

Setup: Recall that

• Ψ ∈ CN×N is the Discrete Fourier Transform (DFT),

• Φ ∈ CN×N is a Discrete Wavelet Transform (DWT).

Standard CS principles:

• Sparsity: z = Φx mainly zeros.

• Incoherence: µ(U) = max |uij |2 . 1/N, where U = ΨΦ∗.

• Random subsampling: Choose rows of Ψ uniformly at random.

Claim
These global principles are not the correct ones for this problem.
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Uniform random subsampling

N = 256× 256, with m/N = 12.5% samples taken uniformly at random.

Subsampling map Ω Original image

Conclusion: Sampling uniformly at random gives very poor results.
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High coherence

Explanation:

• µ(U) = O (1) in this case, for any N and any wavelet.

• Hence the recovery guarantee saturates to m ≈ N.

This phenomenon has been known since the earliest work in CS for
applications such as MRI (see Lustig et al.).
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Asymptotic incoherence

Although global coherence is high, there is a local incoherence structure:

• Coarse scale wavelets: coherent with low frequencies,

• Coarse scale wavelets: incoherent with high frequencies,

• Fine scale wavelets: incoherent with any frequencies.

The absolute values of U

19 / 51



Compressed sensing The need for local structure A level-based theory Applications and benefits Conclusions

How to subsample the Fourier/wavelets matrix

Variable density sampling

• More samples at low frequencies (high coherence regions).

• Fewer samples at high frequencies (low coherence regions).

See also:

• Lustig (2007), Lustig et al. (2007). Empirical observations and intuition.

• Wang & Arce (2010), Puy, Vandergheynst & Wiaux (2011),... Design of

sampling strategies.

• Krahmer & Ward (2013), Boyer et al. (2012). Sparsity-based CS theory.
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Variable density sampling

N = 256× 256, m/N = 12.5% taken according to a multilevel random
subsampling scheme.

Subsampling map Ω Original image

Conclusion: Local structure (coherence and sampling) matters.
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Sparsity?

Question: Does global sparsity explain the good reconstruction seen here?

The flip test

1. Given x , compute its wavelet coefficients z = Φ∗x .

2. Permute the entries of z , giving z ′ .

3. Compute a new image x ′ = Φz ′ with the same sparsity.

4. Run the same CS reconstruction on x and x ′, giving x̂ and x̂ ′.

5. Reverse the permutation on x̂ ′ to get a new reconstruction x̌ of x .

Key point: Both z and z ′ have the same sparsity.

BA, Hansen, Poon & Roman, Breaking the coherence barrier: a new theory for com-
pressed sensing, arXiv:1302.0561 (2014).
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The flip test

MRI example: N = 256× 256 and m/N = 20%.

Subsampling map unflipped x̂ flipped x̌

Radio interferometry example: N = 512× 512 and m/N = 15%.

Subsampling map unflipped x̂ flipped x̌
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Asymptotic sparsity

The flip test shows that sparsity is not the correct model: the ordering
(local behaviour) of the coefficients matters.

Structured sparsity: Wavelet coefficients are asymptotically sparse.
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Left: image. Right: percentage of wavelet coefficients per scale > 10−3.

At finer scales, more coefficients are negligible than at coarser scales.
The flip test destroys this structure, although it preserves overall sparsity.
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Is this the correct model?

We perform a similar test, where the flipping is done within the scales.

Subsampling map unflipped x̂ flipped x̌

Conclusion: Sparsity within scales (i.e. a fixed number of nonzero per
scale) appears to be the right model.

Roman, Bastounis, BA & Hansen, On fundamentals of models and sampling in com-
pressed sensing, Preprint (2015).
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New concepts

Current global principles:

• Sparsity

• Incoherence

• Uniform random subsampling

New local principles:

• Sparsity in levels

• Local coherence in levels

• Multilevel random subsampling

27 / 51



Compressed sensing The need for local structure A level-based theory Applications and benefits Conclusions

Partitioning U

We first partition U into rectangular blocks indexed by levels

N = (N1,N2, . . . ,Nr ), M = (M1,M2, . . . ,Mr ),

where Nr = Mr = n and N0 = M0 = 0.

U =


U11 U12 · · · U1r

U21 U22 · · · U2r

...
...

. . .
...

Ur1 Ur2 · · · Urr

 , Ukl ∈ C(Nk+1−Nk )×(Ml+1−Ml ).

Note: The levels M need not be wavelet scales.
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Sparsity in levels

Definition (Sparsity in levels)

A vector x is (s,M)-sparse in levels, where s = (s1, . . . , sr ), if

|{j ∈ {Mk−1 + 1, . . . ,Mk} : xj 6= 0}| = sk , k = 1, . . . , r .

• Models asymptotic sparsity of wavelet coefficients.

• Agrees with the flip test in levels.
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Local coherence in levels

Definition (Local coherence in levels)

The (k, l)th local coherence is µ(k , l) =
√
µ(Ukl ) maxt µ(Ukt).

• Allows for varying coherence across U.

• E.g. the Fourier/wavelets matrix has µ(k , l)→ 0 as k, l →∞.
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Multilevel random subsampling

Definition (Multilevel random subsampling)

Let m = (m1, . . . ,mr ) with mk ≤ Nk − Nk−1 and suppose that

Ωk ⊆ {Nk−1 + 1, . . . ,Nk}, |Ωk | = mk ,

is chosen uniformly at random. We call the set Ω = Ω1 ∪ · · · ∪ Ωr an
(N,m)-multilevel subsampling scheme.

• Models variable density sampling by allowing varying mk ’s.

• For Fourier/wavelets, we have mk/(Nk − Nk−1)→ 0.
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Interferences and relative sparsities

The matrix U is not block diagonal in general. Hence there may be
interferences between sparsity levels.

To handle this, we need:

Definition

Let x ∈ CN be (s,M)-sparse. Given N, we define the relative sparsity

Sk = Sk (s,M,N) = max
η∈Θ

∥∥∥∑Uklηl

∥∥∥2

,

where Θ = {η : ‖η‖l∞ ≤ 1, η is (s,M)-sparse}.
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Main result
Theorem
Given N and m suppose that s and M are such that

mk & (Nk − Nk−1) ·

(
r∑

l=1

µ(k , l) · sl

)
· log(ε−1) · log(N),

and mk & m̂k · log(ε−1) · log(N), where m̂k satisfies

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µ(k , l) · Sk , l = 1, . . . , r .

If x̂ is a minimizer, then with probability at least 1− sε we have

‖x − x̂‖l2 . σs,M(x) + L
√

sη,

where s = s1 + . . .+ sr and L = 1 +
√

log(ε−1)/ log(4N
√

s).

BA, Hansen, Poon & Roman, Breaking the coherence barrier: a new theory for com-
pressed sensing, arXiv:1302.0561 (2014). 33 / 51
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Interpretation

The key parts of the theorem are the estimates

mk & (Nk − Nk−1) ·

(
r∑

l=1

µ(k , l) · sl

)
· log(ε−1) · log(N),

and mk & m̂k · log(ε−1) · log(N), where

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µ(k , l) · Sk , l = 1, . . . , r .

Main point: The local numbers of samples mk now depend on

• the local sparsities s1, . . . , sr ,

• the relative sparsities S1, . . . ,Sr ,

• the local coherences µ(k , l),

rather than the global sparsity s and global coherence µ.
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Application to the Fourier/wavelets problem

For the discrete Fourier/Haar wavelet problem, one can show that

µ(k , l) . 2−k 2−|k−l|/2,

and

Sk .
r∑

l=1

2−|k−l|/2sl ,

provided the sampling levels are correspond to dyadic frequency bands.
Hence the recovery guarantee reduces to

mk &

sk +
∑
l 6=k

2−|k−l|/2sl

 · log(ε−1) · log(N).

BA, Hansen & Roman, A note on compressed sensing of structured sparse wavelet
coefficients from subsampled Fourier measurements, arXiv:1403.6541 (2014).
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Application to the Fourier/wavelets problem

The estimate

mk &

sk +
∑
l 6=k

2−|k−l|/2sl

 · log(ε−1) · log(N).

is optimal up to exponentially-decaying factors in |k − l |.

• Variable density sampling works because of asymptotic sparsity.

• As the sparsity increases, more subsampling is permitted in the
corresponding high-frequency bands.

• This estimate also agrees with the flip test.

Note: The estimate generalizes to arbitrary wavelets, with
√

2 replaced by
A > 1 depending on the smoothness and number of vanishing moments.
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Benefits for MRI and related applications

1. New framework explains why CS works in MRI, radio interferometry,
X-ray CT,...

2. New insight into the design of sampling trajectories.

• Nontrivial – must take into account physical limitations

• Necessarily image-dependent – no one size fits all

3. Changes understanding on the benefits of CS in such applications.

• Previous understanding: low(ish) resolution, scan time reduction

• New understanding: higher resolution, increasing image quality

• To quote Siemens (see Proc. Intl. Soc. Mag. Reson. Med., 2014):

...the full potential of the compressed sensing is unleashed only if

asymptotic sparsity and asymptotic incoherence is achieved.

Roman, BA & Hansen, On asymptotic structure in compressed sensing, arXiv:1406.4178
(2014).
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Resolution dependence – low resolution

5% samples at 256× 256 resolution. Substantial subsampling is not
possible, regardless of the scheme:

Oracle, Err = 18% Multilevel, Err = 19% Power law, Err = 22%
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Resolution dependence – high resolution

At higher resolutions there is more asymptotic incoherence and sparsity.
Taking the same number of measurements, CS recovers the fine details.

5122 lowest frequency coefficients CS reconstruction
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A new compressive imaging paradigm

Unlike the problems considered thus far, in compressive imaging we
typically have substantial freedom to design the sensing matrix Ψ.

Applications: Single-pixel camera, lensless imaging, infrared imaging,
fluorescence microscopy,...

Hardware constraint: Typically Ψ ∈ {0, 1}N .

Sparsifying transform: We typically use a wavelet transform Φ as before.
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Conventional CS approach

Use a Bernoulli random matrix and `1 minimization.

Limitations:

1. Ψ is dense and unstructured, i.e. computationally infeasible.
• Solution: replace Ψ by a fast transform. E.g. subsampled DCT with

column randomization.

2. Only exploits the sparsity of the wavelet coefficients, and no further
structure. Recovery quality is limited.
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Enhancing reconstruction quality with structured recovery

Basic principle: wavelet coefficients live on connected trees.

Structured recovery: Modify the recovery algorithm (typically a
thresholding or greedy method) to enforce this type of structured
sparsity. Use standard (i.e. incoherent) measurements.

State-of-the-art approaches:

• Model-based CS (Baraniuk et al.)

• HGL (Cevher et al.)

• TurboAMP (Som & Schniter)

• Bayesian CS (Chen & Carin)
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New paradigm: structured sampling

Keep the standard recovery algorithm (`1 minimization) and modify the
measurements to promote asymptotic sparsity in scales.

Practical implementation:

• Walsh–Hadamard transform Ψ (binary)

• Multilevel random subsampling according to wavelet scales

Roman, BA & Hansen, On asymptotic structure in compressed sensing, arXiv:1406.4178
(2014).
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Example (12.5% subsampling at 256× 256 resolution)

`1 min., Bern. modelCS, Bern. TurboAMP, Bern.

Err = 16.0% Err = 17.0% Err = 13.1%

Bayesian, Bern. `1 min, Had., db4 `1 min, Had., DT-CWT

Err = 12.6% Err = 9.5% Err = 8.6 %
45 / 51
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Other advantages

It is also easy to change the sparsifying transform:

Subsample mapSubsample map OriginalOriginal
Original
zoom
Original
zoom

Linear
inverse DFT
Linear
inverse DFT TVTV Daubechies 4Daubechies 4

CurveletsCurvelets ContourletsContourlets ShearletsShearlets
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Other advantages

Fast transforms combined with efficient `1 algorithms (we use SPGL1
throughout) mean we can do high resolution imaging.

Example: The Berlin cathedral with 15% sampling at various resolutions
using Daubechies-4 wavelets.
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Efficient compressive imaging

Resolution: 128× 128

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 26.4
Rel. Err. (%): 17.9

Time: 10.1s
48 / 51



Compressed sensing The need for local structure A level-based theory Applications and benefits Conclusions

Efficient compressive imaging

Resolution: 256× 256

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 18.1
Rel. Err. (%): 14.7

Time: 18.6s
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Efficient compressive imaging

Resolution: 512× 512

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 4.9

Rel. Err. (%): 12.2
Time: 1m13s
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Efficient compressive imaging

Resolution: 1024× 1024

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 1.07
Rel. Err. (%): 10.4

Time: 3m45s
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Efficient compressive imaging

Resolution: 2048× 2048

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 0.17
Rel. Err. (%): 8.5

Time: 28m
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Efficient compressive imaging

Resolution: 4096× 4096

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 0.041
Rel. Err. (%): 6.6

Time: 1h37m
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Efficient compressive imaging

Resolution: 8192× 8192

Reconstruction (cropped) Original image (cropped)

RAM (GB): < 0.1
Speed (it/s): 0.0064

Rel. Err. (%): 3.5
Time: 8h30m
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Application to fluorescence microscopy

We may also apply this approach to fluorescence microscopy. This has to
two key advantages:
• Better inherent performance, due to structured sparsity.
• Mitigation of the point spread effect, since more of the

measurements are taken at lower (Hadamard) frequencies.

Original image Current CS* New CS

∗ See Studer, Bobin, Chahid, Mousavi, Candès & Dahan (2012).

Image of zebrafish cells, courtesy of the Cambridge Advanced Imaging Centre (CAIC). Practical CS
fluorescence microscope under construction.
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Conclusions

• The standard CS principles do not explain its performance in many
recovery problems (e.g. MRI).

• In these applications, local behaviour plays a crucial role.

• A new CS framework based on sparsity in levels, local coherence in
levels and multilevel random subsampled was introduced.

• This not only explains the success of CS in many such applications,
it also provides new insights and techniques for enhancing its
performance in a range of other imaging applications.
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