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Fourier series

Let f : [�1, 1] ! R. Its Nth partial Fourier series is

f
N

(x) =
X

|n|N

f̂
n

ein⇡x , N 2 N,

where

f̂
n

=
1

2

Z

1

�1

f (x)e�in⇡x dx , n 2 Z,

are the Fourier coe�cients of f .

Fourier series are extremely e↵ective tools in computations.
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Reason 1: rapid convergence of Fourier series

The Fourier series f
N

converges geometrically fast whenever f is
analytic and periodic, i.e.

kf � f
N

k1 := sup
x2[�1,1]

|f (x)� f
N

(x)| ⇠ ⇢�N ,

for some ⇢ > 1.
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Reasons 2 & 3

2. Computations can be carried out rapidly, in O (N logN) time,
with the FFT.

3. Fourier series lead to stable numerical algorithms (spectral
methods) for PDEs.
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Reason 4: resolution power of Fourier series

Fourier series are good at resolving periodic oscillations.

I Obtain the optimal resolution constant of 2 d.o.f. per wavelength.
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N

(x) (red).

Conversely, expansions in orthogonal polynomials (e.g. Chebyshev
polynomials) have a higher resolution constant equal to ⇡.
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Limitations of Fourier series I
Most functions are not periodic.

The Fourier series of a nonperiodic function gives a very poor
approximation.

I Gibbs phenomenon.

I No uniform convergence.

E.g. f (x) = x :
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Limitations of Fourier series II

Fourier series are limited to simple geometries.

I E.g. intervals, (hyper)rectangles, parallelopipeds.

I Some extensions to certain triangles and simplices. But require

rather unphysical notions of periodicity.
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Main question

Is there a way to retain the good properties of Fourier series of
periodic functions, i.e.

(i) rapid convergence,

(ii) good resolution power,

(iii) easy manipulation via the FFT,

for nonperiodic functions, and functions defined in arbitrary
domains?
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Answer

Yes! One can compute approximations of analytic, nonperiodic
functions which

(i) are expressed in terms of a Fourier series,

(ii) converge rapidly,

(iii) have a resolution constant that can be made arbitrarily close
to 2 by an appropriate choice of a certain parameter,

(iv) are numerically stable,

(v) in 1D at least, can be computed e�ciently.

The method is based on so-called Fourier extensions.
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An (old) idea

Seek to approximate a function f : ⌦ ! R by a Fourier series on a
larger, (hyper)rectangular domain.

⌦

Known as the Fourier extension problem.
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The Fourier extension problem
Existence/construction of extensions:

I Whitney (1934), Hestenes (1941), Fe↵erman (2005),...

I However, typically cannot obtain geometric convergence this way –

no analytic and periodic extension of an arbitrary analytic function.

I Throughout, we shall never explicitly calculate extensions.

Computation of extensions:

I Boyd (2002), Bruno (2003), Bruno et al (2007), Huybrechs (2010),

BA & Huybrechs (2011), BA et al (2012).

I SVD’s, fast computations, smoothing of extensions: Lyon (2011,

2012).

Applications of extensions:

I Solution of PDEs in complex geometries, Lyon & Bruno (2010,

2011), Albin & Bruno (2011).
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One-dimensional Fourier extensions

�T T�1 1

f (x)

We seek an approximation f
N

2 G
N

, where

G
N

= span
n

1p
2T

ei
n⇡
T

x : n = �N, . . . ,N
o

,

is the set of Fourier series of degree N on [�T ,T ], and T > 1 is
fixed (up to the user).

Question: how should we compute f
N

?
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Least squares

Define
f
N

:= argmin
�2G

N

kf � �k,

where kgk2 = R

1

�1

|g(x)|2 dx .
I Results in a linear system for the coe�cients of F

N

(f ).

I We refer to F
N

(f ) as the continuous Fourier extension of f .

Problem: we need to know the integrals
R

1

�1

f (x)e�i n⇡
T

x dx .
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Discrete least squares

Intstead, we can replace integrals by a quadrature, leading to

f
N

:= argmin
�2G

N

X

|n|N

|f (x
n

)� �(x
n

)|2.

I We refer to F̃
N

(f ) as the discrete Fourier extension of f .

Question: what are good nodes to choose?
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Fourier extensions as polynomial approximations

The set G
N

consists of the functions

cos k⇡
T

x , sin (k+1)⇡
T

x , k = 0, . . . ,N.

If c(T ) = cos ⇡
T

and

y = y(x) := cos
⇡

T
x , y : [0, 1] ! [c(T ), 1],

then
cos k⇡

T

x 2 P
k

, sin (k+1)⇡
T

x/ sin ⇡
T

x 2 P
k

.

Thus, any FE can be written as a sum of two polynomials
expansions of degree N in the variable y , corresponding to the
even and odd parts of f respectively.
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Choice of nodes

Optimal nodes for polynomial interpolation in z 2 [�1, 1] are the
Chebyshev nodes

z
n

= cos

✓

(2n + 1)⇡

2N + 2

◆

, n = 0, . . . ,N.

Mapping back to the x-domain, we get

x
n

=
T

⇡
cos�1

⇢

1

2
(1� c(T )) cos



(2n + 1)⇡

2N + 2

�

+
1

2
(1 + c(T ))

�

,

for n = 0, . . . ,N, and x�n

= �x
n

otherwise.

I We refer to these as mapped symmetric Chebyshev nodes.
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Convergence

The expansion of an analytic function g in (almost) any orthogonal
polynomial system converges geometrically fast at rate ⇢, where ⇢
is the index of the largest Bernstein ellipse

B(⇢) =
n

1

2

⇣

⇢ei✓ + ⇢�1e�i✓
⌘

: ✓ 2 [�⇡,⇡)
o

, ⇢ � 1,

within which g is analytic.
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Convergence

Let D(⇢) be the image of B(⇢) in the x-domain, and set

E (T ) = cot2
⇣ ⇡

4T

⌘

.

Theorem (Huybrechs (2010), BA & Huybrechs (2011))

Suppose that f is analytic in D(⇢⇤) and continuous on its
boundary. Then

kf � f
N

k1  c
f

⇢�N ,

where ⇢ = min {⇢⇤,E (T )} and c
f

> 0 is proportional to
max

x2D(⇢) |f (x)|.

I The map y = cos ⇡
T

x introduces a square-root type singularity in

the complex plane. This limits the maximal ⇢ to E (T ).
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Numerical example

Let T = 4

3

, 3
2

, 2, 4:

10 20 30 40 50

10-17
10-14
10-11
10-8
10-5

0.01

10

The error kf � f

N

k1 for f (x) = e5x

Note that E (T ) is an increasing function of T , with E (1) = 1.
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Resolution power

By analyzing the behaviour of the Fourier extension of

f (x) = ei⇡!x , x 2 [�1, 1],

for large ! � 1, one can show:

Theorem (BA & Huybrechs (2011))

The number of points-per-wavelength r(T ) required to resolve the
function f (x) = ei⇡!x satisfies

r(T )  2T sin
⇣ ⇡

2T

⌘

, T > 1.

In particular, r(T ) ⇠ 2 +O (T � 1) as T ! 1.

I The PPW for standard Fourier series is the limiting value for r(T ).
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Numerical example
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f (x) = e50⇡ix

The error kf � f

N

k1 against N, where f

N

is the finite (black) or infinite (blue)

precision FE with T = 2.

26 / 56



Conclusion

The di↵erences between the infinite- and finite-precision
computations suggest that either:

(i) The theorems are wrong!

(ii) The code has a bug!

(iii) The finite-precision solver does not give an extension which is
‘close’ to the infinite-precision FE.

Fortunately for my collaborators and me, (iii) is correct.

) analysis of infinite-precision extensions is of limited use in
understanding the results of finite-precision computations.
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Ill-conditioning
The discrete FE requires solution of a linear system

Aa = b,

where A 2 C(2N+1)⇥(2N+1) and a 2 C2N+1 is the vector of
coe�cients of F̃

N

(f ).

Theorem (BA et al. (2012))

The condition number of A satisfies

(A) = O
⇣

E (T )N
⌘

, N ! 1.

Moreover, the numerical rank of A is roughly 2N/T for large N.

Explanation: Any function f defined on [�1, 1] has infinitely many
extensions to [�T ,T ]. Redundancy ) numerical ill-conditioning.
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Intuitive argument

1. For large N, the matrix A is highly underdetermined.

2. The numerical solver (e.g. Matlab’s backslash) will use these
degrees of freedom to seek coe�cient vectors ã satisfying

Aã ⇡ b, kãk ⌧ 1.

3. One can show that, if f 2 D(⇢), then

kak ⇡ (E (T )/⇢)N .

4. Hence, kak is exponentially large in N for ⇢ < E (T ), and we
must therefore have

ã 6= a, N large.
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Numerical example
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Top row: the error kf � f

N

k1 against N, where f

N

is the finite (black) or infinite

(blue) precision FE. Bottom row: the norms kãk (black) and kak (blue) against N.
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Existence of small-norm approximate coe�cients

�T T�1 1

f (x)

Lemma

Let f 2 Hk(�1, 1), k 2 N. Then there exists ã 2 C2N+1 satisfying

(i) kãk . kf kHk

(small norm),

(ii) kAã� bk . N�kkf kHk

(approximate solution),

(iii) kf �P

|n|N

a
n

�
n

k . N�kkf kHk

(good approximation of f ).

Conclusion: In finite-precision, geometric convergence may be
sacrificed for superalgebraic convergence for all large N.
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Analysis of the finite-precision FE

Assumption 1. The result of the numerical solver is similar to that
of a truncated SVD.

Assumption 2. Errors in the truncated SVD can be ignored.

I Agrees with numerical experiment.

We now consider the approximation f ⇡ g
N,✏, where g

N,✏ is the FE
obtained by solving

Aa = b,

using an SVD with truncation parameter ✏..
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Analysis of GN,✏(f )

Recall that

G
N

= span
n

1p
2T

ei
n⇡
T

x : n = �N, . . . ,N
o

.

Theorem
For any � 2 G

N

, we have

kf � g
N,✏k1 . kf � �k1 + ✏k�k

T ,1, (?)

where k·k
T ,1 is the uniform norm on [�T ,T ].
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Phases of convergence

1. Setting � = f
N

in (?) gives

kf � g
N,✏k1 . c

f

⇢�N

⇣

1 + ✏E (T )N
⌘

.

The RHS decreases geometrically for

N  N
1

:= � log E (T )

log ✏
,

and increases geometrically for N > N
1

.

2. However, recall that there exist functions � with small norm
coe�cient vectors. When substituted into (?) these give

kf � g
N,✏k1 . kf kHk

⇣

N�k + ✏
⌘

.
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Summary

1. N  N
1

. Geometric convergence in N.

2. N = N
1

. The error satisfies

kf � g
N,✏k1 . c

f

✏df , d
f

=
log ⇢

log E (T )
2 (0, 1].

3. N > N
1

. Superalgebraic convergence down to a maximal
accuracy of order ✏.

Remarks:
I If f is su�ciently analytic, then d

f

= 1. If c
f

is also small, then

convergence stops at N = N
1

. Otherwise, there is a further regime

of superalgebraic convergence.

I The breakpoint is function-independent. Up to constant factors, it

is the largest N for which all singular values of A are greater than ✏.
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Numerical Example
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Numerical stability

One can prove that the condition number of the numerical
mapping f 7! f

N

satisfies 
N

= O (1) for all N.

40 80 120 160 200
1.44⇥ 100 1.45⇥ 100 1.41⇥ 100 1.46⇥ 100 1.42⇥ 100

The condition number 
N

for T = 2
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Background
In many problems one has only samples of f at equispaced points:

f ( n

M

), |n|  M.

Equispaced data is di�cult to handle.

Runge phenomenon: the polynomial interpolant of f at equispaced
nodes diverges unless f is analytic in a su�ciently large region.
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(black) and its equispaced polynomial interpolant (blue).
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A result of Platte, Trefethen & Kuijlaars (PTK)

Problem: given {f ( n

M

)}|n|M

, recover f to high accuracy.

Many methods have been proposed to do this. However,

Theorem (Platte, Trefethen & Kuijlaars (2011))

“Any method that recovers analytic functions f to exponential
accuracy using only the grid values {f ( n

M

)}|n|M

must be
exponentially ill-conditioned. The best possible convergence for a
stable method is root-exponential in M.”
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Fourier extensions for equispaced data

We define

f
N,M := argmin

�2G
N

X

|n|M

|f ( n

M

)� �( n

M

)|2.

Questions:

(i) How large does M need to be, for a given N?

(ii) What is the corresponding convergence rate and condition number,

and how does this relate to Platte, Trefethen & Kuijlaars (PTK)?

(iii) Are the results for (i) and (ii) di↵erent in finite and infinite

precision?
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The infinite-precision FE

It is possible to show the following:

1. If M = �N for � � 1 fixed, then

(i) The condition number 
N,�N is exponentially large in N,

(ii) The Fourier extension f
N,�N diverges exponentially fast for any

analytic function having a singularity in a certain complex region

R� containing [�1, 1].

2. One requires the scaling M = O �

N2

�

to avoid (i) and (ii).

3. If M = O �

N2

�

, then f
N,M converges geometrically fast in N at

the same rate as the discrete FE, and the condition number 
N,M

is bounded.

) In infinite precision, FE’s attain the stability barrier of PTK.
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Example

Infinite precision:

20 40 60 80 100
0.01

10

104

107

1010

The error kf � f

N,Mk1 against M for f (x) =

1

1+100x

2

, where N = M (black),

N = 2/3M (blue) and N = 2

p
M (red)

Divergence for M = O (N).
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Example

Finite precision:

50 100 150 200

10-10

10-8

10-6

10-4

0.01

100

The error kf � f

N,Mk1 against M for f (x) =

1

1+100x

2

, where N = M (black),

N = 2/3M (blue) and N = 2

p
M (red)

Convergence with M = O (N). The scaling M = O �

N2

�

is unnecessary.
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The finite-precision FE

By analysing the truncated SVD FE, one can show the following:

1. The condition number


N,�N . ✏�a(�;T ),

where a(�;T ) is independent of N and satisfies

I 0 < a(�;T )  1,

I a(�;T ) ! 0, � ! 1.

) the condition number can be made arbitrarily close to 1 for all
N by a suitable choice of �.
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The finite-precision FE

2. The error satisfies

kf � f
N,�Nk1 . ✏�a(�;T ) (kf � �k1 + ✏k�k

T ,1) , 8� 2 G
N

.

Hence

(i) N  N
1

. Geometric convergence in N.

(ii) N = N
1

. The error satisfies

kf � f
N

1

,�N
1

k1 . c
f

✏df �a(�;T ), d
f

=
log ⇢

log E (T )
.

(iii) N > N
1

. Superalgebraic convergence down to a maximal
accuracy of order ✏1�a(�;T ).
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Relation to PTK

The stability barrier can be circumvented to a substantial extent.
With FE’s, we have:

(i) Bounded condition numbers,

(ii) Rapid convergence, but only down to a finite tolerance.

) No contradiction with PTK.
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Examples
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0.1
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0.01

10

f (x) = e50i⇡x f (x) = 1

1+25x

2
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10-4

0.01
50 100 150 200 250 300

10-10

10-7

10-4

0.1

f (x) = 1

8�7x

f (x) = |x |7

The error kf � f

M/�,Mk1 against M, where T = 2 and � = 1 (black), � =

3

2

(blue)

or � = 2 (red).
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Parameter choices

Two parameters:

I T – the extension domain size,

I � – the amount of oversampling.

Question: How do we best choose T and �?

I For obvious reasons, we are most interested in function
independent choices.
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Factors

stability maximal accuracy convergence
small � worse worse better
large � better better worse

stability maximal accuracy convergence
small T worse worse better
large T better better worse
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Experiment

Fix T . For each M, find the largest value of N such that the
condition number 

N,M  
0

, where 
0

is some prescribed value.
This gives a function

⇥(M;T ) = max {N : 
N,M  

0

} , M 2 N.

100 200 300 400
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The function ⇥(M;T )/M against M, where T = 4, 3, 2, 3/2, 7/6.
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Numerical results
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Top row: f (x). Bottom row: the error kf � f

⇥(M;T ),Mk1 against M, where

T = 4, 3, 2, 3/2, 7/6.
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Numerical results
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Top row: f (x). Bottom row: the error kf � f

⇥(M;T ),Mk1 against M, where

T = 4, 3, 2, 3/2, 7/6.
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Conclusion

The choice of T makes almost no di↵erence!

Recommendation: choose T = 2

Reason: fast computations in O �

N(logN)2
�

time, Lyon (2012)
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Conclusions and open problems

Despite severely ill-conditioned matrices, one can compute
numerically stable, rapidly convergent Fourier extensions of
arbitrary functions, even when only equispaced data is prescribed.

Challenges

I Higher dimensions: simplicial domains (triangles,
tetrahedra,...)

I Higher dimensions: arbitrary domains

I Explaining the apparent � and T independence

I Other data (nonuniform, Fourier, etc)
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