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Abstract
Suppose that the first m Fourier coefficients of a piecewise analytic function are given. Direct expan-

sion in a Fourier series suffers from the Gibbs phenomenon and lacks uniform convergence. Nonetheless,
in this paper we show that, under very broad conditions, it is always possible to recover an n-term ex-
pansion in a different system of functions using only these coefficients. Such an expansion can be made
arbitrarily close to the best possible n-term expansion in the given system. Thus, if a piecewise polynomial
basis is employed, for example, exponential convergence can be restored. The resulting method is linear,
numerically stable and can be implemented efficiently in only O (nm) operations.

A key issue is how the parameter m must scale in comparison to n to ensure such recovery. We derive
analytical estimates for this scaling for large classes of polynomial and piecewise polynomial bases. In
particular, we show that in many important cases, including the case of piecewise Chebyshev polynomials,
this scaling is quadratic: m = O

(
n2

)
. Therefore, with a system of polynomials that the user is essen-

tially free to choose, one can restore exponential accuracy in n and root-exponential accuracy in m. This
generalizes a result proved recently for piecewise Legendre polynomials.

1 Introduction
The Fourier expansion of an analytic and periodic function f converges exponentially fast in the truncation
parameter m. For this reason—as well as the fact that the expansion can be computed rapidly via the Fast
Fourier Transform (FFT)—such approximations are extremely widely used in all areas of computational
mathematics, with one important instance being the spectral solution of partial differential equations (PDEs)
[17, 21]. However, rapid convergence is lost when the function is no longer analytic. Indeed, when f
is only piecewise analytic, one encounters the familiar Gibbs phenomenon. This not only destroys local
accuracy—characteristic O (1) oscillations are witnessed near each discontinuity—it also inhibits a good
global approximation. The truncated expansion converges only very slowly in the L2 norm, and not at
all when the error is measured in the uniform norm. Notably, this issue arises when computing spectral
approximations to PDEs that develop shocks—hyperbolic conservation laws, for example [31, 40].

This naturally leads to the following question: given the first m Fourier coefficients of a piecewise
analytic function f , is it possible to compute a better approximation? The problem is not new, and there
have been many different approaches developed for its solution (see, for example, [2, 12, 13, 14, 19, 20, 23,
24, 25, 26, 49] and references therein). Of this large collection, perhaps the most successful and commonly
used is the method of spectral reprojection [30, 32, 33, 34]. Introduced by D. Gottlieb et al. [34], in this
approach the m Fourier coefficients of f are used to approximate the first n = O (m) coefficients in a new
basis of piecewise polynomials (the reconstruction basis). Provided this basis is chosen appropriately, one
recovers exponential accuracy in m. To date, spectral reprojection has been successfully used in a range of
applications, including image reconstruction [10, 11], and the postprocessing of spectral discretizations of
hyperbolic PDEs [28, 31, 40].

Whilst spectral reprojection has been rather successful, there are unfortunately a number of drawbacks.
Spectral reprojection achieves rapid convergence by employing a particular choice of reconstruction basis,
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and herein lies a problem. Only very few bases (known as Gibbs complementary bases [30, 33]) have this
property, with the two most commonly used being those consisting of ultraspherical (Gegenbauer) and Freud
polynomials. In both cases, however, the parameter α defining the polynomials must scale linearly with n.
This is not only computationally inconvenient—changing n requires recomputation of the whole reprojection
basis—in addition a rather careful selection of parameters must be made to ensure such convergence and to
avoid a Runge-type phenomenon [18].

For these reasons, spectral reprojection affords little flexibility to the user. At the very least, Gegenbauer
and Freud polynomials are no where near as easy to use and manipulate as Chebyshev polynomials, for
example, with the latter being amenable to the FFT. Another issue, as shown empirically in [6], is that even
if exponential convergence occurs, the rate of such convergence in the Gibbs complementary basis may be
quite slow in practice, meaning that many Fourier coefficients may be required to achieve high accuracy.

With this in mind, the purpose of this paper is to consider a different approach based on an alternative
idea. Unlike spectral reprojection, where the reconstruction basis must be suitably chosen to ensure rapid
convergence, the method we develop in this paper allows the user to employ an arbitrary basis. In other
words, we address the following problem:

Problem 1.1. Let the first m Fourier coefficients of a piecewise analytic function f be given, where m is
sufficiently large. If Qnf denotes the n-term expansion Qnf in an arbitrary basis of piecewise polynomials
orthogonal with respect to the inner product 〈·, ·〉, recover an approximation fn,m to Qnf from the given
data that satisfies ‖f − fn,m‖ � ‖f −Qnf‖ as n,m→∞.

Here and elsewhere we use the notation an � bn for nonnegative sequences {an}∞n=1 and {bn}∞n=1 to
mean that there exist constants c1, c2 > 0 such that c1an ≤ bn ≤ c2an for all sufficiently large n. In
particular, the property ‖f − fn,m‖ � ‖f − Qnf‖ stipulates that approximation fn,m is quasi-optimal to
f from the set Pn: as n → ∞, fn,m converges to f at precisely the same rate as the best approximation
Qnf . Since f is piecewise analytic, its polynomial expansionQnf converges exponentially fast in n. Hence
quasi-optimality implies the same convergence for fn,m as n→∞.

As we show in this paper, Problem 1.1 can be solved under very general conditions by letting m vary
with n in a suitable way. As a result, the restriction of having to use a Gibbs complementary basis can be
avoided, and this allows more convenient polynomials bases to be used in reconstruction (such as the afore-
mentioned Chebyshev basis). Note that the case of (piecewise) Legendre polynomial bases was developed
in [6]. Therein several examples demonstrating the improved performance of the method over spectral re-
projection were also given. The main contribution of this paper is to generalize this work to arbitrary bases
of piecewise polynomials.

1.1 Reconstructions in Hilbert spaces
Our solution to Problem 1.1 is based on recasting it in terms of sampling and reconstruction in abstract Hilbert
spaces. To this end, let HS and HR be subspaces of a vector space V that form Hilbert spaces with respect
to the bilinear forms 〈·, ·〉S and 〈·, ·〉R respectively. Suppose that {ψj}∞j=1, {φj}∞j=1 are orthonormal bases
for (HS , 〈·, ·〉S) and (HR, 〈·, ·〉R) respectively (the sampling and reconstruction bases), and let U ⊆ HR be
a subspace (U will consist of those functions f we wish to reconstruct). For f ∈ U, let

f̂j = 〈f, ψj〉S , j = 1, 2, . . . ,

be the samples of f . The method we develop in this paper is designed to solve the following problem:

Problem 1.2. Given the first m samples f̂1, . . . , f̂m of f ∈ U, recover an approximation fn,m to Qnf
satisfying ‖f − fn,m‖R � ‖f − Qnf‖R, where Qn : (HR, 〈·, ·〉R) → Tn := span{φ1, . . . , φn} is the
orthogonal projection.

Under certain assumptions, it transpires that this problem can be solved with a numerically stable, linear
method. The key is that m must scale appropriately to n. The required scaling can be derived numerically,
and, in the cases we consider in this paper, analytically.

It is straightforward to see that this abstract framework can be applied to the particular case of Problem
1.1. For example, consider the simple scenario where f is analytic, but nonperiodic (equivalently, f : T→ R
has a jump at x = −1, where T = [−1, 1) is the unit torus). Given the first m Fourier coefficients of f , we
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would like to reconstruct using the orthonormal basis of Chebyshev polynomials φj(x) = cjTj(x) of the
first kind (for example), where

Tj(x) = cos(j arccosx), j = 0, 1, 2, . . . ,

and c0 = 1/
√
π, cj =

√
2/π, j 6= 1. Since the polynomials Tj are orthogonal with respect to the weight

function w(x) = (1 − x2)−
1
2 , we thus let HS = L2(−1, 1) and HR = L2

w(−1, 1) be the spaces of square-
integrable functions and weighted square-integrable functions with respect to the weight function w respec-
tively, and define ψj(x) = 1√

2
exp(ijπx) to be the standard Fourier basis on HS .

As is no doubt apparent to the reader, Problem 1.2 is actually far more general than Problem 1.1. Unsur-
prisingly, the abstract framework introduced to solve Problem 1.2 can be applied far more widely than the
problem of reconstructing in polynomial bases from Fourier data. We shall briefly discuss other applications
of this framework at the end of this paper.

1.2 Orthogonal polynomial systems
Before we state our main results, it is useful to introduce some notation. In this paper we shall be principally
concerned with Jacobi polynomials, with the corresponding weight function

wα,β(x) = (1− x)α(1 + x)β , α, β > −1.

We write L2
α,β(−1, 1) for the space of weighted square-integrable functions with respect to wα,β , and ‖·‖α,β

for the corresponding norm. Our main examples herein will be ultraspherical (or Gegenbauer) polynomials
(α = β = γ), and in particular, Legendre polynomials (γ = 0) and Chebyshev polynomials of the first
(γ = − 1

2 ) and second (γ = 1
2 ) kinds. Whenever α = β = γ we shall use the slightly more succinct notation

L2
γ(−1, 1), ‖·‖γ and wγ .

Without a doubt, Chebyshev and Legendre polynomials are the most commonly used in applications—
in particular, spectral methods for PDEs [17, 21]. Chebyshev polynomials are chosen for reconstruction
because of their aforementioned computational flexibility, whereas Legendre polynomials are desirable be-
cause of the simplicity of the Legendre weight function w(x) ≡ 1. However, it is of both theoretical and
practical interest to maintain the generality of Jacobi polynomials. Indeed, whilst Legendre and Chebyshev
polynomials are most frequently used in practice, there are a number of applications which employ more
general ultraspherical and Jacobi polynomial systems [17, 21, 35, 36].

If f is piecewise analytic with jumps at −1 < x1 < . . . < xl < 1 we shall seek to reconstruct it in a
basis of piecewise polynomials. Thus, if α = {α0, . . . , αl} and β = {β0, . . . , βl} where αr, βr > −1 for
r = 0, . . . , l, we define the piecewise Jacobi weight function wα,β(x) by

wα,β(x) = (xr+1 − x)αr (x− xr)βr , x ∈ Ir := (xr, xr+1), r = 0, . . . , l.

Here x0 = −1 and xl+1 = 1. The corresponding orthonormal system of piecewise polynomials can be
obtained by appropriately scaling from the standard interval [−1, 1] to each subinterval of smoothness Ir
(see §3.1). When considering a finite expansion in such functions, we shall write n = (n0, . . . , nl) ∈ Nl+1

for the vector of polynomial degrees in each subinterval Ir, and define

Tn = {φ : φ|Ir ∈ Pnr , r = 0, . . . , l} . (1.1)

The operator Qn : L2
α,β(−1, 1) → Tn will be the orthogonal projection with respect to the weight function

wα,β . As in the no-jump (analytic and nonperiodic) setting, the main examples we consider in this paper
involve reconstructions in piecewise Chebyshev or Legendre polynomials, i.e. α = β = γ, where γ =
{− 1

2 , . . . ,−
1
2} (first kind), γ = { 1

2 , . . . ,
1
2} (second kind) or γ = {0, . . . , 0} respectively.

Remark 1.3 Many of the results we prove in this paper extend quite trivially to the modified Jacobi weight

wα,β(x) = g(x)(1− x)α(1 + x)β , α, β > −1, (1.2)

where g(x) is analytic and positive on [−1, 1]. Likewise, one may define the piecewise modified Jacobi
weight

wα,β(x) = gr(x)(xr+1 − x)αr (x− xr)βr , x ∈ Ir := (xr, xr+1), (1.3)

where gr is analytic and positive in Ir. Although wα,β , as given by (1.3), is only unique (for given α and
β) up to multiplication by a collection g0, . . . , gl of positive, analytic functions, we shall continue to write
L2
α,β(−1, 1) for the corresponding space of square-integrable functions with respect to (1.3), and shall not

make the dependence on the functions g0, . . . , gl explicit.
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1.3 Key results
We devote the first part of this paper to the solution of Problem 1.2 and the properties of the resulting
framework, including quasi-optimality and numerical stability. In the second half, we consider its application
to Problem 1.1. In this regard, the key result we prove is as follows:

Theorem 1.4. Let α = {α0, . . . , αl} and β = {β0, . . . , βl}, where αr, βr > −1, r = 0, . . . , l, be param-
eters corresponding to the piecewise (modified) Jacobi weight wα,β , and suppose that Qn is the orthogonal
projection onto Tn with respect to wα,β , as given by (1.1). Define

α̃r =

{
αr −1 < αr < 1
1− εr αr ≥ 1

, β̃r =

{
βr −1 < βr < 1
1− ε′r βr ≥ 1

,

where 0 < εr, ε
′
r < 2 are arbitrary, and let U := L2

α̃,β̃
(−1, 1). Suppose that the first m Fourier coefficients

of f ∈ U are given. Then there exists a c > 0 independent ofm, n = (n0, . . . , nl) and f such that, whenever
m ≥ cn̄r, where n̄ = max{n0, . . . , nl} and

r = max

{
2, p+ 1, 2 + 2

p− q
q + 1

}
,

p = max{α0, . . . , αl, β0, . . . , βl}, q = min{α0, . . . , αl, β0, . . . , βl},

one may compute, in a completely numerically stable manner, a reconstruction fn,m ∈ Tn satisfying

‖f −Qnf‖α,β ≤ ‖f − fn,m‖α,β ≤ c′‖f −Qnf‖α̃,β̃ , (1.4)

for some c′ > 0 depending only on c. Moreover, excluding a preprocessing step of at most O
(
m2
)

cost, the
number of operations required to compute fn,m is at worst O (nm). If wα,β is a piecewise ultraspherical
weight, then such preprocessing involves only O (nm) operations.

This theorem guarantees solution of Problem 1.1 for a very large class of functions. In fact, if −1 <
αr, βr < 1, r = 0, . . . , l, then we can recover any f ∈ U ≡ HR, where HR = L2

α,β(−1, 1). In the general
case, note that U, although not equal to HR, is still a very large space. Therefore it is certainly sufficient
for practical purposes. Recall that the principal concern of this paper is piecewise analytic functions. Such
functions certainly belong to U, as in fact do any functions which are only piecewise continuous. Of course,
higher regularity of f ensures fast convergence of Qnf , and therefore fn,m. However, this theorem demon-
strates that (almost) quasi-optimal, stable recovery is always possible regardless of the smoothness of the
function being reconstructed.

It is also vitally important in practice to understand the constant c of Theorem 1.4. Fortunately, c can
always be computed numerically (see §2.3). Also, empirical evidence suggests that a small value of c is
usually suitable. In the numerical experiments in this paper we use c = 1

4 , which gives perfectly acceptable
results (see §4). One could also use a smaller value, with the only difference being a slightly larger, but still
O (1), condition number and constant c′ in (1.4).

The proof of Theorem 1.4 relies on careful analysis of the behaviour of Fourier series in certain weighted
spaces. Here a connection is made with the Helson–Szegö Theorem on positive measures [27]. Another
feature of our analysis is that, in many cases, the best constants corresponding to the quasi-optimality ‖f −
fn,m‖R � ‖f −Qnf‖R are known, and can be explicitly computed. Specifically, one has the sharp bound

‖f − fn,m‖R ≤
1

Cn,m
‖f −Qnf‖R,

where the constant Cn,m is bounded (provided m ≥ cn̄r) and has a geometrical interpretation in terms of
the angle between two particular finite-dimensional subspaces.

We note also the great flexibility guaranteed by Theorem 1.4. In many important cases, specifically
whenever p = q ≤ 1, m = O

(
n2
)

samples of a piecewise analytic function allow one to recover close to
the best n-term approximation in a given piecewise polynomial system. This includes (piecewise) Legendre
(p = q = 0) and Chebyshev polynomials (p = q = ± 1

2 ), both of which are commonly used in applications.
In particular,
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Corollary 1.5. Given the first m Fourier coefficients of a piecewise analytic function f , one can compute,
in at worst O(m

3
2 ) operations, a root-exponentially convergent piecewise polynomial approximation of f

consisting of arbitrary piecwise ultraspherical polynomials with parameter −1 < γ < 1.

In summary, the method we present in this paper improves on the more conventional approach of spectral
reprojection by allowing reconstructions in arbitrary polynomial bases. Having said this, spectral reprojec-
tion is formally exponentially convergent, whereas this approach obtains only root-exponential convergence.
As we shall discuss in §4.2, however, this rate of exponential convergence may be quite slow in practice,
meaning that the approach of this paper, whilst formally less rapidly convergent, actually gives a better
numerical approximation in many cases.

Finally, let us make the following remark. For the majority of this paper we shall assume that the
discontinuity locations x1, . . . , xl are known exactly. In practice, however, they will usually be unknown,
and hence must be computed in advance from the given Fourier data. There are a number of well-developed
techniques for doing this (commonly referred to as edge detection), such as the method of concentration
factors [29, 49]. However, this process always incurs an error, resulting in inexact locations x̃1, . . . , x̃l.
Although this error might be small, it is nonetheless essential that reconstruction methods be robust in its
presence. In the final section of the paper, §5, we establish robustness of our approach in precisely this sense.

1.4 Relation to previous work
The special case HS = HR = H, 〈·, ·〉R = 〈·, ·〉S = 〈·, ·〉 was first considered in [5, 6]. Therein an
abstract framework, known as generalized sampling (GS), was developed to solve Problem 1.2 in this more
simple setting. The framework introduced in this paper, which addresses the significantly more general case
HS 6= HR, 〈·, ·〉S 6= 〈·, ·〉R, is a direct extension of this work, and, for this reason, we shall continue to refer
to the resulting framework as generalized sampling.

The original GS framework of [5, 6] can be applied successfully to Problem 1.1 whenever Qnf is the
Legendre polynomial expansion of f (this corresponds to HR = HS = L2(−1, 1)), leading to a stable
numerical method. This particular instance of GS was also is described [41]. Unfortunately this framework
is not as flexible as one may hope. Although one can also reconstruct using arbitrary bases of polynomials,
the resulting method is only numerically stable when Legendre polynomials are employed. Moreover, in the
ultraspherical case, for example, this method also incurs an increased cost (over the value of O(m

3
2 ) for the

Legendre case) proportional to O(m
3+|γ|

2 ), where γ is the corresponding polynomial parameter.
Besides spectral reprojection, reconstructions in orthogonal polynomials from Fourier coefficients were

considered in the so-called inverse polynomial reconstruction method (IPRM) [43, 44]. This approach cor-
responds to setting m = n in the GS framework we develop in this paper. Unfortunately, such an approach
is exponentially ill-conditioned and suffers from the Runge phenomenon [9]. On the other hand, by allowing
m to be larger than n, specifically m = O

(
n2
)
, on is able to restore stability and quasi-optimality. Note

that such a regularization was first pursued in the context of the IPRM by Hrycak & Gröchenig [41] in the
case of Legendre polynomial reconstructions. The extended GS framework we develop in this paper, which
exploits the orthogonality of both the sampling and reconstruction bases, allows for stable reconstructions
using significantly more general families of polynomials.

Whilst setting m = n leads to unstable reconstructions, the reader may be wondering at this stage
whether the scaling m = O

(
n2
)

in Corollary 1.5, which corresponds to only root-exponential convergence
in m, is optimal or not. In [9] it was proved that any stable method for recovering a function from its first m
Fourier coefficients can converge at best root-exponentially fast in m. In particular, the scaling m = O

(
n2
)

in generalized sampling is optimal, and any attempt to lower it will necessarily give rise to ill-conditioning.
It was also shown in [9] that the scaling m = O (nτ ), 1 ≤ τ < 2, implies ill-conditioning of order cm

2−τ
for

some c > 1. Hence, although this choice allows for formally faster convergence (specifically, exponential
with index 1/τ ) it will also render the reconstruction increasingly susceptible to noise. We refer to [9] for a
more detailed discussion of this issue.

2 An extended generalized sampling framework
Let HS and HR be subspaces of a vector space V that form Hilbert spaces in their own right with respect to
the bilinear forms 〈·, ·〉S and 〈·, ·〉R respectively. Let U ⊆ HR be a subspace (not necessarily closed) and
assume that f ∈ U and that {φj}∞j=1 ⊆ U, where {φj} is some orthonormal basis for (HR, 〈·, ·〉R). The
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subspace U consists of those functions f that we wish to recover and the subspace Tn := span{φ1, . . . , φn}
is the space in which we seek to reconstruct. If {ψj}∞j=1 ⊆ U is an orthonormal basis of (HS , 〈·, ·〉S), we
assume that we have access to the first m samples of f

f̂j = 〈f, ψj〉S , j = 1, . . . ,m, (2.1)

with respect to this basis (we shall assume that U is such that these values exist and are finite). In practice, the
basis {φj}∞j=1 is chosen with some a priori knowledge about f . For the applications considered in this paper,
where f is a piecewise analytic function on [−1, 1], {φj}∞j=1 will consist of orthonormal piecewise polyno-
mials with respect to some weight function and ψj will correspond to the complex exponential 1√

2
eijπx (in

this case we shall enumerate the ψj over Z as opposed to N).

Remark 2.1 The assumption of orthonormality in the sampling and reconstruction vectors {ψj}∞j=1, {φj}∞j=1

is not necessary. It is reasonably straightforward to relax this condition to that of a Riesz basis or frame [6].
However, since all sampling and reconstruction vectors of interest in this paper will be orthonormal, we shall
accept this slight loss of generality.

We seek to solve Problem 1.2: namely, compute an approximation fn,m ∈ Tn from the samples (2.1)
that is close to Qnf , where Qn : (HR, 〈·, ·〉R)→ Tn is the orthogonal projection. Note that Qnf is defined
by the equations

〈Qnf, φj〉R = 〈f, φj〉R, j = 1, . . . , n, Qnf ∈ Tn. (2.2)

Had we had access to the values 〈f, φj〉R, i.e. the coefficients of f in a particular polynomial basis, for
example, we could have computed Qnf immediately. However, in general we do not have this information.
Rather, all we know is the values {f̂j}mj=1. Since the sampling basis {ψj}j∈N is considered fixed in the setup
of this paper, and cannot be altered, we are consequently unable to form Qnf from the given data.

Nonetheless, let us write Pm : HS → Sm := span{ψ1, . . . , ψm} for orthogonal projection onto Sm ⊆ U
with respect to 〈·, ·〉S , i.e.

Pmg =

m∑
j=1

〈g, ψj〉Sψj , g ∈ HS .

We now define fn,m ∈ Tn as the solution to

〈Pmfn,m,Pmφj〉R = 〈Pmf,Pmφj〉R, j = 1, . . . , n, fn,m ∈ Tn, (2.3)

or equivalently (by linearity),

〈Pmfn,m,Pmφ〉R = 〈Pmf,Pmφ〉R, ∀φ ∈ Tn, fn,m ∈ Tn. (2.4)

Suppose for a moment that (HS , 〈·, ·〉S) and (HR, 〈·, ·〉R) coincide. This is precisely the setting of the original
GS framework of [6]. It is now quite simple to give an intuitive explanation as to how fn,m solves Problem
1.2. Indeed, since {ψj}∞j=1 is an orthonormal basis for (HS , 〈·, ·〉S), we have that Pm → I in the strong
operator topology on (HS , 〈·, ·〉S), where I : HS → HS is the identity operator. Thus, for fixed n ∈ N,
if m → ∞ the equations (2.3) resemble those equations (2.2) defining Qnf . Therefore, for sufficiently
large m, we expect fn,m to inherit the key features of Qnf . In particular, fn,m should exist uniquely, and
critically, possess the same approximation properties.

In the general case (HS , 〈·, ·〉S) 6= (HR, 〈·, ·〉R), we need the additional assumption that Pm → I
strongly on (U, 〈·, ·〉R):

‖g − Pmg‖R → 0, m→∞, ∀g ∈ U. (A1)

Note that this assumption is not guaranteed in general, and must be verified for each particular problem.
However, as we shall see in §3, it does hold in all cases of interest in this paper. We will also require one
further assumption: namely, a uniform boundedness condition for {Pm}m∈N in terms of some norm ||| · |||
defined on U:

‖Pmg‖R ≤ c|||g|||, ∀g ∈ U, m ∈ N, (A2)

where c > 0 is independent of m and g.
In some circumstances, but not all, it transpires that the following stronger version of (A2) holds:

U = HR, Pm :
(
HR, 〈·, ·〉R

)
→
(
HR, 〈·, ·〉R

)
bounded. (A2′)

To see that this is stronger than (A2), we note:
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Lemma 2.2. Suppose that (A1) and (A2′) hold. Then the family {Pm}m∈N is uniformly bounded. In other
words, (A2) holds with ||| · ||| = ‖·‖R.

Proof. (A1) and (A2′) imply that supm∈N ‖Pmg‖R < ∞ for any g ∈ U = HR. The uniform boundedness
principle now gives the result.

Whenever (A2′) holds instead of (A2) we may give a more precise analysis of the approximation fn,m
(see §2.2). In §3 we detail the situations in which (A2′) holds as opposed to (A2) for the Fourier reconstruc-
tion problem.

2.1 Recovery from Fourier coefficients
Before analysing this framework, let us first discuss the main example of this paper. Suppose that f :
[−1, 1] → R is piecewise analytic with jumps at −1 < x1 < . . . < xl < 1. Let ψj(x) = 1√

2
exp(ijπx),

j ∈ Z, and assume that the coefficients

f̂j =

∫ 1

−1

f(x)ψj(x) dx, j = −
⌊m

2

⌋
, . . . ,

⌊m
2

⌋
, (2.5)

are given. In particular, Pmf is the truncated Fourier series of f (we henceforth refer to Pm as the Fourier
projection operator in this case). We wish to recover f in a basis of orthonormal piecewise polynomials
corresponding to the piecewise (modified) Jacobi weight wα,β given by (1.3), where α = {α0, . . . , αl} and
β = {β0, . . . , βl}. To this end, let x0 = −1, xl+1 = 1 and write

Tn = {φ : φ|Ir ∈ Pnr : r = 0, . . . , l} , n = (n0, . . . , nl), (2.6)

where Ir = (xr, xr+1). We now compute fn,m ∈ Tn using (2.4). Thus, we let V = L1(−1, 1) (the space of
absolutely integrable functions), HR = L2

α,β(−1, 1), ‖·‖R = ‖·‖α,β , and set HS = L2(−1, 1), ‖·‖S = ‖·‖.
There are now three key questions:

(i) How do we choose the subspace U and the norm ||| · ||| so that (A1) and (A2) hold?
(ii) Does such a choice of U include all functions of interest? Specifically, U should at the very least

contain all piecewise analytic functions.
(iii) In what circumstances does (A2′) hold instead of (A2)?

In §3 we provide answers to these questions.

2.2 Analysis of the extended framework
We now present two analyses of the generalized sampling framework introduced above. The first, for which
the corresponding error estimates (i.e. bounds for ‖f − fn,m‖R) are not necessarily sharp, is valid whenever
(A1) and (A2) hold. The second, which assumes the stronger condition (A2′), leads to sharp bounds.

2.2.1 Version I

The definition (2.4) of fn,m motivates the introduction of the quantity

En,m = sup {‖φ− Pmφ‖R : φ ∈ Tn, ‖φ‖R = 1} . (2.7)

This quantity measures how close the restriction Pm|Tn is to the identity operator I|Tn . Since (A1) and
(A2) hold and Tn is finite-dimensional, the following lemma comes as no surprise:

Lemma 2.3. Suppose that (A1) and (A2) hold and let En,m be defined by (2.7). Then En,m ≤ 1 + cdn for
all m,n ∈ N, where c is as in (A2) and

dn = sup {|||φ||| : φ ∈ Tn, ‖φ‖R = 1} . (2.8)

Moreover, En,m → 0 as m→∞ for fixed n.

Proof. Note that En,m ≤ 1 + sup {‖Pmφ‖R : φ ∈ Tn, ‖φ‖R = 1}. (A2) now gives the first result. For the
second, observe that the set Bn := {φ ∈ Tn : ‖φ‖R = 1} is compact. Since Pm → I strongly on U ⊇ Bn,
this convergence is uniform on Bn.
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With this to hand, we are now able to prove the main result of this section:

Theorem 2.4. Suppose that (A1) and (A2) hold. Then for each n ∈ N there exists an m0 such that for
m ≥ m0 the approximation fn,m defined by (2.4) exists and is unique and satisfies the estimates

‖fn,m‖R ≤
c

1− En,m
|||f |||, (2.9)

and

‖f −fn,m‖R ≤ ‖f −Qnf‖R+
cEn,m

(1− En,m)2
|||f −Qnf |||+

1

(1− En,m)2
‖(I −Pm)(f −Qnf)‖R, (2.10)

where Qn : HR → Tn is the orthogonal projection with respect to 〈·, ·〉R, En,m is as in (2.7) and c is the
constant of (A2). Specifically, m0 is the least m such that En,m < 1.

Note that (2.9) is a continuous stabilty estimate for fn,m. In particular, this implies that the coefficients
of fn,m cannot grow large.

Proof. Let U : Tn → Cn be the linear operator g 7→ {〈Pmg,Pmφj〉R}nj=1. It suffices to show that U
is invertible; in other words, ker(U) = {0}. Suppose that g ∈ Tn with Ug = 0. Then, by linearity,
〈Pmg,Pmφ〉R = 0, ∀φ ∈ Tn. In particular, 0 = ‖Pmg‖R ≥ (1 − En,m)‖g‖R. Thus, if m ≥ m0, where
m0 is the least m such that En,m < 1, then we must have that g = 0. Hence, U is nonsingular, and fn,m
exists uniquely.

Now consider (2.9). Setting φ = fn,m in (2.4) gives

‖Pmfn,m‖2R = 〈Pmf,Pmfn,m〉R ≤ ‖Pmf‖R‖Pmfn,m‖R.

The inequality (2.9) now follows from (A2) and the fact that ‖Pmfn,m‖R ≥ (1− En,m)‖fn,m‖R.
For (2.10) we first write e = fn,m −Qnf ∈ Tn and notice that

‖Pme‖2R = 〈Pm(f −Qnf),Pme〉R.

Since e ∈ Tn and f −Qnf ⊥ Tn is the orthogonal projection, the right hand side may be written as

〈Pm(f −Qnf),Pme〉R = −〈(I − Pm)(f −Qnf), e〉R − 〈Pm(f −Qnf), (I − Pm)e〉R.

This gives

(1− En,m)2‖e‖2R ≤ ‖Pme‖2R ≤ ‖(I − Pm)(f −Qnf)‖R‖e‖R + ‖Pm(f −Qnf)‖R‖(I − Pm)e‖R.

Hence, by (A2) and the definition of En,m, we obtain

(1− En,m)2‖e‖R ≤ ‖(I − Pm)(f −Qnf)‖R + cEn,m|||f −Qnf |||. (2.11)

The full result follows from the inequality ‖f − fn,m‖R ≤ ‖e‖R + ‖f −Qnf‖R.

This theorem confirms solution of Problem 1.2 using (2.4) whenever (A1) and (A2) hold, and provided
m is sufficiently large in comparison to n. The question of how large will be discussed and quantified in
§2.3. Observe that

‖g − Pmg‖R ≤ ‖g‖R + c|||g|||, ∀g ∈ U, ∀m ∈ N,

hence the term ‖(I −Pm)(f −Qnf)‖R in right-hand side of (2.10) can be easily bounded independently of
m to give the more convenient bound

‖f − fn,m‖R ≤

[
1 +

1

(1− En,m)2

]
‖f −Qnf‖R +

c(1 + En,m)

(1− En,m)2
|||f −Qnf |||. (2.12)

However, this bound obscures one interesting facet of fn,m: namely, its asymptotic optimality. That is, by
increasing the number of samples m, fn,m can be made arbitrarily close to the best approximation Qnf .
Indeed,

Corollary 2.5. Under the assumptions of Theorem 2.4, fn,m → Qnf as m→∞ for fixed n ∈ N.
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Proof. Since En,m → 0 as m→∞ (Lemma 2.3), we have by (2.11),

‖fn,m −Qnf‖R ≤
cEn,m

(1− En,m)2
|||f −Qnf |||+

1

(1− En,m)2
‖(I − Pm)(f −Qnf)‖R → 0,

as m→∞. Thus, fn,m → Qnf as required.

The analysis of this section demonstrates (almost) quasi- and asymptotic optimality of fn,m. However,
it is clearly less than ideal to have an error estimate of the form (2.10) involving |||f − Qnf |||. In general,
there is no guarantee that this term decays as n→∞ (although this is always true in the applications of this
paper). Thus, one may ask: can a better analysis give an error bound involving only ‖f − Qnf‖R (which
must tend to zero, since Qn : HR → Tn is the orthogonal projection)? As it transpires, whenever (A2′)
holds instead of (A2), this is indeed the case. This is described in the next section. The resulting analysis
also provides bounds for ‖fn,m‖R and ‖f − fn,m‖R which, unlike those given in Theorem 2.4, are sharp.

2.2.2 Version II

Suppose now that (A2′) holds instead of (A2). To derive an improved analysis, we shall proceed in a similar
manner to the analysis of the original GS framework given in [8]. First, let us introduce some basic concepts
from the geometry of Hilbert spaces (see [47, 48, 51] for further details):

Definition 2.6. Let U and V be closed subspaces of a Hilbert space H and QV : H → V the orthogonal
projection onto V. The subspace angle θ = θUV ∈ [0, π2 ] between U and V is given by

cos(θUV) = inf {‖QV u‖ : u ∈ U, ‖u‖ = 1} .

We are interested in conditions on U and V which imply that cos(θUV) is nonzero. The following lemma
(see [51, Thm. 2.1]) gives a full characterization:

Lemma 2.7. Let U and V be closed subspaces of a Hilbert space H. Then cos (θUV⊥) > 0 if and only if
U ∩V = {0} and U + V is closed H.

Subspaces U and V for which cos(θUV⊥) > 0 give rise to a decomposition U ⊕ V = H0 of a closed
subspace H0 of H. This ensures the existence of a projection of H0 with range U and kernel V. We refer
to such a projection as an oblique projection and denote it by WUV. Note that WUV will not, in general,
be defined over the whole of H, but rather the subspace H0. However, this is true whenever V = U⊥, for
example, and in this case the projectionWUV coincides with the orthogonal projection QU. Moreover,

Lemma 2.8 ([8]). Suppose that U and V are closed subspaces of H satisfying cos(θUV⊥) > 0. Suppose also
that dim(U) = dim(V⊥) = n <∞. Then U⊕V = H.

We shall also require the following result:

Theorem 2.9 ([8]). Suppose that U and V are closed subspaces of H satisfying cos(θUV⊥) > 0, and let
WUV : H0 → U be the oblique projection with range U and kernel V, where H0 = U⊕V. Then

‖WUVf‖ ≤ sec (θUV⊥) ‖f‖, ∀f ∈ H0, (2.13)

and
‖f −QUf‖ ≤ ‖f −WUVf‖ ≤ sec (θUV⊥) ‖f −QUf‖, ∀f ∈ H0, (2.14)

whereQU : H→ U is the orthogonal projection. Moreover, the upper bounds in (2.13) and (2.14) are sharp.

We now return to the problem at hand. Note that since (A2′) holds, the operator Pm is bounded on HR.
Hence it has a bounded adjoint P∗m :

(
HR, 〈·, ·〉

)
→
(
HR, 〈·, ·〉

)
. WriteWm := P∗m ◦ Pm. We now require

the following lemma:

Lemma 2.10. Assume that (A1) and (A2′) hold. Then the operatorsWm converge strongly to the identity I
on
(
HR, 〈·, ·〉R

)
.
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Proof. For g ∈ HR, we have

‖g −Wmg‖2 = 〈g − P∗mPmg, g − P∗mPmg〉
≤ |〈P∗m(g − Pmg), g − P∗mPmg〉|+ |〈g − P∗mg, g − P∗mPmg〉|.

Since {Pm}m∈N is uniformly bounded, so is {P∗m}m∈N. Moreover, the adjoint operation is strongly contin-
uous on bounded sets. Hence P∗m → I strongly on HR and we obtain, for some c > 0 independent of g and
m,

‖g −Wmg‖2 ≤ c (‖g − Pmg‖+ ‖g − P∗mg‖) ‖g‖ → 0, m→∞,
as required.

We are now ready to analyze fn,m. First, note that we may rewrite (2.4) as

〈fn,m,Wmφ〉R = 〈f,Wmφ〉R, ∀φ ∈ Tn.

In other words, the mapping f 7→ fn,m (whenever defined) is precisely the oblique projection with range Tn
and kernel [Wm(Tn)]⊥ (here ⊥ is taken with respect to (HR, 〈·, ·〉R)). Letting

Cn,m = cos
(
θTn,Wm(Tn)

)
, (2.15)

we now deduce the following:

Theorem 2.11. Suppose that (A1) and (A2′) hold. Let n,m ∈ N be such that Cn,m > 0, where Cn,m is
given by (2.15). Then fn,m, as defined by (2.4), exists uniquely for any f ∈ HR and satisfies the sharp
bounds

‖fn,m‖R ≤
1

Cn,m
‖f‖R, (2.16)

and
‖f − fn,m‖R ≤

1

Cn,m
‖f −Qnf‖R. (2.17)

Proof. The result follows immediately from Theorem 2.9, provided H = H0 = Tn ⊕ [Wm(Tn)]⊥. By
Lemma 2.8 it suffices to show that dim(Wm(Tn)) = dim(Tn) = n. By definition dim(Wm(Tn)) ≤ n.
Suppose that dim(Wm(Tn)) < n. Then there exists a nonzero φ ∈ Tn such thatWmφ = 0. SinceWm is
self-adjoint, it follows that φ ∈ Tn ∩ [Wm(Tn)]⊥. Hence Cn,m = 0, a contradiction.

Naturally, to use this theorem we need to understand the quantity Cn,m. We have

Lemma 2.12. Suppose that (A1) and (A2′) hold, and let Cn,m be given by (2.15). Then

c−1(1− En,m) ≤ Cn,m ≤ 1, ∀n,m ∈ N, (2.18)

where c = supm∈N ‖Pm‖R and ‖·‖R in this case is the operator norm on the space of bounded linear maps
(HR, 〈·, ·〉R)→ (HR, 〈·, ·〉R). Moreover, Cn,m → 1 as m→∞ for fixed n.

Proof. That Cn,m ≤ 1 follows immediately from the definition (2.15). By the definition of subspace angles

Cn,m = inf
{
‖QWm(Tn)φ‖R : φ ∈ Tn, ‖φ‖R = 1

}
.

Consider the quantity ‖QWm(Tn)φ‖R. By the standard duality pairing,

‖QWm(Tn)φ‖R = sup

{ 〈QWm(Tn)φ,Wmφ
′〉R

‖Wmφ′‖R
: φ′ ∈ Tn, φ

′ 6= 0

}
= sup

{
〈φ,Wmφ

′〉R
‖Wmφ′‖R

: φ′ ∈ Tn, φ
′ 6= 0

}
. (2.19)

Setting φ′ = φ, we obtain

‖QWm(Tn)φ‖R ≥
〈φ,Wmφ〉R
‖Wmφ‖R

=
‖Pmφ‖2R
‖Wmφ‖R

.

SinceWm = P∗m ◦ Pm we have ‖Wmφ‖R ≤ c‖Pmφ‖R, and therefore

‖QWm(Tn)φ‖R ≥ c−1‖Pmφ‖R ≥ c−1 (1− En,m) ‖φ‖,

which gives (2.18). The proof that Cn,m → 1 as m → ∞ is analogous to that of Lemma 2.3, and follows
directly from the fact thatWm → I (Lemma 2.10).
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The importance of (2.18) is that it allows Cn,m to be estimated in terms of En,m; a somewhat easier
task in practice. Thus, estimates obtained later for the asymptotic behaviour of En,m automatically hold for
Cn,m, and thus guarantee the conclusion of Theorem 2.11. We shall exploit this fact in §3. Note also that
Lemma 2.12 implies asymptotic optimality of fn,m. Since

‖fn,m −Qnf‖2 = ‖f − fn,m‖2 − ‖f −Qnf‖2 ≤ Kn,m‖f −Qnf‖2 ≤ Kn,m‖f‖2,

where Kn,m = 1
C2
n,m
− 1, we have fn,m → Qnf as m→∞.

It is instructive to now relate this general framework to the example of §2.1. Suppose that we sample an
analytic, nonperiodic f via its Fourier coefficients (so that Pm is the standard Fourier projection operator)
and wish to reconstruct in Chebyshev polynomials. We thus let V = L1(−1, 1), HS = L2(−1, 1) and
HR = L2

w(−1, 1), where w(x) = (1 − x2)−
1
2 is the Chebyshev weight on [−1, 1]. It transpires that both

(A1) and (A2′) hold in this case (see §3). Therefore Theorem 2.11 and Lemma 2.12 apply to this example.
Note that in this case the operators P∗m andWm are given explicitly by

P∗mg =
1

w
Pm(wg), Wmg =

1

w
Pm (wPmg) , g ∈ L2

w(−1, 1). (2.20)

2.3 Numerical implementation
Let us now consider the computation of fn,m. Writing fn,m =

∑n
j=1 αjφj for unknowns α1, . . . , αn, it is

easily seen that the vector α = (α1, . . . , αn) is defined by

U∗CUα = U∗Cf̂,

where f̂ = {〈f, ψ1〉S , . . . , 〈f, ψm〉S}, and U ∈ Cm×n and C ∈ Cm×m have (j, k)th entries 〈φk, ψj〉S and
〈ψj , ψk〉R respectively. Thus the coefficients of fn,m are defined by an n×n linear system of equations with
self-adjoint matrix A = U∗CU .

The condition number κ(A) of the matrix A is critical from a numerical perspective. It determines both
the stability of the numerical method—its susceptibility to noise and round-off errors, in particular—as well
as the cost of any iterative solver, e.g. conjugate gradients, for computing the vector of unknowns α. In such
case, the number of iterations required to compute α is proportional to

√
κ(A). Thus, if κ(A) = O (1)

for all n and sufficiently large m (which turns out to be the case), then the cost of computing fn,m is
determined solely by the cost of performing matrix-vector multiplications involving A. Since the (typically
dense) matrices U and C are of size m× n and m×m respectively, straightforward implementation of this
method, that is, without any fast transforms, requiresO

(
m2
)

operations. However, as we shall explain in §4,
C always has a Toeplitz structure when one considers Fourier samples. Thus, matrix-vector multiplications
involving C require only O (m logm) operations, giving a total figure of O (mn) for this method.

We now give an estimate for κ(A):

Lemma 2.13. Suppose that (A1) and (A2) hold and let En,m be given by (2.7). Then the condition number
of A = U∗CU satisfies

κ(A) ≤
(

1 + En,m
1− En,m

)2

.

Moreover, if n is fixed then A→ I as m→∞, where I ∈ Cn×n is the identity. In particular, κ(A)→ 1.

Proof. Let α = {α1, . . . , αn} ∈ Cn be a normalized eigenvector of A with corresponding eigenvalue λ. If
φ =

∑n
j=1 αjφj it follows that

〈Pmφ,Pmφj〉R = λαj , j = 1, . . . , n,

and, in particular, ‖Pmφ‖2R = λ. Hence,

λmin(A) = inf
{
‖Pmφ‖2R : φ ∈ Tn, ‖φ‖R = 1

}
, λmax(A) = sup

{
‖Pmφ‖2R : φ ∈ Tn, ‖φ‖R = 1

}
.

Using the definition En,m we deduce that

(1− En,m)2 ≤ λmin(A) ≤ λmax(A) ≤ (1 + En,m)2,

which gives the first result. For the second, we merely note that A → I componentwise as m → ∞ (since
Pm → I strongly on U), and therefore in norm.
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This lemma confirms good conditioning of A whenever m is sufficiently large in comparison to n.

Remark 2.14 The extended GS framework introduced in this section can actually be reinterpreted as a
preconditioning of the original GS framework of [6]. In the original framework, one solves the linear system
U∗Uα = U∗f̂ . However, unless (HR, 〈·, ·〉R) = (HS , 〈·, ·〉S) the matrix U∗U is not well-conditioned,
leading to a higher cost in computing α. The extended framework merely replaces this with the modified
equations U∗CUα = U∗Cf̂ , where C is as above. This judicious choice of C preconditions the original
equations by exploiting the orthogonality of both the sampling and reconstruction vectors, and therefore
leads to the aforementioned improvement.

2.4 Scaling of m with n: the stable sampling rate
Observe that the same quantity En,m which determines the magnitude of the error committed by fn,m also
arises in the estimate for the condition number. Indeed, provided m is chosen so that 1 − En,m is bounded
away from zero, we can ensure both quasi-optimality of fn,m and numerical stability. This motivates the
following definition. Let

Θ(n; θ) = min {m ∈ N : En,m < 1− θ} , θ ∈ (0, 1). (2.21)

For a given n, choosing m ≥ Θ(n; θ) ensures that

‖f − fn,m‖R ≤
(
1 + θ−2

)
‖f −Qnf‖R + c(2− θ)θ−2|||f −Qnf |||, (2.22)

and that
κ(A) ≤

(
2θ−1 − 1

)2
,

whenever (A1) and (A2) hold. In other words, fn,m is quasi-optimal to f from Tn, and its computation is
numerically stable, uniformly in n ∈ N.

The quantity Θ(n; θ), originally introduced in [6] and named the stable sampling rate in [8], measures
how large m (the number of samples) must be for a given n for stable, quasi-optimal reconstruction. Impor-
tantly, Θ(n; θ) is computable. Indeed,

Lemma 2.15. Let En,m be given by (2.7). Then En,m =
√
‖B‖, where B ∈ Cn×n is the Hermitian matrix

with (j, k)th entry 〈φj − Pmφj , φk − Pmφk〉R.

Proof. For φ ∈ Tn, write φ =
∑n
j=1 αjφj . Then

E2
n,m = sup

{∑n
j,k=1 αjαk〈φj − Pmφj , φk − Pmφk〉R∑n

j,k=1 αjαk〈φj , φk〉R
: α ∈ Cn, α 6= 0

}

= sup

{
α∗Bα

α∗α
: α ∈ Cn, α 6= 0

}
.

This is precisely ‖B‖.

Note that the matrix B can be expressed as B = I − V ∗U − U∗V + A, where A = U∗CU and
V ∈ Cm×n has (j, k)th entry 〈φk, ψj〉R. Hence, given U , C and V , one can readily compute En,m and
therefore Θ(n; θ).

In the case where (A2) is replaced by the stronger condition (A2′) it is preferable to replace the bound
(2.22) by the improved estimate

‖f − fn,m‖R ≤
c

θ
‖f −Qnf‖R. (2.23)

Note that this follows from the sharp bound (2.17), the inequality (2.18) for Cn,m, and the definition of θ.
In fact, one could also use (2.17) directly by numerically computing Cn,m (recall that Cn,m is the angle be-
tween two finite-dimensional subspaces, and hence computable). This would give a sharp, and consequently
slightly better, bound than (2.23). However, the computation of Cn,m is more intensive than that of En,m,
and therefore we shall not pursue this further (see [8] for a discussion on this issue in the case of the original
GS framework).

The significance of Θ(n; θ) is that it allows one to control a priori both the stability and accuracy of the
numerical method. Whilst it is convenient that Θ(n; θ) can always be computed numerically, it is also im-
portant to have analytical estimates for each particular application. Naturally, such estimates are completely
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dependent on both the sampling and reconstruction spaces, and thus must be obtained on a case-by-case
basis. We shall devote much of the second half of this paper to the derivation of such estimates for the case
of Fourier sampling and (piecewise) polynomial reconstructions.

3 Recovery from Fourier coefficients
We now consider the specific application of recovering a piecewise analytic function from its Fourier coef-
ficients using a piecewise polynomial basis. As we show, it is possible to reconstruct in a completely stable
manner in an arbitrary basis of piecewise polynomials, orthogonal with respect to the (piecewise) modified
Jacobi weight. Thus, the individual polynomials employed can be specified by the user, making the method
extremely flexible in this sense.

3.1 Preliminaries
Recall the setup of §2.1. Suppose that f : [−1, 1] → R is piecewise analytic with jumps at the known
locations −1 < x1 < . . . < xl < 1. Set x0 = −1 and xl+1 = 1. We shall assume that the first m Fourier
coefficients (2.5) of f are given. Thus, we let HS = L2(−1, 1) with its standard inner product 〈·, ·〉 and norm
‖·‖, and define ψj(x) = 1√

2
exp(ijπx) (recall that in this case we enumerate {ψj} over Z as opposed to N).

We shall reconstruct in the space Tn defined by (2.6), with a basis of this space consisting piecewise
polynomials orthogonal with respect to the piecewise (modified) Jacobi weight (1.3) with parameters α =
{α0, . . . , αl}, β = {β0, . . . , βl}, where αr, βr > −1, r = 0, . . . , l. We let HR = L2

α,β(−1, 1) with
corresponding inner product 〈·, ·〉α,β and norm ‖·‖α,β .

We enumerate the orthonormal basis for Tn as follows. First, let cr = 1
2 (xr+1−xr) and define Λr(x) =

x−xr
cr
− 1, so that Λ(Ir) = [−1, 1], where Ir = [xr, xr+1]. For given αr, βr, let φj be the corresponding

orthonormal modified Jacobi polynomial of degree j on [−1, 1]. Assume that φj ≡ 0 outside [−1, 1] and
define the local (modified) Jacobi polynomial on Ir by φr,j = 1√

cr
φj ◦ Λr. It follows that the set

{φr,j : j = 0, . . . , nr − 1, r = 0, . . . , l} , (3.1)

forms an orthonormal basis for Tn, and hence we may write fn,m as

fn,m =

l∑
r=0

nr−1∑
j=0

αr,jφr,j ,

with unknowns αr,j ∈ C. We now compute fn,m via (2.4).
We first wish to analyze fn,m (implementation will be discussed in §4). This means applying the analysis

of §2, and for this we need to verify (A1) and (A2). Additionally, we also wish to determine when we may
replace (A2) by the stronger condition (A2′), and hence when the sharp bounds of Theorem 2.11 apply.

Verifying these assumptions requires understanding the behaviour of the Fourier projection operators Pm
in the weighted spaces L2

α,β(−1, 1). This is the content of the next section.

3.2 Convergence of Fourier series in weighted norms
Somewhat surprisingly, this question has been considered before. Convergence of Fourier series with respect
to piecewise modified Jacobi weights are simple consequences of this more general theory, which we now
recap. The reader is referred to [39, 42] or more recently [15], for further details.

Suppose that w(x) is a weight function such that 0 < w(x) <∞ almost everywhere in [−1, 1]. We shall
denote the space of weighted square integrable functions by L2

w(−1, 1), with corresponding norm ‖·‖w. We
say that w(x) is a Helson–Szegö weight function if and only if there exists a constant c > 0 such that(

1

|I|

∫
I

w

)(
1

|I|

∫
I

1

w

)
≤ c,

for all subsets I ⊆ [−1, 1] that are either subintervals or complements of subintervals in [−1, 1] (here |I|
denotes the length of I).

There is a fundamental relationship between Helson–Szegö weight functions and Fourier series. This is
summarized in the following theorem:
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Theorem 3.1 (see [42] or [15]). Let Pmf denote the truncated Fourier expansion of a function f on [−1, 1].
Then following three statements are equivalent:

(i) w is a Helson–Szegö weight function.
(ii) There exists a finite constant c > 0 such that, for all f ∈ L2

w(−1, 1), ‖Pmf‖w ≤ c‖f‖w, ∀m ∈ N.
(iii) For every f ∈ L2

w(−1, 1), ‖f − Pmf‖w → 0 as m→∞.

Note that, without further regularity assumptions of f , the convergence rate in (iii) can be arbitrarily
slow. Using this theorem (specifically conditions (ii) and (iii)), we immediately obtain the following:

Corollary 3.2. Let Pm be the Fourier projection operator. Then (A1) and (A2′) hold with HR = L2
w(−1, 1)

if and only if the weight function w is of Helson–Szegö type.

Remark 3.3 Recall that in §2.2.2 we introduced the operatorWm = P∗m ◦Pm, and Lemma 2.10 shows that
Wm → I strongly on HR. This can actually be proved quite easily in the case considered in this section. If
w is a Helson–Szegö weight function then, recalling the explicit form (2.20) forWm,

‖g −Wmg‖w ≤ ‖wg − Pm(wg)‖w−1 + ‖Pm(wg − wPmg)‖w−1 .

If w is a Helson–Szegö weight function then so is w−1(x) = 1
w(x) (wherever defined). Also, g ∈ L2(−1, 1)

if and only if wg ∈ L2
w−1(−1, 1). Therefore Theorem 3.1 gives

‖g −Wmg‖w ≤ ‖wg − Pm(wg)‖w−1 + c‖g − Pmg‖w → 0, m→∞,

as required.

In view of Corollary 3.2, our interest lies in the case where (piecewise) modified Jacobi weight functions
are of Helson–Szegö type. We have:

Lemma 3.4. Suppose that wα,β is a piecewise modified Jacobi weight function with parameters α =
{α0, . . . , αl} and β = {β0, . . . , βl}. Then wα,β is a Helson–Szegö weight function if and only if −1 <
αr, βr < 1 for all r = 0, . . . , l.

Proof. Note that if w̃ is a Helson–Szegö weight function and w � w̃ uniformly in x, then so is w. We now
recall a result proved in [15]. Let w(t) = ϕ(eiπt), where ϕ is finite, positive and continuous on the unit circle
except at a finite set of points z1, . . . , zl. Moreover, suppose that

ϕ(z) = O (|z − zr|γr ) ,
1

ϕ(z)
= O

(
|z − zr|−γr

)
, z → zr.

Then w is a Helson–Szegö weight function if and only if −1 < γr < 1, r = 1, . . . , l. Noting that 1 − t2 �
|1 + eiπt| now gives the full result.

This lemma, in combination with Theorem 3.1, gives the following:

Corollary 3.5. Let Pm be the Fourier projection operator and HR = L2
α,β(−1, 1). Then assumptions (A1)

and (A2′) hold if and only if −1 < αr, βr < 1 for all r = 0, . . . , l.

With this corollary in hand, the analysis of §2.2.2 immediately applies to this problem. In particular, we
deduce stability, convergence, asymptotic optimality and the sharp bounds of Theorem 2.11. Note that this
corollary includes the cases α = β = {− 1

2 , . . . ,−
1
2 , }, {

1
2 , . . . ,

1
2} corresponding to Chebyshev weights (of

the first and second kinds) that form the principal interest of this paper.
Let us now address the other case, where at least one αj or βj exceeds 1. As shown by Lemma 3.4, wα,β

is no longer a Helson–Szegö weight function. However, one can still verify (A1) and (A2) in this case, for a
suitable choice of the subspace U:

Corollary 3.6. Let Pm be the Fourier projection operator and wα,β a piecewise Jacobi weight function with
parameters α = {α0, . . . , αl} and β = {β0, . . . , βl}. For r = 0, . . . , l define

α̃r =

{
αr −1 < αr < 1
1− εr αr ≥ 1

, β̃r =

{
βr −1 < βr < 1
1− ε′r βr ≥ 1

,

where 0 < εr, ε
′
r < 2 are arbitrary. Then (A1) and (A2) hold with U = L2

α̃,β̃
(−1, 1) and ||| · ||| = ‖·‖α̃,β̃ .
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Proof. By construction, wα̃,β̃ is a piecewise modified Jacobi weight function of Helson–Szegö type. More-
over, we have the continuous embedding U ↪→ HR. In other words, there exists c > 0 such that ‖g‖α,β ≤
c‖g‖α̃,β̃ , ∀g ∈ U. Therefore, by Theorem 3.1,

‖g − Pmg‖α,β ≤ c‖g − Pmg‖α̃,β̃ → 0, ∀g ∈ U,

and
‖Pmg‖α,β ≤ c‖Pmg‖α̃,β̃ ≤ c‖g‖α̃,β̃ , ∀g ∈ U.

This gives the result.

As a result of this corollary, the analysis of §2.2.1 applies in this setting. Hence one verifies stability and
convergence, albeit without the sharp bounds of §2.2.2. As commented, the space U of functions we can
reconstruct with this approach is very large, and certainly includes all functions of interest in practice.

Observe that Corollaries 3.5 and 3.6, in combination with the analysis of §2, confirm the first part of the
main theorem of this paper (Theorem 1.4). For the second part, we need to estimate the stable sampling rate
Θ(n; θ), as defined by (2.21). This is the content of the next section. The final part of Theorem 1.4, i.e. the
computational cost estimates, will be addressed in §4.

3.3 Estimates for the stable sampling rate Θ(n; θ)

The key theorem we prove in this section is the following:

Theorem 3.7. Let Pm be the Fourier projection operator, Tn be given by (2.6) for n = (n0, . . . , nl), and
suppose that HR = L2

α,β(−1, 1), where α = {α0, . . . , αl}, β = {β0, . . . , βl}. Then, for 0 < θ < 1 there
exists c > 0 depending only on θ such that

Θ(n; θ) ≤ cn̄r, ∀n0, . . . , nl ∈ N,

where Θ(n; θ) is given by (2.21), n̄ = max{n0, . . . , nl}, and

r = max

{
2, p+ 1, 2 + 2

p− q
q + 1

}
,

p = max{α0, . . . , αl, β0, . . . , βl}, q = min{α0, . . . , αl, β0, . . . , βl}.

A proof of this theorem is given later in this section. Recall that the most important case in this paper is
when α0 = . . . = αl = β0 = . . . = βl = γ. In other words, a piecewise ultraspherical weight with the same
parameter values in each of the intervals I0, . . . , Il. In this case, p = q = γ, and Theorem 3.7 gives that

Θ(n; θ) ≤ cn̄max{2,γ+1}.

For example, whenever −1 < γ < 1, such as in the Legendre or Chebyshev cases, we obtain an O
(
n2
)

scaling for Θ(n; θ). Note that this result was first proved in [41] (see also [6]) for the Legendre case. In
fact, quadratic scaling of Θ(n; θ) with n is the best possible predicted by this theorem, and this is also a
theoretical barrier for stability (recall the discussion in §1.4).

One negative consequence of this result is that if one chooses α and β so that either p 6= q or p > 1,
then the growth of Θ(n; θ) is more severe. Thus, more Fourier coefficients are required to reconstruct in
terms of the corresponding piecewise polynomial basis, and therefore such bases are suboptimal in view of
the aforementioned theoretical barrier. Nevertheless, whenever α and β are chosen so that p = q and p ≤ 1,
we retain quadratic growth.

The reason for this increased scaling whenever p > 1 is that the weighted norm ‖·‖α,β is too weak in
comparison to the standard L2 norm to adequately control the error of the Fourier projection. On the other
hand, note that the local convergence of the Fourier series of an arbitrary function φ at any point x ∈ (−1, 1)
is determined by its global behaviour at every jump x0, x1, . . . , xl. Thus, convergence in the local norm over
each Ir subinterval must balance this global behaviour, which leads to the higher scaling for p 6= q.

In Figure 1 we plot Θ(n; θ) and n−2Θ(n; θ) for case where l = 0 (i.e. analytic and nonperiodic functions
f ) and α = β = γ (i.e. reconstructions in ultraspherical polynomials). As is evident, when γ = ± 1

2 , Θ(n; θ)
scales quadratically with n. Conversely, this scaling is cubic when the value γ = 2 is used. These results
confirm Theorem 3.7.
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Figure 1: The functions Θ(n; θ) (top) and n−2Θ(n; θ) (bottom) against n = 1, . . . , 20 for θ = 1
4 ,

1
8 ,

1
16

(squares, circles and crosses respectively).

The remainder of this section is devoted to a proof of Theorem 3.7. For this, we first require some general
results about Fourier series, and in particular, Fourier series of arbitrary piecewise algebraic polynomials.

We now introduce some additional notation. We write A . B to mean that there exists a constant c > 0
independent of all relevant parameters such that A ≤ cB. If I ⊆ [−1, 1] is an interval and α, β > −1,
we write ‖·‖∞,I and ‖·‖α,β,I for the norms corresponding to the spaces L∞(I) and L2

wα,β
(I) respectively,

where wα,β is a modified Jacobi weight on I . Finally, we let [g](x) = g(x+) − g(x−) be the value of the
jump of a function g : [−1, 1]→ R at the point x ∈ [−1, 1], with the understanding that [g](−1) = [g](1) =
g(−1)− g(1).

Our first lemma is as follows:

Lemma 3.8. Suppose that f : [−1, 1] → R is piecewise smooth with jump discontinuities at −1 < x1 <
. . . < xl < 1. Then we have the asymptotic expansion

f̂j =
1√
2

∫ 1

−1

f(x)e−ijπx dx ∼ 1√
2

l∑
r=0

∞∑
s=0

(−1)s+1e−iπjxr

(−ijπ)s+1

[
f (s)

]
(xr), |j| � 1. (3.2)

In particular, if φ ∈ Tn, where Tn is as in (2.6), then

φ̂j =
1√
2

l∑
r=0

nr−1∑
s=0

(−1)s+1e−iπjxr

(−ijπ)s+1

[
φ(s)

]
(xr), ∀j ∈ Z\{0}. (3.3)

Proof. This follows immediately by repeated integration by parts.

Note that the symbol ∼ in (3.2) denotes an asymptotic expansion (in the usual Poincaré sense) in the
parameter j → ±∞. As is typical, the right-hand side of (3.2) does usually not converge for any fixed j. On
the other hand, (3.3) holds for any finite j 6= 0 and arbitrary piecewise polynomials φ.

A convenient means to describe the Fourier series of an arbitrary function piecewise smooth function
f is in terms of certain cardinal functions [3, 46]. For r ∈ N, let C̃r(x) be the periodic extension of
− 2r

(r+1)!Br+1(x) to the real line, where Br+1 is the (r+ 1)th Bernoulli polynomial [1, chpt. 23], and define

Cr(x) = C̃r(
1
2x + 1). Note that Cr is a piecewise polynomial of degree r + 1 with discontinuity at x = 0.

Since the Bernoulli polynomials form an Appell sequence, we have that[
C(s)
r

]
(0) = δr−s, r, s ∈ N.

Define the piecewise polynomials

qr,s(x) = Cs(x− xr), r = 0, . . . , l, s ∈ N,
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via translation. Substituting φ = qr,s in (3.3), we note that

q̂r,sj =
1√
2

(−1)s+1e−ijπxr

(−ijπ)s+1
, j ∈ Z\{0}. (3.4)

Thus (3.3) can be expressed more succinctly as

φ̂j =

l∑
r=0

nr−1∑
s=0

q̂r,sj

[
φ(r)

]
(xr),

and we also have that

φ(x)− Pmφ(x) =

l∑
r=0

nr−1∑
s=0

[
φ(s)

]
(xr)

(
qr,s(x)− Pmqr,s(x)

)
, (3.5)

Thus, in order to study the convergence of the Fourier series of an arbitrary φ ∈ Tn, it suffices to consider the
Fourier series of the cardinal functions qr,s. We shall use this approach when proving the next two results.

Lemma 3.9. Suppose that φ ∈ Tn. Then, there exists c > 0 independent of n and φ such that ‖φ −
Pmφ‖∞ . ‖φ‖∞ whenever m ≥ cn̄2.

Proof. By (3.5) and Markov’s inequality,

‖φ′‖∞ . n2‖φ‖∞, ∀φ ∈ Pn−1, (3.6)

(see, for example, [16]) we have

‖φ− Pmφ‖∞ ≤
l∑

r=0

nr−1∑
s=0

∣∣∣[φ(s)
]

(xr)
∣∣∣ ‖qr,s − Pmqr,s‖∞

.
l∑

r=0

nr−1∑
s=0

{
n2s
r ‖φ‖∞,Ir + n2s

r−1‖φ‖∞,Ir−1

}
‖qr,s − Pmqr,s‖∞, (3.7)

where, for convenience we let I−1 = Il and n−1 = nl. Consider qr,s. For s = 1, 2, . . . , the function
qr,s ∈ C1(T) and the derivative q′′r,s is of bounded variation. Hence Pmqr,s converges uniformly to qr,s, the
coefficients q̂r,sj are absolutely summable and we may write qr,s(x)− Pmqr,s(x) as the infinite sum

qr,s(x)− Pmqr,s(x) =
∑
|j|>m

2

q̂r,sjψj(x), ∀x ∈ [−1, 1].

Using the expression (3.4) we deduce that

‖qr,s − Pmqr,s‖∞ .
∑
|j|>m

2

|q̂r,sj | .
∑
j>m

2

j−s−1 . m−s.

Now consider qr,0. By translation, it suffices to consider q0,0(x) = 1
4 −

1
2x. This function has uniformly

bounded Fourier series, ‖Pmq0,0‖∞ ≤ c. Substituting this and the previous result into (3.7) we obtain

‖φ− Pmφ‖∞ . ‖φ‖∞
l∑

r=0

nr−1∑
s=0

(
c̃n2
r

m

)s
. ‖φ‖∞

n̄−1∑
s=0

(
c̃n̄2

m

)s
,

for some c̃ > 0. Therefore, provided m ≥ cn̄2 with c > c̃, this sum is bounded independently of n,m and
the result follows.

Lemma 3.10. Suppose that φ ∈ Tn. Then there exists a c > 0 independent of n and φ such that

|φ(x)− Pmφ(x)| . m−1‖φ‖∞
l∑

r=0

(
1 + | sin π

2 (x− xr)|−1
)
, ∀x ∈ (−1, 1)\{x1, . . . , xl},

whenever m ≥ cn̄2.
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Proof. Suppose that we can show that, for any s ∈ N and r = 0, . . . , l,

|qr,s(x)− Pmqr,s(x)| . m−s−1
(
1 + | sin π

2 (x− xr)|−1
)
, x ∈ (−1, 1)\{xr}. (3.8)

Then the result follows directly from (3.5) and Markov’s inequality (3.6):

|φ(x)− Pmφ(x)| .
l∑

r=0

(
1 + | sin π

2 (x− xr)|−1
) nr−1∑
s=0

m−s−1
(
n2s
r + n2s

r−1

)
‖φ‖∞

. m−1‖φ‖∞
l∑

r=0

(
1 + | sin π

2 (x− xr)|−1
) nr−1∑
s=0

(
n̄2

m

)s
.

Hence it remains to show (3.8). Without loss of generality, we consider q0,s(x). Using (3.4) and noticing
that Pmq0,s(x) converges to q0,s(x) whenever −1 < x < 1, we obtain

|q0,s(x)− Pmq0,s(x)| = 1

2πs+1

∣∣∣∣∣∣
∑
|j|>m

(−1)j

js+1
exp(ijπx)

∣∣∣∣∣∣ .
∣∣∣∣∣∣
∑
j>m

zj

js+1

∣∣∣∣∣∣ ,
where z = − exp(iπx). Note that we have replaced bm2 c by m in the summation: this does not effect the
result and slightly simplifies the notation. Thus it suffices to consider the sum

Ss,m(z) =
∑
j>m

zj

js+1
,

for arbitrary |z| = 1. We now use Abel summation:

Ss,m(z) =
∑
j>m

zj

js

(
1

j
− 1

j + 1

)
+
∑
j>m

zj

js(j + 1)
=
∑
j>m

zj

js+1(j + 1)
+
∑
j>m

zj

js(j + 1)
.

The first term is O
(
m−s−1

)
uniformly in |z| = 1. Now consider the second term. This is equal to

z−1
∑

j>m+1

zj

j(j − 1)s
= z−1

∑
j>m+1

zj

js+1

(
1 +O

(
j−1
))

= z−1
∑

j>m+1

zj

js+1
+O

(
m−s−1

)
.

Note that the final equality holds uniformly in |z| = 1. Hence

Ss,m(z) = z−1

(
Ss,m(z)− zm+1

(m+ 1)s+1

)
+O

(
m−s−1

)
.

Rearranging, this gives

Ss,m(z) =
zm+1

1− z
(m+ 1)−s−1 +O

(
m−s−1

)
,

uniformly in |z| = 1. Note that x 6= ±1, therefore z 6= 1. Moreover, since z = − exp(iπx), we have that

|z − 1| = 2| cos π2x| = 2| sin π
2 (x− x0)|,

and consequently

|Ss,m(z)| .
(
1 + | sin π

2 (x− x0)|−1
)
m−s−1, ∀z = − exp(iπx) 6= 1,

which gives (3.8).

We are now able to prove the main result of this section:

Proof of Theorem 3.7. It suffices to show that, given θ ∈ (0, 1), there exists c such that En,m < 1− θ for all
m ≥ cn̄r, where En,m is given by (2.7). Let φ ∈ Tn with ‖φ‖R = 1. Note that

‖φ− Pmφ‖2α,β =

l∑
r=0

∫
Ir

|φ(x)− Pmφ(x)|2wαr,βr (x) dx.
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We consider each term of this sum separately. Write Ir = I+
r ∪ I−r , where I+

r = [dr, xr+1), I−r = (xr, dr]
and dr = 1

2 (xr +xr+1) is the midpoint of Ir. In a similar manner we also define, for arbitrary 0 < ε < cr =
1
2 (xr+1 − xr),

I+
r,ε = [dr, xr+1 − ε), I−r,ε = (xr + ε, dr],

J+
r,ε = [xr+1 − ε, xr+1), J−r,ε = (xr, xr + ε].

Note that I+
r = I+

r,ε ∪ J+
r,ε and I−r = I−r,ε ∪ J−r,ε. We now write∫

Ir

|φ(x)−Pmφ(x)|2wαr,βr (x) dx

=

∫
I+r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx+

∫
I−r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx

+

∫
J+
r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx+

∫
J−r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx.

Consider the integral over I+
r,ε. By construction wα,β(x) . (xr+1 − x)αr uniformly for x ∈ I+

r . Using this
and Lemma 3.10 we find that∫
I+r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx . m−2‖φ‖2∞
∫
I+r,ε

[
l∑

s=0

(
1 + | sin π

2 (x− xs)|−1
)]2

(xr+1 − x)αr dx.

Since | sin π
2 (x−xr+1)| & |x−xr+1| and | sin π

2 (x−xs)| & 1, s 6= r+ 1, whenever −1 < |x−xr+1| < 1
we deduce that∫

I+r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx . m−2‖φ‖2∞

(
1 +

∫
I+r,ε

(xr+1 − x)αr−2 dx

)
. max{1, εαr−1}m−2‖φ‖2∞.

Similarly, for I−r,ε, we have∫
I−r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx . max{1, εβr−1}m−2‖φ‖2∞.

We now require an estimate for ‖φ‖∞. First let p ∈ Pn be a polynomial and suppose that α, β > −1. Then
it can be shown that

‖p‖∞ . nmax{α,β}+1‖p‖α,β .

(this follows directly from the decomposition ‖p‖2α,β =
∑n
j=0 |〈p, pj〉α,β |2, where {pj} are the orthonormal

polynomials with respect to the weight function wα,β , and the fact that ‖pj‖∞ ∼ jmax{α,β}+ 1
2 [45]).

Since φ ∈ Tn, and therefore φ|Ir ∈ Pnr−1, we have

‖φ‖∞ = max
r=0,...,l

‖φ‖∞,Ir . max
r=0,...,l

{
nmax{αr,βr}+1
r ‖φ‖αr,βr,Ir

}
≤ n̄p+1‖φ‖α,β ,

where p = max{α0, . . . , αl, β0, . . . , βl}. Hence we now find that

l∑
r=0

{∫
I+r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx+

∫
I−r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx

}

. max{1, εp−1}
(
n̄p+1

m

)2

‖φ‖2α,β . (3.9)

Now consider the integral over J±r,ε. If m & n̄2 an application of Lemma 3.9 gives∫
J+
r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx . ‖φ‖2∞
∫ 1

1−ε
(1− x)αr dx . ‖φ‖2∞εαr+1,
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and likewise for J−r,ε with the exponent αr replaced by βr. Since ε < 1, this and (3.9) now give

l∑
r=0

{∫
J+
r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx+

∫
J−r,ε

|φ(x)− Pmφ(x)|2wαr,βr (x) dx

}
. εq+1n̄2(p+1)‖φ‖2α,β .

(3.10)

Setting ε = cm−1 for c < min{cr : r = 0, . . . , l} and combining (3.9) and (3.10), we obtain

‖φ− Pmφ‖2α,β .

[
max{1,m1−p}

(
n̄p+1

m

)2

+
n̄2(p+1)

mq+1

]
‖φ‖2α,β .

Hence

E2
n,m = sup

φ∈Tn
‖φ‖α,β=1

‖φ− Pmφ‖2α,β .

[
max{1,m1−p}

(
n̄p+1

m

)2

+
n̄2(p+1)

mq+1

]
. (3.11)

The second term can be made arbitrarily small by selecting

m & n̄2 p+1
q+1 = n̄2+2 p−qq+1 .

Now consider the first term. If p < 1 then

max{1,m1−p}
(
n̄p+1

m

)2

= m1−p
(
n̄p+1

m

)2

=

(
n2

m

)p+1

,

and therefore we require m & n̄2. Conversely, when p ≥ 1, we have

max{1,m1−p}
(
n̄p+1

m

)2

=

(
n̄p+1

m

)2

,

meaning that m & n̄p+1. Hence, the first term of the right-hand side of (3.11) can be made arbitrarily small
by the choice m & n̄max{2,p+1}. This completes the proof.

Theorem 3.7 shows that in many cases, the scaling m = O
(
n̄2
)

is sufficient for a stable quasi-optimal
reconstruction. One downside of our result is it does not give an explicit upper bound for the scaling constant
c. In simpler case of Legendre polynomials explicit, and fairly sharp, bounds were derived in [6]. It is in
theory possible to obtain explicit bounds by following the steps of the above proof and keeping track of
constants. However, because the proof is rather involved, this is likely to be grossly pessimistic. On the other
hand, since Θ(n; θ) can always be computed, we may always numerically estimate c. As shown in Figure 1
one can take a fairly small value c = 1

4 in implementations. We use this value in the next section.

4 Numerical implementation and examples

4.1 Implementation
As mentioned in §2.3, the main issue in implementation is the computation of the entries of the matrices U
and C. Computation of the entries of U can be carried out using the iterative procedure of [6, Lemma 3.4].
The total cost incurred is O (mn) operations. Note that, as commented in [6], one may in practice need to
use a two-phase algorithm (such as that described in [22]) to ensure stability of the computation of these
entries. However, this does not increase the overall cost.

For the computation of C, recall that this matrix has (j, k)th entry 〈ψj , ψk〉R. In other words, if wα,β is
the corresponding weight function, then

〈ψj , ψk〉R =
1

2

∫ 1

−1

eiπ(j−k)xwα,β(x) dx = cj−k.
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Hence C is always a Toeplitz matrix, and to compute C we only need to determine cj for j = 0, . . . ,m (note
that c−j = cj). Fortunately, since∫ 1

−1

eizx(1− x2)α dx =
√
π

Γ(α+ 1)

Γ(α+ 1
2 )

(α+ 1
2 )

(
2

z

)α+ 1
2

Jα+ 1
2
(z), z ∈ R,

where Γ is the Gamma function and Jν is the Bessel function of the first kind [34], we can always determine
cj explicitly for the case where wα,β is a piecewise ultraspherical weight function. Unfortunately, there is no
such closed form expression when wα,β is a piecewise Jacobi weight. However, in this case one can compute
cj using a Gaussian quadrature based on the given weight function, with the total cost of this approach being
O
(
m2
)
. We shall not discuss this further.

For evaluation of the quantity Θ(n; θ) it is also necessary to compute the matrix V ∈ Cm×n with (j, k)th

entry 〈φk, ψj〉R. Whenever w corresponds to a piecewise ultraspherical weight function, the entries of V are
actually known explicitly. This follows from the fact that the integrals∫ 1

−1

eizxφj(x)(1− x2)α dx, z ∈ R,

have an explicit expression whenever φj is the jth normalized ultraspherical polynomial corresponding to
the parameter α > −1 (see, for example, [34, eqn. (3.7)]).

Note that the above arguments establish the final part of Theorem 1.4 (the first parts were addressed in
the previous sections) concerning the cost of the preprocessing step in the computation of fn,m (i.e. forming
the matrices U and C).

4.2 Examples
In Figure 2 we consider the reconstruction of the function f(x) = ex cos 8x using Legendre polynomials and
Chebyshev polynomials of the first and second kinds. As is evident, all three approaches give near identical
approximation errors. In fact, regardless of the polynomial basis used, one attains roughly machine accuracy
using onlym = 225 Fourier samples (by means of comparison, direct expansion of this function in a Fourier
series gives an error of order 10−1 for this value ofm). Also, the condition number of the matrixA = U∗CU
remains bounded in n, as predicted by the analysis in §2.

In Figure 3 we consider the piecewise analytic function

f(x) =

{
(2e2π(x+1) − 1− eπ)(eπ − 1)−1 x ∈ [−1,− 1

2 )
− sin( 2πx

3 + π
3 ) x ∈ [− 1

2 , 1]
(4.1)

This function was put forth in [50] to test algorithms for overcoming the Gibbs phenomenon. Aside from the
discontinuity, its sharp peak makes it a challenging function to reconstruct accurately. However, as shown
in this figure, using a polynomial of degree 16 in each subinterval of smoothness, we recover the function
to around 14 digits of accuracy. As in the previous example, all three polynomial bases used (Legendre and
Chebyshev) give roughly the same approximation error.

Note that both functions considered above are piecewise analytic, and therefore their projections Qnf
converge geometrically fast in n. Since the GS reconstruction is quasi-optimal, it converges at the same
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rate in terms of n, as shown in the figures. This translates into root-exponential convergence in terms of the
number of Fourier coefficients m.

The function (2) was used in [30] to test spectral reprojection. Therein it was found that more than 1024
Fourier coefficients were required to obtain close to machine precision. Conversely, with the GS approach we
achieve the same value using few than 256 such coefficients—a factor of four increase (a similar experiment
was reported in [6]). Moreover, it is worth recalling that (see §1), with this approach one has near-complete
freedom to choose the polynomial basis for reconstruction, whereas with spectral reprojection one must use
a specific, Gibbs complementary, basis.

5 Stability
In this final section, we discuss the stability of our approach with respect to perturbations.

There are two main types of perturbations one encounters in this problem. The first, due to noise, is easily
dealt with. Since our method has a bounded condition number, noise of magnitude ε results in an additional
error in the final approximation proportional to ε.

The second perturbation involves the discontinuity locations x1, . . . , xl of the function f . Thus far, we
have assumed that these are known exactly. However, as discussed in §1.3, in practice these values must be
precomputed by an edge detection algorithm. This procedure incurs an error, and therefore it is vital that any
reconstruction algorithm be robust in this regard. In the remainder of this section we analyse the robustness
of the GS reconstruction (2.4) in the presence of such errors.

Suppose that approximate singularity locations x̃1, . . . , x̃l have been computed to within an accuracy of
ε of the true locations x1, . . . , xl, i.e. |x̃r − xr| ≤ ε for r = 1, . . . , l. We construct our piecewise polynomial
approximation space T̃n based on these inexact values and compute the GS reconstruction f̃n,m. Note that
T̃n is a piecewise polynomial reconstruction space with the same parameters as Tn, where Tn is the space
corresponding to the exact discontinuity locations x1, . . . , xl. Hence T̃n and Tn asymptotically have the
same stable sampling rate, and therefore the reconstruction f̃n,m is also quasi-optimal. Hence, to understand
the effect of the inexact values x̃1, . . . , x̃l it suffices to only consider the orthogonal projection Q̃nf onto the
subspace T̃n.

Let us briefly explain how such errors affect the approximation Q̃nf . Suppose that f is piecewise analytic
with jumps at x1, . . . , xl. The projection Q̃nf is an approximation to f using piecewise polynomials defined
in the inexact regions Ĩr = [x̃r, x̃r+1). When restricted to Ĩr, the function f is not analytic. In fact, it will
have a jump discontinuity at any point in the set {x1, . . . , xl} ∩ Ĩr. Thus the error in the reconstruction
stemming from inexact jump locations is due to approximating a function which is now only piecewise
analytic in each prescribed region Ĩr.

Since the approximation error decouples into separate subintervals, it suffices to consider the error in any
one. By scaling, and by assuming that ε is small in comparison to minr |Ir|, we may therefore consider the
following problem:

Problem 5.1. Suppose that f : [−1, 1]→ C is such that the restrictions of f to the intervals I0 = [−1,−1+
ε1], I1 = [−1+ε1, 1−ε2] and I2 = [1−ε2, 1] are analytic, where 0 < ε1, ε2 < 1. Let T̃n be an orthonormal
basis of Jacobi polynomials with parameters α, β > −1 on the interval [−1, 1]. Determine the error of the
orthogonal projection Q̃nf of f onto T̃n in terms of n and ε = max{ε1, ε2}.
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The question now arises, which error metric on [−1, 1] should one choose? Clearly the uniform norm is
ill-suited for this purpose, since it would be O (1) regardless of the magnitude of ε. The L2-norm is also a
poor choice, because it would lead to the error behaving as O (

√
ε). To see this, note that the function g that

is zero on [−1 + ε1, 1− ε2] and takes value 1 elsewhere has L2-norm equal to
√
|I0|+

√
|I2| = O (

√
ε).

We shall use the L1-norm instead:

‖g‖L1 =

∫ 1

−1

|g(x)|dx, g ∈ L1(−1, 1).

We have

Lemma 5.2. Let f ∈ L∞(−1, 1), and suppose that Q̃nf is as in Problem 5.1. Then

‖f − Q̃nf‖L1 . ‖f̃ − Q̃nf̃‖L1 + ε
(
1 + εqn2p+2

) (
‖f‖∞ + ‖f̃‖∞

)
, (5.1)

where p = max{α, β}, q = min{α, β} and f̃ ∈ L∞(−1, 1) is any function such that f̃ = f a.e. in the
interval [−1 + ε1, 1− ε2].

Proof. We have
‖f − Q̃nf‖L1 ≤ ‖f̃ − Q̃nf̃‖L1 + ‖f − f̃‖L1 + ‖Q̃n(f − f̃)‖L1 . (5.2)

Since f − f̃ is supported only outside I1, we have

‖f − f̃‖L1 =

∫
I0∪I2

|f(x)− f̃(x)|dx ≤ ε
(
‖f̃‖∞ + ‖f‖∞

)
. (5.3)

Write {φj}j∈N for the orthonormal basis of Jacobi polynomials corresponding to the projection Q̃n. Then

‖Q̃n(f − f̃)‖L1 ≤
n∑
j=0

‖φj‖L1 |〈f − f̃ , φj〉α,β |

≤
(
‖f̃‖∞ + ‖f‖∞

) n∑
j=0

‖φj‖L1‖φj‖∞
∫
I0∪I2

wα,β(x) dx

.
(
‖f̃‖∞ + ‖f‖∞

)
ε1+q

n∑
j=0

‖φj‖2∞.

Recall from the proof of Theorem 3.7 that we have ‖φj‖∞ ∼ jp+
1
2 . Hence

‖Q̃n(f − f̃)‖L1 .
(
‖f̃‖∞ + ‖f‖∞

)
ε1+q

n∑
j=0

j2p+1 .
(
‖f̃‖∞ + ‖f‖∞

)
ε1+qn2p+2.

Combining this with (5.2) and (5.3) now gives the result.

This lemma allows one to understand the convergence of Q̃nf . Suppose that f is analytic in [−1 +
ε1, 1 − ε2]. For sufficiently small ε, f has an analytic continuation to [−1, 1]. Let f̃ be such continuation.
Then the first term in (5.1) converges exponentially fast in n, and therefore for all moderately large n the
error is determined by the second factor ε(1 + εqn2p+2). From this we immediately deduce the following
result:

Theorem 5.3. Let f be piecewise analytic with jumps at x1, . . . , xl. Suppose that |xr−x̃r| ≤ ε, r = 1, . . . , l,
and let Q̃nf be the piecewise Jacobi polynomial expansion of f based on the inexact jump values x̃1, . . . x̃r.
Then, for sufficiently large n, the error

‖f − Q̃nf‖L1 . ε(1 + εqn2p+2),

where p = max{α0, . . . , αl, β0, . . . , βl} and q = min{α0, . . . , αl, β0, . . . , βl}.
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2 , 0,
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2 (left, middle, right). The edge x1 = − 1

2 was perturbed by an amount ε, giving the
approximate edge x̃1 = − 1

2 + ε. The values of ε used were 10−4, 10−8, 10−12 (squares, circles and crosses
respectively).

This theorem implies that whenever q ≥ 0, such is the case for Legendre (p = q = 0) and second kind
Chebyshev polynomials (p = q = 1

2 ), errors of magnitude ε incurred from edge detection will, up to some
mildly growing factor in n, correspond to errors of at worstO (ε) in the overall reconstruction f̃n,m. Thus the
method is extremely robust in this respect. Such robustness is illustrated in Figure 4, which gives numerical
results for the reconstruction f̃n,m from inexact edge data.

Recall that Chebyshev polynomials of the first kind correspond to the case p = q = − 1
2 . Theorem 5.3

suggests that it may be inadvisable to use such polynomials in applications where there are edge detection
errors: the bound (5.1) implies that an error of magnitude ε in edge detection is translated into an error of
magnitude

√
ε in the overall reconstruction. Note that the reason that the error worsens is that the weight

function wα,β , become increasingly singular at the endpoints as q → −1+. This has the effect of amplifying
any edge errors.

However, numerical results in Figure 4 suggest that theorem does not accurately predict the magnitude of
edge detection errors in this case. In fact, much as in the case of Legendre or second kind Chebyshev poly-
nomials, the error appears to remain of magnitude ε. Hence, according to these results, first kind Chebyshev
polynomials can in fact be used for applications with edge detection errors.

The underlying reason for the disparity between these results and Theorem 5.3 is that the theorem con-
cerns the orthogonal projection Q̃nf , and not the reconstruction f̃n,m itself. Numerical experiments (not
shown here) suggest that the bound (5.1) is sharp for the orthogonal projection Q̃nf in terms of the be-
haviour with respect to ε (the polynomial growth in n appears to be a nonphysical artefact of the proof).
However, whilst quasi-optimality of the mapping f 7→ f̃n,m guarantees that Q̃nf and f̃n,m are close, it does
so only in the sense of the L2

wα,β
-norm. But, as discussed, we measure edge detection error in the L1-norm.

This fact appears to save the approximation f̃n,m from the bad propagation of errors predicted by Theorem
5.3. In particular, it gives very much the same performance as in the case q ≥ 0, as can be seen in Figure 4.

6 Conclusions and challenges
In this paper we have introduced a general framework for sampling and reconstruction in Hilbert spaces,
and analyzed in detail the resulting numerical method for reconstructing a piecewise analytic function in a
orthogonal basis of (piecewise) polynomials from its Fourier coefficients. The method can be implemented
with a wide variety of different polynomial bases, including Chebyshev and Legendre polynomial bases. In
all cases the numerical method is stable and exponentially convergent (in the polynomial degree n). When-
ever Chebyshev or Legendre polynomials are employed, for example, the method is also root-exponentially
convergent in the number of Fourier coefficients m. Finally, we have shown that this method is robust with
respect to edge detection errors.

An important challenge for future work is to make a more detailed comparison between this and other
approaches (such as spectral reprojection) for recovering piecewise analytic functions from their Fourier
data. As mentioned, there are many approaches for this problem, yet few comparisons can be found in the
literature. Of singular interest and importance is investigating the robustness of different methods to noise
and edge detection errors. We remark at this stage that we have not seen any analysis of the type given in §5
for other reconstruction methods.

This aside, it is worth repeating that the GS framework developed in this paper is far more general than
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the problem considered in §3. Namely, it allows one to reconstruct any element f ∈ U from its samples in
an arbitrary orthonormal basis, even in the case that the sampling and reconstruction vectors are orthogonal
with respect to different inner products. In fact, this paper forms part of a much larger project on numeri-
cal methods for sampling and reconstruction (see [4, 5, 6, 7, 8]), with a long list of potential applications.
Currently we are investigating a number of such applications, including spline and wavelet-based reconstruc-
tions of images, the solution of certain inverse and ill-posed problems (see [7]), and reconstructions from
other types of integral transforms. It is also worth mentioning that the key ideas for GS originated from new
tools for the computational spectral problem [37, 38]. Furthermore, similar ideas, when combined with con-
vex optimization techniques, can be used to extended the current theory of compressed sensing to formally
infinite-dimensional problems. This topic is described in [4].

Finally, we note that the general framework developed in this paper can be immediately applied to a
very much related problem: namely, the recovery of a piecewise analytic function from its coefficients with
respect to an orthogonal polynomial basis (as opposed to its Fourier coefficients). Much like the Fourier case,
the problem arises in spectral discretizations of hyperbolic PDEs [31, 33, 40]. Investigating this application,
and the critically, the analysis of the resulting stable sampling rate, is a topic for future work.
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