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Abstract. The focus of this paper is the approximation of analytic functions on compact
intervals from their pointwise values on arbitrary grids. We introduce a method for this problem based
on mapped polynomial approximation. By careful selection of the mapping parameter, we ensure
both high accuracy of the approximation and an asymptotically optimal scaling of the polynomial
degree with the grid spacing. As we explain, efficient implementation of this method can be achieved
using Nonuniform Fast Fourier Transforms (NUFFTs). Numerical results demonstrate the efficiency
and accuracy of this approach.
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1. Introduction. Let f : [−1, 1] → C be an analytic function and −1 ≤ z0 <
. . . < zM ≤ 1 a grid of M points. In this paper, we consider the approximation of f
from the grid values

f(zm), m = 0, . . . ,M.

A classical means of doing this to interpolate f using a polynomial of degree M . How-
ever, the famous Runge phenomenon illustrates the pitfalls of this approach. In the
case of equispaced grids, for example, the corresponding interpolants diverge expo-
nentially fast as M →∞ for any function with complex singularities lying sufficiently
close to the interval [−1, 1]. Moreover, the approximation is ill-conditioned, and so
one sees divergence of the interpolants in finite precision, even for entire functions.
Neither is this phenomenon isolated to equispaced data. It is well known that to avoid
a Runge-type phenomenon the data should cluster at the endpoints according to a
Chebyshev distribution. Hence polynomial interpolants are generally inadvisable for
all but very special grids.

One possible way to overcome this phenomenon is to reduce the polynomial de-
gree, to, say, N < M , and perform an overdetermined (weighted) least-squares fit
of the data. In the case of equispaced grids, provided N is chosen sufficiently small
in comparison to M , this leads to a stable and convergent approximation [7]. How-
ever, due to a result of Coppersmith & Rivlin [14] (see also [30]), one can show
that N can grow no faster than

√
M to maintain stability and convergence. Thus,

the effective convergence rate of the approximation, determined by the size of N , is
greatly lessened. Although the best approximation of an analytic function in PN is
exponentially-accurate in N , this translates to only root-exponential in the number
of data points M . In general, for arbitrary grids with maximal separation h, we can
expect only root-exponential convergence in 1/h as h→ 0.

As we elaborate further next, the severity of this scaling is due to the behaviour of
derivatives of polynomials, and specifically, the fact that ‖p′‖∞ grows maximally like
N2‖p‖∞ for a polynomial p ∈ PN (this is commonly known as Markov’s inequality
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[6]). On the other hand, trigonometric polynomials possess derivatives that grow at
most linearly in N . Hence, a trigonometric polynomial least squares approximation
will permit a linear scaling of N with M (or, more generally, 1/h) whilst maintaining
stability. Unfortunately, trigonometric polynomials are a poor means of approximat-
ing analytic functions. Unless f happens to also be periodic, there is no uniform
convergence as N → ∞ and one witnesses the undesirable Gibbs phenomenon near
the interval endpoints.

In this paper, we present a method for approximating analytic functions from
their values on arbitrary grids that combines the good features of both algebraic and
trigonometric polynomial approximations. For appropriate parameter choices, the
method we introduce has a linear scaling of N with M (or, in general, 1/h), much
as with trigonometric polynomial approximation, but delivers high accuracy reminis-
cent of that of polynomial approximation. Moreover, the method is practical, simple
and can be implemented efficiently in O (M logM) operations using nonuniform Fast
Fourier Transforms (NUFFTs) [18, 19, 20, 29, 33].

1.1. Mapped polynomial approximations. Our method is based on mapped
algebraic polynomials. The corresponding approximation space

(1.1) PαN = {p ◦mα : p ∈ PN} ,

consists of algebraic polynomials in a mapped variable y = mα(x), where mα :
[−1, 1] → [−1, 1] is a particular one-parameter family of mappings indexed by a pa-
rameter 0 ≤ α ≤ 1. When α = 0, PαN coincides with the space PN of algebraic
polynomials of degree N , and when α = 1 it consists of functions closely related to
trigonometric polynomials. By selecting α sufficiently close to one, it is therefore
expected that one can retain the good approximation properties of the α = 0 case,
whilst also improving its severe scaling of N with M (respectively h).

The approximation space (1.1) is not new. Mapped polynomial methods have
been used extensively in the context of numerical quadrature and spectral methods
for PDEs. Here the mapping mα is used to overcome the severe time-step require-
ments of standard Chebyshev spectral methods or to improve the poor resolution
properties of Chebyshev grids [8, 22, 24]. The most widely-used such map is due to
Kosloff and Tal–Ezer [24]. However, various other mapped have also been considered,
including most recently in the work of Hale & Trefethen [22]. Note that the situa-
tion considered in such applications is roughly speaking the reverse of ours. Therein
the mapping is used to distribute a Chebyshev grid more evenly over the domain,
and hence improve the time-step restriction. Conversely, in our setting we consider
a fixed, but arbitrary, grid of data points, which we map to a grid that is closer to
a Chebyshev distribution. As discussed, the motivation for doing this is to suppress
the maximal polynomial derivatives, and correspondingly improve the scaling of N
with M required for stability. Thus, an interesting conclusion of this paper is that
mappings are not just useful in applications such as spectral methods and numeri-
cal quadrature, they are also useful in the reconstruction problem of approximating
analytic functions to high accuracy from arbitrary grids.

Note that it is not our aim in this paper to compare different mappings. We shall
use the mapping due to Kosloff and Tal–Ezer [24] throughout due to its simplicity. We
note, however, that other mappings may provide some advantages. For a discussion
on this issue in relation to spectral methods and numerical, see [22].

In the context of spectral methods, the choice of the mapping parameter α has
also been the subject of an extensive debate. See [1, 8, 15, 16, 17, 22, 31, 32] and



A MAPPED POLYNOMIAL METHOD 3

references therein. There are two standard approaches for doing this. First, 0 < α < 1
fixed and close to one, and second, α = αN → 1− as N → ∞. As we will discuss
later, approximations from the space PαN converge geometrically in the first case. In
the second case, the standard approach is to introduce a finite maximal accuracy ε
(typically on the order of machine precision), and choose αN so that the error of the
approximation is on the order of ε for large N . Approximations from the space PαNN
no longer converge classically (i.e. down to zero in exact arithmetic as N →∞), but
in practice, high accuracy is expected by taking ε on the order of machine precision.
From the point of view of spectral methods, the advantage of the second approach
is that it delivers asymptotically optimal time-step and resolution properties, on the
order of those of Fourier spectral methods.

1.2. Our contributions. After introducing the method in §2 and discussing its
efficient implementation using NUFFTs, we devote the remainder of the paper to the
key issue of how to choose the parameter N (the size of the approximation space)
in relation to M (or, in general, h) for various different choices of α (the mapping
parameter). We first show that for fixed α one cannot improve the asymptotic scaling
of N with M beyond that of the α = 0 case, i.e. N = O(

√
M). The only possible

improvement is in the constant. Conversely, if α = αN → 1− in an appropriate way we
show that stability is guaranteed with a linear scaling of N with M with an explicit
constant (Theorem 4.2). Whilst classical convergence is forfeited, high accuracy is
guaranteed by an appropriate choice of ε.

The proofs of these results follow from the derivation of a Markov inequality for
PαN which is uniform in both N and α (Theorem 4.1). Interestingly, the constant
in this inequality is explicit and not overly large for practical choices of parameters.
This is an interesting virtue of our analysis.

A summary of our main results is given in Table 1. Note that the results therein
are stated for equispaced data only; the primary example we use throughout this
paper. However, they can be easily recast in terms of general scattered grids by
replacing M with 1/h. Table 1 also includes some terminology for convergence that
will be used throughout this paper. In particular, we will say that a sequence an
converges geometrically if an = O (ρ−n) for large n for some ρ > 1. We say the
convergence is subgeometric with index 0 < r < 1 if an = O

(
ρ−n

r)
. When r = 1/2

we also refer to this convergence as root-exponential. Finally, we say the sequence
converges algebraically with index k > 1 if an = O

(
n−k

)
as n→∞.

α Conv. rate in N Scaling with M Conv. rate in M

0 geometric O(M
1
2 ) root exp.

0 < α < 1 fixed geometric1 O(M
1
2 ) root exp.

1 algebraic, index 1 O (M) algebraic, index 1

∼ 1− α0

Nσ subgeo., index 1− σ O(M
1

2−σ ) subgeo., index 1−σ
2−σ

∼ 1− 2| log ε|
Nπ N/A2 O (M) not convergent2

Table 1
Summary of our main results for equispaced data, where h = 1/M . In the fourth and fifth row,

the notation ∼ denotes the behaviour of α = αN as N → ∞. In the fourth row 0 < σ < 1 and
α0 > 0 are fixed numbers. In the fifth row, ε > 0 is a fixed number, chosen sufficiently close to
machine epsilon to give high accuracy. 1In this case, the geometric rate of convergence is limited
by the mapping mα (see Theorem 3.3). 2Although not rapidly convergent for all N , for large N we
expect the error to be proportional to ε.
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1.3. Methods for function approximation from equispaced data. Many
methods have been developed for the approximation of analytic functions from eq-
uispaced data. For any extensive list, see [10, 28] and references therein. A recent
result [28] states that no method for this problem can be both stable and exponen-
tially convergent. In fact, the best possible convergence rate of a stable method is
root exponential in the number of equispaced points M . Such a convergence rate is
achieved by polynomial least-squares, for example, however in practice (as we shall see
later in our numerical results) this method tends to give poor results. On the other
hand, when α = αN is varied appropriately (see the fifth line in Table 1), the mapped
polynomial method we introduce in this paper achieves high accuracy and numerical
stability. Yet the impossibility theorem is not avoided, since classical convergence in
this case is sacrificed for finite accuracy.

As discussed in [10, 28], a number of other methods for equispaced function ap-
proximation also offer high accuracy and stability in practice. In §6 of this paper,
we compare mapped polynomial methods with two well known schemes for approx-
imation on arbitrary grids: discrete polynomial least-squares and cubic splines. A
through comparison with other methods for approximation of analytic functions from
equispaced data, including rational approximation [21], Fourier extension [5, 4, 9, 11],
and windowed Fourier [26], will be presented in [27].

2. The mapped polynomial method.

2.1. Preliminaries. Thoughout this paper, we denote the space of functions
which are square integrable with respect to a weight function w(x) by L2

w(−1, 1). The
corresponding inner product is written as 〈·, ·〉w and the norm denoted by ‖·‖w. The
space L∞(−1, 1) consists of those functions that are bounded a.e. on [−1, 1], and has
norm ‖·‖∞.

The mapping we use in this paper, due to Kosloff and Tal–Ezer [24], is as follows:

(2.1) mα(x) =
sin (απx/2)

sin (απ/2)
, x ∈ [−1, 1], α ∈ (0, 1].

For completeness, we define

m0(x) = lim
α→0+

mα(x) = x.

Note that mα(x) is a bijection of [−1, 1], and in particular,

mα(x) ≤ mα(x′) ⇔ x ≤ x′.

Throughout, we write y = mα(x) ∈ [−1, 1] for the variable in the mapped domain.
Note that

x = m−1α (y) =
2

απ
sin−1 (sin(απ/2)y) ,

and also that

dy

dx
= m′α(x) =

απ cos(απx/2)

2 sin(απ/2)
=
απ

2β

√
1− β2y2,

where

(2.2) β = sin(απ/2).
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We shall also write

(2.3) f(x) = gα(y), gα = f ◦m−1α ,

for the image of f under the mapping mα.
We next define the approximation space we use in this paper. Let

(2.4) PαN = {p ◦mα : p ∈ PN} ,

be the space of mapped polynomials in the variable x of degree at most N . Ob-
serve that P 0

N = PN is the space of algebraic polynomials of degree at most N . For
computational purposes, it is also necessary to have a basis for PαN . We let

(2.5) φn(x) = cnTn(mα(x)), n = 0, 1, 2, . . . ,

where Tn(y) ∈ Pn is the nth Chebyshev polynomial of the first kind in y and the
normalization factor cn is given by

√
1/π if n = 0 and

√
2/π otherwise.

Lemma 2.1. The functions {φn}∞n=0 form an orthonormal basis for the weighted
space L2

wα(−1, 1) with weight

wα(x) =
απ

2

cos(απx/2)√
sin2(απ/2)− sin2(απx/2)

.

Proof. The functions cnTn(y) are orthonormal with respect to the Chebyshev

weight function 1/
√

1− y2. Using the substitution y = mα(x), we have∫ 1

−1
φn(x)φm(x)wα(x) dx = cncm

∫ 1

−1
Tn(y)Tm(y)

2βwα
(
m−1α (y)

)
απ
√

1− β2y2
dy,

where β is as in (2.2). Thus, for orthonormality, we require that

2βwα
(
m−1α (y)

)
απ
√

1− β2y2
=

1√
1− y2

.

Substituting y = mα(x) now gives the result.
Note that one can use any orthonormal polynomial basis for PN in order to

construct a basis of PαN . We use Chebyshev polynomials for their computational
efficiency (see §2.3).

2.2. The method. Having introduced the approximation space, we next formu-
late the mapped polynomial method. To this end, let

−1 ≤ z0 < z1 < . . . < zM ≤ 1,

be an ordered set of data points, where M ≥ N , and write Z = {zm}Mm=0. Define the
maximal spacing h > 0 by

(2.6) h = max
n=−1,...,M

{zn+1 − zn},

where z−1 = −1 and zM+1 = 1. As mentioned, we will use equispaced grids as our
primary example throughout this paper. In this case, we set

(2.7) zm = −1 +
2m

M
, m = 0, . . . ,M,
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and therefore h = 2/M .
Given the data {f(zm)}Mm=1 and the approximation space PαN , we construct the

approximation to f by weighted least-squares fitting:

(2.8) FαN,Z(f) = argmin
pα∈PαN

M∑
m=0

µm|f(zm)− pα(zm)|2.

Here the weights µn > 0 are trapezoidal quadrature weights corresponding to Z:

µn =
1

2

∫ mα(zn+1)

mα(zn−1)

1√
1− y2

dy

=
1

2

(
sin−1 (mα(zn+1))− sin−1 (mα(zn−1))

)
, n = 0, . . . ,M.(2.9)

We make this choice over more simple strategies since it avoids conditioning issues if
z0 or zM are close to their respective endpoints. Note that, given Z and the weights
µn, the parameters α and N of the method both need to be chosen by the user. This
is the key issue we consider in §3 and §4.

The approximation FαN,Z(f) is defined in the physical x-domain. Let

FαN,Z(f)(x) = GαN,Z(gα)(y),

be its image in the y-domain, where gα is given by (2.3). Note that GαN,Z(gα) is also
defined by

GαN,Z(gα) = argmin
p∈PN

M∑
m=0

µm|gα(mα(zm))− p(mα(zm))|2.

At this stage it is convenient to introduce the following discrete inner product:

〈f, g〉Z =

M∑
m=0

µmf(zm)g(zm), f, g ∈ L∞(−1, 1).

We write ‖·‖Z for the corresponding norm. We also define the discrete uniform norm:

‖f‖Z,∞ = max
m=0,...,M

|f(zm)|, f ∈ L∞(−1, 1).

Finally, we note the following. Since FαN,Z(f) is defined as a least-square fit of the
data, it is the solution of the corresponding normal equations. Written in variational
form, one sees that FαN,Z(f) is the solution to the problem

(2.10) find f̃ ∈ PαN such that 〈f̃ , pα〉Z = 〈f, pα〉Z , ∀pα ∈ PαN .

We shall use this later when analyzing the method.

2.3. Computation of the approximation. Let φn be as in (2.5). Then

FαN,Z(f) =

N∑
n=0

anφn,
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for unknown coefficients an ∈ C. The least-squares (2.8) is then equivalent the alge-
braic least squares

(2.11) Aa ≈ b,

whereA ∈ CM×N has (m,n)th entry
√
µmφn(zm), a = (a0, . . . , aN )>, b = (b0, . . . , bM )>

and bm =
√
µmf(zm). Computation of the approximation FαN,Z(f) can be carried out

using a standard solver such as conjugate gradients. The computational cost is pro-
portional to

√
κ(A), the condition number of A, multiplied by the computational cost

required to perform matrix-vector multiplications with A and A∗. For the latter, we
note that such multiplications can be done efficiently using NUFFTs. Notice that
A can be seen as a discrete cosine matrix in the discrete variable cos−1(mα(zm)).
Hence, as long as A remains well-conditioned, the expansion coefficients can be found
in O (M logM) operations.

Let σmax and σmin be the maximal and minimal singular values of A respectively,
so that κ(A) = σmax/σmin. We now note the following:

Lemma 2.2. Let yn = mα(zn) for n = 0, . . . ,M . Then

(σmax)2 = max

{
M∑
n=0

µn|p(yn)|2 : p ∈ PN , ‖p‖w = 1

}

(σmin)2 = min

{
M∑
n=0

µn|p(yn)|2 : p ∈ PN , ‖p‖w = 1

}
,

where w(y) = 1/
√

1− y2 is the Chebyshev weight.

Proof. Let a = (a0, . . . , aN )> be given. Write f =
∑N
n=0 anφn ∈ PαN and let

p = gα ∈ PN be as in (2.3). Note that p is a sum of normalized Chebyshev polynomials
in y, and therefore

N∑
n=0

|an|2 = ‖p‖2w.

On the other hand,

‖Aa‖2 =

M∑
n=0

µn|f(mα(zn))|2 =

M∑
n=0

µn|p(yn)|2.

The result now follows immediately.
In §5 we will use this lemma to analyze κ(A), and show that κ(A) will in practice

remain bounded for appropriate choices of the parameters α and N .

2.4. Parameter choices. We now define the various parameter choices we shall
consider in this paper:

(i) α = 0,
(ii) 0 < α < 1 fixed,
(iii) α = 1,
(iv) α = αN ∼ 1− α0/N

σ as N →∞, where α0 > 0 and 0 < σ < 1,
(v) α = αN = 4

π arctan(ε1/N ), where ε > 0 is small.
Note that in case (i), PαN = PN and therefore F 0

N,Z is just an algebraic polynomial

least-squares fit. In case (iii) we shall see in §3.2.2 that P 1
N is similar to the space of

trigonometric polynomials, and has correspondingly poor approximation properties.
Choices (iv) and (v) involve varying α with N . The particular choice of αN in (v),
originally due to Kosloff and Tal–Ezer [24], will be explained in §3.2.4.
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3. Analysis of the mapped polynomial method. Having introduced the
method, we now wish to analyze it.

3.1. Stability and convergence. We first define the condition number of the
approximation. Since FαN,Z is linear, its L∞ condition number is given by

κ = καN,Z = sup
f∈L∞(−1,1)
‖f‖Z,∞ 6=0

{‖FαN,Z(f)‖∞
‖f‖Z,∞

}
.

It transpires that κ is a little difficult to analyze in practice. Thus we work with the
smaller quantity

κ̃ = κ̃αN,Z = sup
pα∈PαN
‖pα‖Z,∞ 6=0

{
‖pα‖∞
‖pα‖Z,∞

}
= sup
pα∈PαN
pα 6=0

{
‖pα‖∞
‖pα‖Z,∞

}
.

Note that the second equality is follows from the fact that |Z| = M + 1 ≥ N + 1.
Indeed, since PαN consists of mapped polynomials, pα = 0 if and only if ‖pα‖Z,∞ = 0.
The following lemma relates κ̃ to the condition number κ:

Lemma 3.1. We have κ̃ ≤ κ ≤ σκ̃, where

σ =
√
π
/√

min
n=0,...,M

{µn}.

Proof. Since M ≥ N by assumption, and since the points z0, . . . , zM are distinct,
the matrix A has full column rank. Hence FαN,Z(f) exists uniquely for any f ∈
L∞(−1, 1). The operator FαN,Z is also a projection onto PαN . Therefore

κ = sup
f∈L∞(−1,1)
‖f‖Z,∞ 6=0

{‖FαN,Z(f)‖∞
‖f‖Z,∞

}

≥ sup
pα∈PαN
‖pα‖Z,∞ 6=0

{‖FαN,Z(pα)‖∞
‖pα‖Z,∞

}

= sup
pα∈PαN
‖pα‖Z,∞ 6=0

{
‖pα‖∞
‖pα‖Z,∞

}
= κ̃,

which gives the lower bound. For the upper bound, we first note that

‖FαN,Z(f)‖∞ ≤ κ̃‖FαN,Z(f)‖Z,∞.

We now use the variational form (2.10). Setting pα = f̃ = FαN,Z(f) and using the
Cauchy–Schwarz inequality for the discrete inner product 〈·, ·〉Z , we find that

‖FαN,Z(f)‖Z ≤ ‖f‖Z .

Thus

‖f‖Z,∞ ≥
‖f‖Z√∑M
n=0 µn

≥
‖FαN,Z(f)‖Z√∑M

n=0 µn

≥
√

minn=0,...,M{µn}√∑M
n=0 µn

‖FαN,Z(f)‖Z,∞.
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Fig. 1. Numerically estimated condition numbers κ for equispaced nodes with M = 2N and two
values of the mapping parameter, α = 0.5 and 0.9. The solid lines present the values of κ, while the
dashed lines are the bounds in Lemma 3.1.

Observe that

M∑
n=0

µn =
1

2

(
π + sin−1(mα(zM )

)
− sin−1(mα(z0))) ≤

∫ 1

−1

1√
1− y2

dy = π,

where the equality holds when z0 = −1 and zM = 1. Hence this gives

‖FαN,Z(f)‖∞ ≤ κ̃σ‖f‖Z,∞.

The first result now follows immediately.
Note that κ, and therefore κ̃, determines the condition number of the approxi-

mation FαN,Z . Figure 1 shows how tight the bounds in Lemma 3.1 are for equispaced
nodes. In this figure, M = 2N was used for α = 0.5 and α = 0.9. Notice in particular
that κ is very close to κ̃.

We next consider the error of the approximation:
Theorem 3.2. We have

‖f − FαN,Z(f)‖∞ ≤ (1 + σκ̃)EαN (f), EαN (f) = inf
pα∈PαN

‖f − pα‖∞.

Proof. For any pα ∈ PαN ,

‖f − FαN,Z(f)‖∞ ≤ ‖f − pα‖∞ + ‖FαN,Z(f − pα)‖∞ ≤ ‖f − pα‖∞ + κ‖f − pα‖∞.

We now use Lemma 3.1.
This result shows that the error of the mapped polynomial approximation decou-

ples into a term κ̃ depending on the data and a term EαN (f) that is independent of
the data and depends only on the parameters α and N . Clearly, our interest lies in
choosing α and N such that EαN (f) is as small as possible. But this must be balanced
with the fact that the best choices for minimizing EαN (f) may lead to a large condition
number κ̃. We dedicate §4 to the issue of balancing these parameters based on an
estimate for κ̃ which we derive. In order to do so, however, it is first necessary to
consider the behaviour of the best approximation error EαN (f).
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3.2. Behaviour of the best approximation error. We consider the decay
rate of EαN (f) with respect to N for the five choices of α introduced in §2.4.

3.2.1. The case of fixed 0 ≤ α < 1. We shall focus on analytic functions. Let

B(ρ) =

{
1

2

(
ρ−1eiθ + ρe−iθ

)
: θ ∈ [−π, π)

}
⊆ C,

be the usual Bernstein ellipse in the complex y-plane with index ρ ≥ 1 and write
Dα(ρ) ⊆ C for the image of B(ρ) in the complex x-plane under the inverse mapping
x = m−1α (y). Then we have the following:

Theorem 3.3. Let N ∈ N and 0 ≤ α < 1 be given and suppose that f is analytic
in Dα(ρ′) for some ρ′ > 1 and continuous on its boundary. Then

EαN (f) ≤ 2cα(f)

ρ− 1
ρ−N , cα(f) = max

z∈Dα(ρ)
|f(z)|,

where

ρ = min
{

cot
(απ

4

)
, ρ′
}
, 0 < α < 1, ρ = ρ′, α = 0.

Proof. Note that

(3.1) EαN (f) = inf
pα∈PαN

‖f − pα‖∞ = inf
p∈PN

‖gα − p‖∞,

where gα = f◦m−1α . The mapping y = m−1α (x) has singularities at y = ±1/ sin(απ/2).
Note that, if ρ ≥ 1 satisfies

1

2
(ρ+ ρ−1) = 1/ sin(απ/2),

then ρ = cot(απ/4). Since f is analytic in Dα(ρ′), the function gα is therefore analytic
in the Bernstein ellipse B(ρ). Thus, the standard Bernstein estimate for best uniform
approximation by polynomial (see [35, Chpt. 8] for example) now gives the result.

Note that when α = 0, i.e. when PαN = PN , then ρ = ρ′ and we recover the usual
result for polynomial approximation. For all other values of α, the rate of geometric
convergence of EαN (f) is limited to at most cot(απ/4) by the singularity introduced
by the inverse mapping m−1α . Nevertheless, for any fixed 0 ≤ α < 1 the convergence
rate remains geometric, in contrast to the cases described next.

3.2.2. The case α = 1. We first require the following result:
Lemma 3.4. For even N , the space PαN defined by (2.4) has equivalent expression

PαN =


N/2∑
n=0

an cos(αnπx) +

N/2∑
n=1

bn sin(α(n− 1/2)πx) : an, bn ∈ C

 .

The set {cos(αnπx)}∞n=0 ∪{sin(α(n− 1/2)πx)}∞n=1 is precisely the orthogonal basis of
eigenfunctions of the Laplace operator on [−1/α, 1/α] subject to homogeneous Neu-
mann boundary conditions.

Proof. By [34, Lem. 1], one has

cos(αnπx) = (−1)nT2n(sin(απ2 x)) = (−1)nT2n
(
sin(απ2 )mα(x)

)
,
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and also

sin(α(n− 1/2)πx) = (−1)n−1T2n−1
(
sin(απ2 x)

)
= (−1)n−1T2n−1

(
sin(απ2 )mα(x)

)
.

The functions {T2n
(
sin(απ2 )mα(x)

)
}Nn=0 ∪ {T2n−1

(
sin(απ2 )mα(x)

)
}Nn=1 form a basis

for PαN . Hence the result follows.
This lemma shows that P 1

N is closely related to the space of trigonometric poly-
nomials (the case of odd N is similar, and hence is omitted). Indeed, if the factor
of (n − 1/2) were replaced by n, then the space P 1

N would be precisely the space of
trigonometric polynomials on [−1, 1].

For a comparison of trigonometric polynomial approximation and approxima-
tion with Laplace–Neumann eigenfunctions we refer to [2, 3]. One difference is that
Laplace–Neumann approximations converge uniformly, whereas trigonometric poly-
nomials do not. Specifically, in [2] it was shown that E1

N (f)→ 0 as N →∞ whenever
f ∈ H1(−1, 1), where H1(−1, 1) denotes the standard Sobolev space of order 1. How-
ever, the convergence rate is limited to O

(
N−1

)
unless f obeys specific endpoint

conditions, analogous to periodicity constraints in trigonometric polynomial approxi-
mation. Hence, in general, the choice α = 1 results in lower orders of approximation
(specifically, algebraic with index one), regardless of the smoothness of f .

3.2.3. The case α ∼ 1− α0/N
σ as N →∞. Suppose now that

(3.2) α = αN ∼ 1− α0/N
σ, N →∞,

where α0 > 0 and 0 < σ < 1 are fixed. To estimate the convergence rate in this case,
we use Theorem 3.3. Observe that

cot(αNπ/4) ∼ 1 + α0π/(2N
σ), N →∞,

and therefore

ρ−N ∼ (1 + α0π/(2N
σ))
−N ∼ (exp(α0π/2))−N

1−σ
, N →∞.

Hence for 0 < σ < 1 we have subgeometric convergence with index 1− σ. Note that
when σ = 1, there is no decay.

3.2.4. The case α = 4/π arctan(ε1/N ). This final choice of α is motivated by
Theorem 3.3. Let ε > 0 be a fixed, user-controlled tolerance. Since the error is
proportional to (cot(απ/4))−N , the choice

(3.3) α = αN =
4

π
arctan

(
ε1/N

)
,

gives

(cot (αNπ/4))
−N

= ε.

Hence, provided ε is chosen sufficiently small (e.g. on the order of machine precision),
we expect a small approximation error, even though rapid classical convergence of
EαN (f) down to zero is no longer guaranteed. Observe that

(3.4) αN = 1− 2| log ε|
Nπ

+O
(
N−2

)
, N →∞,

in this case. Hence, in the above notation we have σ = 1 and α0 = 2| log ε|/π.
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4. Parameter choices. As discussed in the previous section, given a set of data
Z with maximal spacing h, one must choose N and α in such a way so as to keep
the condition number κ̃ small, whilst at the same time minimizing the approximation
error EαN (f). In this section we address this issue.

4.1. A Markov inequality for PαN . To do so, we first require the following:
Theorem 4.1. We have

(4.1) ‖(pα)′‖∞ ≤ CαN‖pα‖∞, ∀pα ∈ PαN ,

where

(4.2) CαN ≤
απ

2
N
√

1 + cot2(απ/2)N2.

Recall that the classical Markov inequality for algebraic polynomials states that

(4.3) ‖p′‖∞ ≤ N2‖p‖∞, ∀p ∈ PN ,

where the constant N2 is sharp; see [6], for example. Conversely, for trigonometric
polynomials, Bernstein’s inequality [12] gives

(4.4) ‖p′‖∞ ≤
Nπ

2
‖p‖∞, ∀p ∈ TN ,

where TN =
{∑N/2

n=−N/2 aneinπx : an ∈ C
}

is the space of trigonometric polynomi-

als. On the other hand, Theorem 4.1 gives a Markov inequality for the spaces PαN ,
0 < α < 1. Note that the bound (4.1) reduces to (4.3) when α = 0. Similarly, it
reduces to (4.4) when α = 1, except, of course, that P 1

N is not the space TN of trigono-
metric polynomials but the space of Laplace–Neumann eigenfunction on [−1, 1] (see
Lemma 3.4). Nevertheless, one can show that P 1

N satisfies exactly the same Bernstein
inequality (4.4) as TN [3]. In other words, the general Markov inequality (4.1) is
sharp in the extreme cases α = 0 and α = 1.

Proof. Recall that pα(x) = p ◦mα(x) = p(y), where p ∈ PN . We have ‖pα‖∞ =
‖p‖∞ and

(pα(x))′ = p′(y)m′α(x) =
απ

2β
p′(y)

√
1− β2y2,

where β is as in (2.2). Thus

(4.5) ‖(pα)′‖∞ =
απ

2β
max
−1≤y≤1

|p′(y)
√

1− β2y2|.

We now recall the following inequality for algebraic polynomials, due to Bernstein
(see, for example, [6]):

(4.6) |p′(y)
√

1− y2| ≤ N‖p‖∞, p ∈ PN , −1 ≤ y ≤ 1.

Now consider |p′(y)
√

1− β2y2|. Let 0 < τ < 1 and suppose that |y| ≤
√

1− τ . Then

|p′(y)
√

1− β2y2| =

√
1− β2y2

1− y2
|p′(y)

√
1− y2| =

√
β2 +

1− β2

1− y2
|p′(y)

√
1− y2|.
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Thus, by (4.6) and the assumption on y,

|p′(y)
√

1− β2y2| ≤
√
β2 +

1− β2

τ
N‖p‖∞, |y| <

√
1− τ .

Now suppose that
√

1− τ ≤ |y| ≤ 1. Then, by Markov’s inequality (4.3),

|p′(y)
√

1− β2y2| ≤
√

1− β2(1− τ)N2‖p‖∞,
√

1− τ ≤ |y| ≤ 1.

Combining these two estimates, we obtain

|p′(y)
√

1− β2y2| ≤ max

{√
β2 +

1− β2

τ
N,
√
β2τ + (1− β2)N2

}
‖p‖∞.

We now set τ = 1/N2, substitute into (4.5) and use the definition of β to obtain the
result.

The Markov inequality (4.1) allows one to provide the following estimate for the
condition number:

Theorem 4.2. The condition number

κ̃αN,M ≤
1

1− hCαN/2
,

where CαN is as in (4.2). In particular, suppose that c ≥ 1 is fixed. Then

κ̃αN,Z ≤ c,

whenever N and α satisfy

(4.7) N
√

1 + cot2(απ/2)N2 ≤ 4(1− 1/c)

απh
.

Proof. Let x ∈ [−1, 1]. Then there exists an m = −1, . . . ,M + 1 such that
|x− zm| ≤ h/2. By the mean value theorem

|pα(x)| ≤ |pα(xm)|+ |x− zm|‖(pα)′‖∞ ≤ ‖pα‖Z,∞ + hCαN/2‖pα‖∞.

Taking the supremum over x ∈ [−1, 1] and rearranging now gives

‖pα‖∞ ≤ 1/(1− hCαN/2)‖pα‖Z,∞,

Since this holds for all pα ∈ PαN we obtain the first result. For (4.7), we note that
κ̃αN,M ≤ c provided

CαN ≤
2(1− 1/c)

h
.

Substituting the expression (4.2) for CαN now gives (4.7).

4.2. The choice of N and α. With Theorem 4.2 to hand, we may now consider
how to select the parameter N for the choices of α listed in §2.4.
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4.2.1. The case α = 0. Recall that P 0
N is the space PN of polynomials of degree

N . Hence the sufficient condition (4.7) for a bounded condition number reduces to

N ≤ 2

√
(1− 1/c)

πh
.

In other words, we require N = O(1/
√
h) as h→ 0. Since E0

N (f) decays geometrically
fast in N , this translates into root-exponential convergence in 1/h as h→ 0. In other
words, although algebraic polynomial approximations have good intrinsic approxima-
tion properties, they also exhibit severe scalings in N with h, which results in a less
than desirable effective convergence rate in terms of h.

4.2.2. The case α = 1. At the other extreme, when α = 1 condition (4.7) reads

N ≤ 4(1− 1/c)

απh
.

Hence a bounded condition number is ensured with a linear scaling N = O (1/h).
However, as discussed in §3.2, the best approximation error E1

N (f) decays only very
slowly in this case. Whilst setting α = 1 overcomes the unpleasant scaling of the
α = 0 case, it destroys the beneficial approximation properties.

4.2.3. The case of fixed 0 < α < 1. In this case, (4.7) results in the sufficient
condition N = O(1/

√
h) as h → 0. Although the constant improves as α gets closer

to one, this is the same asymptotic scaling as in the case α = 0, and it leads to the
same root-exponential decay of the error in terms of h.

As discussed in §1.3, a result of [28] states that no stable algorithm for approx-
imating functions from equispaced data can converge better than root-exponentially
fast in the number of points M . This result means that the sufficient condition
N = O(1/

√
h) derived for the cases 0 ≤ α < 1, which is equivalent to N = O(

√
M)

for equispaced data, is not just sufficient but also necessary. If N scales more rapidly
with M , then the approximation is necessarily ill-conditioned.

4.2.4. The case α ∼ 1− α0/N
σ as N →∞. As in (3.2), suppose that

α = αN ∼ 1− α0/N
σ, N →∞,

where 0 < σ < 1 and α0 > 0. Then for large N the left-hand side of (4.7) reads

N
√

1 + cot2(αNπ/2)N2 ∼ α0π

2
N2−σ,

and therefore (4.7) results in the condition

N ≤
(

8(1− 1/c)

π2α0

) 1
2−σ

h−
1

2−σ + o(1), N →∞.

In other words, we require N = O(h−
1

2−σ ) as h→ 0. Thus, by taking σ close to 1, we
reduce the scaling to almost linear in 1/h. But recall that the decay rate of EαNN (f)
in this case is subgeometric with index 1− σ. This means that

‖f − FαNN,Z(f)‖∞ = O
(
c−(1/h)

1− 1
2−σ
)
, h→ 0,

for some c > 1 whenever N = O
(
h−

1
2−σ

)
and αN is as in (3.2) with 0 < σ < 1. In

other words, the effective convergence rate is subgeometric in 1/h with index 1− 1
2−σ ,

and this drops to zero as σ approaches one.
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4.2.5. The case α = 4/π arctan(ε1/N ). Suppose now that αN is given by (3.3)
for some ε > 0. Due to (3.4), we find that (4.7) gives

N ≤ 8(1− 1/c)

π
√

1 + | log ε|2/4
h−1 + o(1), N →∞.

Hence a linear scaling N = O (1/h) suffices in this case, much as in the case of α = 1.
However, unlike that case we expect high accuracy from this approach, provided ε is
sufficiently small. Note that this does not contradict the aforementioned impossibility
theorem of root-exponential convergence, since this choice of αN does not lead to high-
order classical convergence down to zero, but only down to approximately ε.

5. The condition number of the matrix A. In the previous section, we
demonstrated stability and approximation, provided α and N scale in the appropriate
manner with h. Yet, as discussed in §2.3, it is important that the condition number
of the matrix A also remains bounded as h → 0 for the same choices of α and N .
In that case, the number of conjugate gradient iterations required to compute the
approximation is O (1) irrespective of the problem size. We now show that this is
indeed the case.

Theorem 5.1. Suppose that h ≤ 1/2. Then the condition number of the matrix
A satisfies

κ(A) ≤

√
1 + Θ(α,N, h)

1−Θ(α,N, h)
,

where, for any 0 < δ < N2,

Θ(α,N, h) ≤ c

(
Nh+N

√
h
√

1− α+δ2
(
h2N2

δ2
+
hN

δ
+
hN2(1− α)

δ2

)2

+

√
δ2 + h2N2 + hN2

√
1− β2(1− δ2/N2)2

)
,(5.1)

for some constant c > 0 independent of δ, α, N and h, where β = sin(απ/2).

The proof of this theorem is given in the appendix.

Corollary 5.2. Consider the following three cases:

(i) 0 ≤ α < 1 fixed,
(ii) α = 1,

(iii) α = αN → 1− as N →∞ with αN ∼ 1− α0/N
σ for 0 < σ ≤ 1 and α0 > 0.

For each ε > 0, there exists a c0(ε) > 0 such that

κ(A) ≤
√

1 + ε

1− ε
,

provided N ≤ c0(ε)h−γ , where γ satisfies

(i) γ = 1/2, (ii) γ = 1, (iii) γ =
1

2− σ
.
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Proof. By Theorem 5.1, it suffices to provide conditions under which Θ(α,N, h)
is bounded away from 1. Suppose first that α = 1. Then (5.1) gives

Θ(1, N, h) ≤ c

(
Nh+ δ2

(
h2N2

δ2
+
hN

δ

)2

+

√
δ2 + h2N2 + hNδ

√
2

)

Setting δ = Nh gives

Θ(1, N, h) ≤ c′
(
Nh+N2h2

)
,

for some constant c′ independent of N and h. Hence, taking Nh sufficiently small
ensures Θ(1, N, h) is bounded away from one.

Next suppose that 0 ≤ α < 1 is fixed. Then (5.1) reduces to

Θ(α,N, h) ≤ c
(
N
√
h+

h2N4

δ2
+ δ

)
.

Setting δ = hN2 now gives Θ(α,N, h) ≤ c
(
N
√
h+ hN2

)
as required.

Finally, consider the case αN ∼ 1− α0/N
σ for fixed α0 > 0 and 0 < σ ≤ 1. Note

that

N
√
h
√

1− α ∼
√
α0N

1−σ/2
√
h,

as N →∞, uniformly in h, and also that

hN2(1− α) ∼ α0hN
2−σ,

and

hN2
√

1− β2(1− δ2/N2)2 ∼ O
(
hN2−σ) , N →∞, h→ 0.

It follows that the right-hand side of (5.1) is small provided N = O(h−
1

2−σ ), as
required.

Comparing this with §4.2, we note that exactly the same scalings of N with h
that ensure stability and accuracy of the approximation also ensure good conditioning
of the linear system. Unfortunately, unlike in §4.2 we have no explicit values for the
constant in this case. Although careful bookkeeping in the proof would give such
a constant, it would likely be woefully pessimistic. However, we note that A is at
least invertible for any choice of N , α and h, provided the number of points M ≥ N .
Moreover, good conditioning of A can easily be checked numerically.

6. Numerical examples. In this section we present numerical results for ap-
proximations on [−1, 1]. Figure 2 shows the condition numbers (Lebesgue constants)
καN for equispaced nodes for several values of M and four choices of the least-squares
aspect ratio. As expected, when M/N = 1, καN is too large for practical compu-
tations. The condition number improves significantly as the oversampling rate is
increased. The bottom-left panel of Fig. 2 indicates that καN is approximately 103 if

α = 1 + 2 log 10−12

Nπ , which is how we chose α in all computations for the remainder of
this paper.

Figure 3 confirms our results in Section 5 that the choice α = 1 + 2 log ε
Nπ leads

to stable computations when the least-squares process is computed using mapped
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M/N = 1 M/N = 1.5

M/N = 2 M/N = 2.5

Fig. 2. Numerically estimated condition numbers καN for several values of α and N . The
colormap shows log10(καN ). Four least-square aspect ratios (number of points / approximation de-

gree) are considered: 1, 1.5, 2, and 2.5. The solid lines represent the curves α = 1 + 2 log ε
Nπ

, with

ε = 10−4, 10−10, and 10−16.
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Fig. 3. Condition number of the least-squares matrix A for several values of M (number of
equispaced data points) and three least-squares aspect ratios M/N . The mapping parameter was

chosen so that α = 1 + 2 log 10−12

Nπ
.
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Chebyshev polynomials as the approximation basis. Notice that κ(A) grows at a sub-
algebraic rate and that for M/N = 2 it remains roughly 103 for practical values of
M . This indicates that, in double precision, oversampling by a factor of 2 is sufficient
if the desired accuracy is roughly 10−12.

We present the error in the approximation of four analytic functions in Figure 4.
In all four cases the mapped polynomial approximations were obtained with M = 2N .
Notice that the method is particularly accurate for the function f1(x) = 1/(1+100x2).
In fact geometric convergence can be observed on this plot. By contrast, polynomial
interpolation of f1 is known to diverge with the error growing exponentially fast near
the ends of the interval. For reference, the errors for cubic splines (not-a-knot) and
polynomial least-squares are also included. For stability the degree of the polynomial
least-squares approximation must satisfy N = O(

√
M) [30]. In our numerical exam-

ples, N = 4
√
M was used. The superior convergence of the mapped approximations

can also be observed for the functions f2(x) = 1
1+16 sin2(7x)

and f3(x) = sin(200x),

which is entire but highly oscillatory. In the latter case, the convergence of the
mapped polynomial scheme starts with a resolution of approximately 4.4 points per
wavelength. The error then sharply drops several orders of magnitude and then slowly
asymptotes to about 10−10. We point out that the condition number of f3 is 200,
and hence a couple of digits of accuracy are expected to be lost (in comparison to the
other error plots) to rounding errors.

The function f4(x) =
√

1.01 + x has a singularity near x = −1. In this case, the
error decay for approximation on equispaced nodes is significantly slower. The effec-
tive rate seems to be sub-geometric for all values of M used in Fig. 4. Moreover, the
polynomial least-squares is slightly more accurate than the mapped approximation.
In contrast to the Runge function f1, which has poles near x = 0, f4 is most difficult
to resolve near one of the endpoints, where only sided information is available.

Figure 5 presents the error in the approximation of f1 and f4 from scattered data.
In this computation the data points were chosen as perturbation of equispaced nodes.
More precisely,

zm = δm + (−1 + 2m/M), m = 1 . . .M − 1, z0 = −1, zM = 1,

where the perturbations δm were drawn uniformly from the open interval (−1/M, 1/M).
The error decay in this case is in good agreement with the equispaced case as expected.

The numerical results presented in Fig. 4 and Fig. 5 where computed using the
NUFFT implementation developed at the Mathematical Institute of the University of
Lübeck [23, 29]. The expansion coefficients were computed using the MATLAB im-
plementation of the LSQR algorithm [25] with tolerance set at 10−12. Fig. 6 presents
the elapsed time required to approximate f5(x) = 1/(1 + 100 sin2(30x)) on a 2010
MacBook Pro laptop (3.06 GHz Intel Core 2 Duo). The number of iterations used by
LSQR is also reported in Fig. 6 (right panel). Notice that the number of iterations
remains low even when the number of points is more than 104. For reference, elapsed
time for the computation of the least-squares approximation using MATLAB’s back-
slash (which uses a Householder QR factorization) is also included. When M = 104,
the LSQR iteration using NUFFTs is roughly a thousand times faster than the matrix
QR direct solver.

7. Conclusions. The purpose of this paper was to introduce an efficient method
for high-accuracy approximation from scattered grids based on mapped polynomials.
Through a judicious choice of the parameter α, the method has an asymptotically
optimal scaling of the dimension of the approximation space N with the maximal
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Fig. 4. Error in the approximation of four functions sampled at M equispaced points on [−1, 1].
Polynomial least-squares and cubic spline approximations are included for reference. The mapping

parameter was chosen so that α = 1 + 2 log 10−12

Nπ
and M = 2N .
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Fig. 5. Error in the approximation of two functions sampled at M uniformly scattered points
on [−1, 1]. Polynomial least-squares and cubic spline approximations are included for reference.
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Fig. 6. Left: Elapsed time require to approximate f5(x) = 1/(1+100 sin2(30x)) using NUFFTs
and matrix computations. Dashed lines correspond to O(M3), O(M2) and O(M). Right: Number
of iterations used by LSQR.

spacing h. Whilst this parameter choice forfeits convergence down to zero, high
accuracy is expected if the quantity ε is chosen close to machine epsilon. Efficient
implementation of the method is achieved using NUFFTs.

There are a number of issues we have not addressed in this paper. The first
concerns the behaviour of the best approximation error EαN (f) for the parameter
choice (3.3). Although this choice was derived so as to ensure the error bound of
Theorem 3.3 is roughly ε for large N , this says nothing about how fast the error
decreases in practice. The numerical experiments of the previous section suggest that
the error decreases rapidly, at least initially, when it is orders of magnitude bigger
than ε. But how does one make precise mathematical statements to this effect when,
after all, the approximation is not guaranteed to converge zero? It turns outs that
this can be done, but it is beyond the scope of this paper. We will report the details
in a future work.

Second, we have only presented our method in one dimension. For functions
defined on hypercubes, the extension to higher dimensions is conceptually straight-
forward via tensor products. We expect that much of the analysis, in particular, the
various scalings derived in §4, will also carry over to this setting.

Other topics for investigation include the choice of mapping mα. We have used
(2.1) throughout, however there are other possibilities. See [22] for an overview. We
leave the question of the best choice of mapping for future work. Somewhat related
to this is the choice of α. Here we have used the choice (3.3) due to Kosloff & Tal
Ezer. However, other strategies may bring further benefits.
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Appendix A. Proof of Theorem 5.1. To prove this theorem, we need several
preliminary observations. First, let yn = mα(zn), n = −1, . . . ,M + 1. Then

yn+1 − yn ≤ ‖m′α‖∞h ≤
απ

2β
h

Since

(A.1)
απ

2β
=

απ/2

sin(απ/2)
≤ π

2
, 0 ≤ α ≤ 1,
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we find that

(A.2) yn+1 − yn ≤
πh

2
, n = −1, . . . ,M.

Unfortunately, this shall not be sufficient to prove the theorem, since it does not
describe how the points yn cluster near the endpoints. To this end, we have the
following:

Lemma A.1. Suppose that yn ≥ 0 and that y ∈ [yn, yn+1]. Then

|y − yn| ≤
πh

2

√
1− β2(yn)2, |y − yn| ≤

πh

2

(
πh+

√
1− β2(yn+1)2

)
,

where β is as in (2.2). Conversely, if yn+1 ≤ 0 and y ∈ [yn, yn+1] then we have

|y − yn| ≤
πh

2

√
1− β2(yn+1)2, |y − yn| ≤

πh

2

(
πh+

√
1− β2(yn)2

)
,

Proof. Let y = mα(z) and yn = mα(zn). Then, for yn ≥ 0, or equivalently zn ≥ 0,

|y − yn| =
1

sin(απ/2)
|sin(απz/2)− sin(απzn/2)|

≤ απ/2

sin(απ/2)
|z − zn|| cos(απξ/2)|, ξ ∈ [zn, z]

≤ απ/2

sin(απ/2)
|z − zn|| cos(απzn/2)|

≤ απ/2

sin(απ/2)
h

√
1− sin2(απzn/2)

=
απ

2β
h
√

1− β2(yn)2.

To deduce the first inequality, we use (A.1). For the second, we first note that it
suffices to take y = yn+1 and then let z = yn+1 − yn. Then by the first inequality

z2 ≤ π2h2

4

(
1− β2(yn+1)2 + β2

(
(yn+1)2 − (yn)2

))
≤ π2h2

4

(
1− β2(yn+1)2 + 2β2z

)
.

A simple exercise gives that if z2 ≤ cz + d2 with c, d ≥ 0 then z ≤ c + d. Hence we
obtain

z ≤ π2h2

2
+
πh

2

√
1− β2(yn+1)2,

as required. The case of yn+1 ≤ 0 is similar.
We are now ready to prove Theorem 5.1. Throughout the proof, we shall use the

notation a . b to mean that there exists a constant c > 0 independent of N , α, Z and
p ∈ PN such that a ≤ cb. Let yn = mα(zn). By Lemma 2.2, we wish to find constants
c1, c2 > 0 such that

(A.3) c1‖p‖2w ≤
M∑
n=0

µn|p(yn)|2 ≤ c2‖p‖2w, ∀p ∈ PN ,
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where w(y) = 1/
√

1− y2, in which case the condition number κ(A) ≤
√
c2/c1. We

now note the following. The weights

µn =
1

2

(
µln + µrn

)
, µln =

∫ yn+1

yn

w(y) dy, µrn =

∫ yn

yn−1

w(y) dy.

Thus the theorem holds provided (A.3) holds with µn replaced by µln and µrn. By
symmetry, it suffices to the result for µln only. That is, we need only show that

c1‖p‖2w ≤
M∑
n=0

µln|p(yn)|2 ≤ c2‖p‖2w, ∀p ∈ PN .

Define the function χ(y) =
∑N
n=0 p(yn)I[yn,yn+1)(y). By definition of µn, we have that

M∑
n=0

µln|p(yn)|2 =

∫ 1

−1
|χ(y)|2w(y) dy = ‖χ‖2w.

Since

(A.4) ‖p‖w − ‖p− χ‖w ≤ ‖χ‖w ≤ ‖p‖w + ‖p− χ‖w, ‖p‖2w =

∫ 1

−1

|p(y)|2√
1− y2

dy,

it suffices to estimate ‖p− χ‖w. We have

‖p− χ‖2w =

N∑
n=0

∫ yn+1

yn

|p(y)− p(yn)|2 w(y) dy +

∫ y0

−1
|p(y)|2w(y) dy =

M∑
n=0

Jn + I.

(A.5)

We now note the following inequality:

(A.6) ‖p‖∞ ≤
√

2N + 1

π
‖p‖w, ∀p ∈ PN , .

This follows immediately by expanding p in normalized Chebyshev polynomials cnTn,
where c0 =

√
1/π and cn =

√
2/π otherwise, and using the Cauchy–Schwarz inequal-

ity. In particular, this gives∫ y0

−1
|p(y)|2 w(y) dy ≤ ‖p‖2w

2N + 1

π

∫ y0

−1
w(y) dy . N

√
1 + y0‖p‖2w.

Note that 1 + y0 = y0 − y−1. Hence, by Lemma A.1

|1 + y0| . h2 + h
√

1− β2 = h2 + h cos(απ/2) . h2 + h(1− α),

since cos(απ/2) ≤ π(1− α)/2, 0 ≤ α ≤ 1. Thus

(A.7)

∫ y0

−1
|p(y)|w(y) dy .

(
Nh+N

√
h
√

1− α
)
‖p‖2w.
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We now focus on the other terms of (A.5). Consider the integral Jn:

Jn =

∫ yn+1

yn

∣∣∣∣∫ y

yn

p′(t) dt

∣∣∣∣2 1√
1− y2

dy

≤
∫ yn+1

yn

(∫ y

yn

√
1− t2|p′(t)|2 dt

)(∫ y

yn

1√
1− t2

dt

)
1√

1− y2
dy

≤

(∫ yn+1

yn

1√
1− y2

dy

)2 ∫ yn+1

yn

√
1− t2|p′(t)|2 dt(A.8)

We wish to estimate the first integral. To do so, let 0 < ε < 1 be a parameter (whose
value we choose later). Suppose first that yn ≥ 0. By Lemma A.1,∫ yn+1

yn

1√
1− y2

dy ≤ yn+1 − yn√
1− (yn+1)2

.
h2√

1− (yn+1)2
+ h

√
1− β2(yn+1)2

1− (yn+1)2

.
h2√
ε

+ h

√
1 +

(1− β2)(yn+1)2

1− (yn+1)2

.
h2√
ε

+ h
√

1 + (1− α)2/ε

.
√
ε

(
h2

ε
+

h√
ε

+
h(1− α)

ε

)
.

Hence ∑
n:

yn≥0
yn+1<1−ε

Jn . ε

(
h2

ε
+

h√
ε

+
h(1− α)

ε

)2

‖p′‖21/w

. εN2

(
h2

ε
+

h√
ε

+
h(1− α)

ε

)2

‖p‖2w.(A.9)

Note that the second step is due to the inequality ‖p′‖1/w . N‖p‖w (see, for example,
[13, (5.5.5)]). Near-identical arguments also give∑

n:
yn+1≤0
yn>−1+ε

Jn . εN2

(
h2

ε
+

h√
ε

+
h(1− α)

ε

)2

‖p‖2w.(A.10)

Now consider terms Jn with yn ≥ 0 and yn+1 ≥ 1− ε. Then

Jn ≤ ‖p‖2∞
∫ yn+1

yn

w(y) dy,

and therefore we get that∑
n:

yn≥0
yn+1≥1−ε

Jn ≤ ‖p‖2∞
∫ 1

yn

w(y) dy . N‖p‖2w
√

1− yn.
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By Lemma A.1,

1− yn = 1− yn+1 + yn+1 − yn ≤ ε+ yn+1 − yn . ε+ h2 + h
√

1− β2(1− ε)2

Therefore

(A.11)
∑
n:

yn≥0
yn+1≥1−ε

Jn . N

√
ε+ h2 + h

√
1− β2(1− ε)2‖p‖2w.

A similar estimate holds for the case yn+1 ≤ 0, yn ≤ −1 + ε. Finally, let n0 be such
that yn0

≤ 0 and yn0+1 > 0. Without loss of generality, suppose that |yn0
| ≥ |yn0+1|

and therefore |yn0
| ≤ hπ/2. Hence

(A.12)

∫ yn0+1

yn0

|p(y)|2w(y) dy ≤ ‖p‖2∞hw(yn0
) .

Nh√
1− h2π2/4

‖p‖2w . Nh‖p‖2w,

since h < 1/2 < 2/π. With this to hand, we now substitute (A.7), (A.9), (A.10),
(A.11) and (A.12) into (A.5) to get

‖χ− p‖2 .

[(
Nh+N

√
h
√

1− α
)

+ εN2

(
h2

ε
+

h√
ε

+
h(1− α)

ε

)2

+N

√
ε+ h2 + h

√
1− β2(1− ε)2 +Nh

]
‖p‖2w,

The result now follows by setting ε = δ2/N2.
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