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Abstract—We consider the problem of computing wavelet coefficients

of compactly supported functions from their Fourier samples. For this,

we use the recently introduced framework of generalized sampling in

the context of compactly supported orthonormal wavelet bases. Our first

result demonstrates that using generalized sampling one obtains a stable

and accurate reconstruction, provided the number of Fourier samples

grows linearly in the number of wavelet coefficients recovered. We also

present the exact constant of proportionality for the class of Daubechies

wavelets.

Our second result concerns the optimality of generalized sampling

for this problem. Under some mild assumptions generalized sampling

cannot be outperformed in terms of approximation quality by more

than a constant factor. Moreover, for the class of so-called perfect

methods, any attempt to lower the sampling ratio below a certain

critical threshold necessarily results in exponential ill-conditioning. Thus

generalized sampling provides a nearly-optimal solution to this problem.

I. GENERALIZED SAMPLING

A fundamental problem of signal processing is the reconstruction

of signals from a discrete set of measurements. This can be formu-

lated in a Hilbert Space H with inner product 〈·, ·〉, where one seeks

to reconstruct a function f ∈ H from measurements of the form

〈f, sj〉 for some {sj}j∈N
⊆ S ⊆ H. A key development is the

Shannon-Nyquist Sampling Theorem, which stated that bandlimited

or compactly supported signals to be fully described via measure-

ments
〈

f, e2πiǫj·
〉

, j ∈ Z, for some appropriate ǫ > 0. In particular, f

and its Fourier transform f̂(·) =
∫

f(x)e−ix·dx can be approximated

respectively as follows:

fN (t) = ǫ
∑

|k|≤N

f̂(2πkǫ)e2πiǫkt, fN
L2

−→ f,

f̂N (t) =
∑

|k|≤N

f̂(2πkǫ)sinc

(

t+ 2πkǫ

2ǫ

)

, f̂N
L2,L∞

−→ f̂ .

However, in many cases, such approximations are not used because

the bases generated by the sinc-function or complex exponentials

are generally considered inappropriate representation systems for the

underlying signals [1]. In fact, many images and signals can be better

represented in terms of a different basis (e.g. splines or wavelets)

than the basis in which they are sampled (e.g. the Fourier basis).

Consequently, there is much interest in generalising the Shannon-

Nyquist Sampling Theorem to recover the coefficients of a signal or

image in a particular basis from samples taken with respect to another

basis[1], this problem is often referred to as generalized sampling.

The goal now is to reconstruct in an arbitrary space W ⊆ H
without placing any constraints on the type of input vectors. In

practice, we seek an approximation of f in the finite dimensional

space WN = span {wj : 1 ≤ j ≤ N} such that
⋃

j∈N
Wj = W

from some finite set of measurements f̂M = (〈f, sj〉)Mj=1.

A. Desirable qualities of the reconstruction algorithm

We will be primarily be concerned with perfect reconstruction

algorithms, where the underlying signals can be perfectly recon-

structed from our discrete measurement sets. So, if f ∈ W , then the

algorithm should be able to recover f exactly from its measurements.

Note that if W ∩ S⊥ 6= {0}, then there will exist some non-zero

vector g ∈ W ∩ S⊥ such that 〈g, sj〉 = 0 for all j. So g is

indistinguishable from 0, regardless of the reconstruction algorithm.

Thus, when considering the reconstruction problem, we will require

that W and S satisfy the following condition:

W ∩ S⊥ = {0} , W + S⊥
is closed in H (1)

and will refer to this as the subspace condition. Let us now consider

the desirable qualities of a ‘good’ reconstruction method: Any

reconstruction method should be such that the approximation will

converge to the true signal as the number of samples increases and

the method should be robust to small perturbations in the input data.

With this in mind, we consider the following two definitions :

Definition I.1. [2] Let FN,M : H → WN . The quasi-optimality

constant µ = µ(FN,M ) is the least constant such that

‖f − FN,M (f)‖ ≤ µ‖f − PWN
f‖, ∀f ∈ H,

If no such constant exists, we write µ = ∞. We say that FN,M is

quasi-optimal if µ(FN,M ) is small.

Note that PWN
f is the best approximation in norm to f from WN .

So quasi-optimality means that the difference in norm between f and

FN,M (f) is at most a constant factor µ of the difference between f
and its best approximation in the subspace WN .

We also define the condition number of a reconstruction:

Definition I.2. [2] Let FN,M : H → WN be a mapping such that,

for each f ∈ H, FN,M (f) depends only on the samples {f̂j}Mj=1.

The condition number of κ(FN,M ) is given by

κ(FN,M ) = sup
f∈H

lim
ǫ→0+

sup
g∈H

0<‖ĝ‖≤ǫ

‖FN,M (f + g)− FN,M (f)‖
‖ĝ‖ ,

where ĝ = {ĝj}Mj=1 ∈ C
M . The mapping FN,M is well-conditioned

if κ(FN,M ) is small and ill-conditioned otherwise.

We say that the reconstruction FN,M is ‘good’ if it is stable and

quasi-optimal. In other words, if the reconstruction constant

C(FN,M ) = max{κ(FN,M ), µ(FN,M )},

is small.



II. REDUCED CONSISTENCY SAMPLING

This problem of generalized sampling is not new and has been

extensively studied - important contributions include the consistent

sampling scheme introduced by Aldroubi and Unser [3], [4], [5] and

significantly extended by Eldar [6], [7].

For f ∈ H, one seeks an approximation FN (f) ∈ WN which

agrees with the given measurements, so it is such that

〈FN (f), sj〉 = 〈f, sj〉 , j = 1, . . . , N. (2)

This involves solving a linear system of N equations and FN (f)
exists uniquely when WN ⊕S⊥

N = H. However, this condition need

not hold even if W⊕S⊥ = H and there are important cases for which

(2) has no solution, or the method FN is unstable or nonconvergent,

i.e. κ(FN ) → ∞ or FN (f) 6→ f as N → ∞ [8], [5].

To circumvent these problems, various authors have considered

overdetermined systems, where the number of measurements exceeds

the number of reconstruction coefficients to be recovered. We in

particular mention the work of Pruessmann et al [9] in the recovery

of voxel coefficients (which may be considered as Haar wavelet

coefficients) from Fourier samples and [10] by Hrycak and Gröchenig

for the recovery of polynomial coefficients from Fourier samples.

To formalise these approaches, Adcock and Hansen introduced the

reduced consistency sampling scheme [8], [11]. The task is then

as follows: Given N ∈ N, for some appropriate M ∈ N, find

FN,M (f) ∈ WN such that

〈PSM
FN,M (f), wj〉 = 〈PSM

f, wj〉 , j = 1, . . . , N. (3)

So, FN,M (f) coincides with f on PSM
(WN ) rather than on SM .

Under this framework, a stable and convergent scheme can always

be devised. Indeed, for all N ∈ N, there exists m0 such that for all

M ≥ m0, there exists a unique FN,M (f) satisfying (3), and such

a solution is quasi-optimal in WN and stable with reconstruction

constant at most

DN,M =

(

inf
g∈WN

‖PSM
g‖

)−1

.

As both convergence and numerical stability are governed by the

quantity DN,M , the notion of a stable sampling rate was introduced:

Definition II.1. [2] For N ∈ N and θ ∈ (1,∞), the stable sampling

rate is given by

Θ(N ; θ) = min {M ∈ N : DN,M ≤ θ} .
As demonstrated in [2], for any N ∈ N, Θ(N ; θ) can be numer-

ically calculated and determines the number of samples required to

obtain a convergent and stable reconstructions in WN as N → ∞.

III. OPTIMALITY OF GENERALIZED SAMPLING

In [2], the reduced consistency scheme is shown to be optimal

amongst all perfect methods, in that it is not possible improve upon

its stability. The following result shows that the stable sampling rate

is a universal property amongst perfect methods, since any perfect

method must sample at a rate at least that of the stable sampling rate

to achieve the same stability.

Theorem III.1. [2] For M ≥ N let GN,M : H → WN be a

perfect reconstruction method such that, for each f ∈ H, GN,M (f)
depends only on the samples {f̂j}Mj=1. Then the condition number

is such that κ(GN,M ) ≥ κ(FN,M ), where FN,M is the generalized

sampling reconstruction.

For nonperfect methods, the following result holds:

Theorem III.2. [2] Suppose that the stable sampling rate Θ(N ; θ)
is linear in N for a particular sampling and reconstruction problem.

Let f ∈ H be fixed, and suppose that there exists a sequence of

mappings

GM : {f̂j}Mj=1 7→ GM (f) ∈ WΨf (M),

where Ψf : N → N with Ψf (M) ≤ cM . Suppose also that there

exist constants c1(f), c2(f), αf > 0 such that

c1(f)N
−αf ≤ ‖f − PWN

f‖ ≤ c2(f)N
−αf , ∀N ∈ N. (4)

Then, given θ ∈ (1,∞), there exist constants c(θ) ∈ (0, 1) and

cf (θ) > 0 such that

‖f − Fc(θ)M,M (f)‖ ≤ cf (θ)‖f −GM (f)‖, ∀M ∈ N, (5)

where FN,M is the generalized sampling reconstruction.

Thus, for problems with linear stable sampling rates, even if one

is allowed to design a method that depends on f in a completely

non-trivial way, it is still not possible to obtain a faster asymptotic

rate of convergence than that of generalized sampling. In fact, we

will show that the stable sampling rate is linear for wavelets, making

this theorem directly applicable.

IV. WAVELET RECONSTRUCTIONS FROM FOURIER SAMPLES

Any implementation of the reduced consistency sampling scheme

requires an understanding of the corresponding stable sampling

rate. The case where the reconstruction space W is generated by

compactly supported wavelets and the sampling space is the space

of complex exponentials S = span
{

e2πiǫj· : j ∈ Z
}

for some

appropriate ǫ > 0 is particularly important, with applications in

medical imaging. In this section, we present some results which show

that the stable sampling rate is linear in this setting. We first describe

the construction of the reconstruction and sampling spaces.

For the reconstruction space, we aim to create orthonormal subsets

{ϕk}k∈N ⊆ L2(R) with the property that L2[0, a] ⊆ span{ϕk}k∈N

for some a > 0. Suppose that we are given an orthonormal

mother wavelet ψ and an orthonormal scaling function φ such that

supp(ψ) = supp(φ) = [0, a] for some a ≥ 1.

The standard approach is to consider the following collection of

functions

Ωa = {φk, ψj,k : supp(φk)
o ∩ [0, a] 6= ∅,

supp(ψj,k)
o ∩ [0, a] 6= ∅, j ∈ Z+, k ∈ Z, },

where

φk = φ(· − k), ψj,k = 2
j
2ψ(2j · −k).

(the notation Ko denotes the interior of a set K ⊆ R). This now

gives

L2[0, a] ⊆ cl(span{ϕ : ϕ ∈ Ωa}) = W ⊆ L2[−T1, T2],

where T1 = ⌈a⌉ − 1 and T2 = 2⌈a⌉ − 1 are such that [−T1, T2]
contains the support of all functions in Ωa.

For the Fourier sampling space, we let ǫ ≤ 1/(T1 + T2) be the

sampling density. Note that 1/(T1+T2) is the corresponding Nyquist

criterion for functions supported on [−T1, T2]. We now define the

sampling vectors by

sl =
√
ǫe2πilǫ·χ[−T1/(ǫ(T1+T2)),T2/(ǫ(T1+T2))],



and the sampling space by

S = span{sl : l ∈ Z}

=

{

f ∈ L2(R) : supp(f) ⊆
[

− T1

ǫ(T1 + T2)
,

T2

ǫ(T1 + T2)

]}

and the space spanned by the first M sampling vectors by

SM = span

{

sl : −
⌊

M

2

⌋

≤ l ≤
⌈

M

2

⌉

− 1

}

.

Our main result on the stable sampling rate is as follows.

Theorem IV.1. [12] For R ∈ N, let NR denote the number of

elements in Ωa of the form φj,k or ψj,k with j < R, in particular,

NR = 2R⌈a⌉ + (R + 1)(⌈a⌉ − 1). Then for N ≤ NR and all

θ ∈ (1,∞), there exists Sθ ∈ N, independent of R, such that for

M =

⌈

Sθ2
R+1

ǫ

⌉

, we have DNM ≤ θ. Hence, Θ(N, θ) = O(N)

for any θ ∈ (1,∞).

So, the stable sampling rate is linear and in other words, given

any f ∈ H, for any N ∈ N and θ ∈ (1,∞), there exists a constant

r such that r · N samples will up to a factor of θ, yield the best

possible approximation in the space WN and the condition number

of the method is no worse than θ as N → ∞.

One may ask, how small can the ratio r be? The next result shows

that there is a critical ratio, below which, the reconstruction will

become exponentially ill posed.

Theorem IV.2. [12] Let FN,M denote the reduced consistency

sampling method and NR be as in Theorem IV.1. Let N = NR

and M = c · 2R, with c < ǫ−1. Then κ(FN,M ) → ∞ exponentially

as N → ∞.

The first consequence of this with regards to optimality is that

this critical ratio is universal amongst perfect methods. It is not the

case that a perfect method could reconstruct in WNR
from less than

2R/ǫ samples and still only experience mild growth in its condition

number - this method will inherently become exponentially ill posed.

The second consequence for optimality is as explained at the end

of Section III, any non-perfect method which has a lower sampling

ratio for a particular function f satisfying (4) can only outperform

generalized sampling by a constant factor.

A. Daubechies wavelets

Our next result examines the special case of Daubechies wavelets

and asymptotically, the stable sampling ratio can be determined

exactly.

Theorem IV.3. [12] Let W be generated by a Daubechies wavelet,

and recall NR from Theorem IV.1. Then, there exists θ ∈ (1,∞) and

R0 ∈ N such that for all R ≥ R0, Θ(NR, θ) =
⌈

2R/ǫ
⌉

. In par-

ticular, when 1/ǫ ∈ Z it suffices to let θ >
(

infξ∈[−π,π]

∣

∣

∣
φ̂(ξ)

∣

∣

∣

)−1

.

Moreover, in addition to this, for Haar wavelets, where a = 1, we

have that Θ(NR, θ) ≤
⌈

2R/ǫ
⌉

for all R ∈ N.

V. NUMERICAL EXAMPLES

In this section, we provide numerical simulations of three key ideas

for generalized sampling in the context of wavelet reconstructions

from Fourier samples. Firstly, generalized sampling can offer sub-

stantial improvements. Secondly, the stable sampling rate is linear for

wavelet reconstructions from Fourier samples, moreover, our result

for the Daubechies wavelet case is sharp. Finally, understanding of

the stable sampling rate is crucial to the implementation of reduced
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Fig. 1. The top row shows fM (left) and f [N,M ] (right). The bottom row
shows fM (left) and f [N,M ] (right) on the interval [0.58, 0.68].
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Fig. 2. The figure displays the stable sampling rate Θ(N, θ1) and Θ(N, θ2)
in blue for the Daubechies-4 wavelet (left) and the Daubechies-6 wavelet
(right) with Fourier samples at a sampling distance ǫ = 1/7 and ǫ = 1/13
respectively.

consistency sampling and violation of it could lead to disastrous

results.

A. Signal recovery via generalized sampling

We consider the reconstruction of the following function

f =
1

2
χ[1/3,2/3] +

1

2
χ[2/5,2/5+1/300] + χ[3/5,3/5+1/300],

from M = 1024 Fourier samples of sampling density ǫ = 1/2.

Figure 1 shows the truncated Fourier series representation fM as

presented in the S-N Sampling Theorem as well as the reconstruction

f [N,M ] from implementing generalized sampling for a Haar wavelet

reconstruction space. In this case, N is chosen to be 512. It is clear

that f [N,M ] is visually preferable to fM with less oscillations at

discontinuities. We remark that similar figures were generated in [13]

to justify the use of wavelet encoding for MRI, which modifies an

MR scanner to direct acquire wavelet coefficients rather than Fourier

samples. In proving that the stable sampling rate is linear, we show

that that wavelet coefficients can be accurately approximated via

a post-processing and there is little to be gained in modifying the

sampling process.

B. Sharpness of Theorem IV.3

To demonstrate the sharpness of this result, we consider the

Daubechies-4 wavelet (supported in [0, 3]), and the Daubechies-

6 wavelet (supported in [0, 5]). The graphs of Figure 2 plots

the stable sampling rate Θ(N, θ) against N , the number of re-

construction vectors to be recovered. In each case, we set θ >
(

infξ∈[−π,π]

∣

∣

∣
φ̂(ξ)

∣

∣

∣

)−1

. Note that at the points NR, Θ(NR, θ) =

2R/ǫ as predicted by Theorem IV.3.



M ‖f − f̃M/c,M‖L2 ‖f − f̃M/c1,M‖L2 Noise Level

482 7.3× 10−7 2.8× 10−2 0

934 1.4× 10−7 5.4× 10−2 0

1834 2.6× 10−8 1.4× 10−2 0

482) 9.6× 10−6 6.1 1.0× 10−5

934 9.5× 10−6 77.2 1.0× 10−5

1834 9.7× 10−6 85.9 1.0× 10−5

TABLE I
THE TABLE SHOWS THE ERROR OF THE GENERALIZED SAMPLING

RECONSTRUCTIONS f̃N,M WITH N = M/c AND N = M/c1 , WITH

NOISELESS AND NOISY DATA.

Observe also from Theorem IV.3 that

Θ(NR, θ) < Θ(N, θ) ≤ Θ(NR+1, θ), NR < N ≤ NR+1.

The staircase effect witnessed in the figure suggests that the upper

bound is in fact an equality. Hence, although the stable sampling rate

is linear for all N , from the point of view of the stable sampling rate

at least, there is nothing to be gained from allowing N 6= NR.

C. Importance of the stable sampling rate

We demonstrate, as predicted by Theorem IV.2, that failure of

satisfying the stable sampling rate gives a completely unstable and

non-convergent reconstruction. We compare the choices

M = cN, c =
1

ǫ ⌈a⌉ , M = c1N, c1 = 0.95c.

for the recovery of the function f =
∑3×103

j=1 j−3ϕj , where ϕj are

Daubechies−4 wavelets. We will consider Fourier samples 〈f, sj〉 for

|j| ≤ M/2 which are contaminated with noise and thus we observe

ξ = {〈f, s1〉, . . . , 〈f, sM 〉} + v with ‖v‖ = ε for some noise level

ε ≥ 0. As verified in Table I the latter choice of M = c1N gives

disastrous results as an incorrect choice of the sampling ratio causes

the condition number of the algorithm to blow up exponentially.

VI. EXTENSION TO OTHER MRA WAVELET BASES

Although the theorems presented in the previous sections have been

for orthonormal systems of MRA wavelets, the key property required

for the proofs is the existence of an increasing sequence

0 < N1 < · · · < NR < NR+1 < · · ·
such that NR = O(2R),

⋃

R∈N
WNR

= W and

WNR
⊆ span {φR,j : AR,1 ≤ j ≤ AR,2} ,

AR,2 −AR,1 = O(2R).
(6)

Consequently, the results of this paper can be readily extended

to other compactly supported MRA wavelets such as the Semi-

orthogonal spline wavelets of [14], [15] or the bi-orthogonal Cohen-

Daubechies-Feauveau wavelets of [16]. We also remark that the

construction of the wavelet reconstruction space in Section IV is the

standard construction of wavelets on an interval with zero-padding

which can lead to large wavelet coefficients at the end points of

the interval. However, there are more sophisticated constructions of

wavelets on the intervals to reduce this effect, such as the basis

of Daubechies wavelets with special boundary wavelet and scaling

functions as described in [17]. Their construction is such that the

number of vanishing moments is preserved and the boundary scaling

function can be written as a linear combination of finitely many

elements in {φ(· − k) : k ∈ Z}. Such a wavelet basis will also satisfy

the requirements of (6) and the associated stable sampling rate

is also linear. In combination with known results [18] about the

characterization of the Sobolev space W s[0, 1], s > 0 via the decay

of wavelet coefficients from interval wavelets with q > s vanishing

moments, we have the following result.

Theorem VI.1. Let W be the reconstructed space constructed from

the Daubechies wavelet of q vanishing moments on the unit interval

and let S be the Fourier sampling space with sampling density ǫ ≤ 1.

Then, for any θ ∈ (1,∞), the stable sampling rate Θ(N, θ) is linear

in N . Furthermore, given any f ∈ W s[0, 1] with s ∈ (0, q), the

generalized sampling solution F [N,M ](f) implemented with M =
Θ(N, θ) samples satisfies

∥

∥

∥
f − F [N,M ](f)

∥

∥

∥
= O(M−s).

Thus, another consequence of a linear stable sampling rate is as

follows: given M Fourier samples of any f ∈ W s[0, 1], it is well

known that the Fourier representation cannot yield a convergence

rate of O(M−s). However, this convergence rate can be attained

from exactly these M Fourier measurements by reconstructing in an

appropriate wavelet basis via generalized sampling.
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