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Underdetermined systems of linear equations

Let x ∈ CN be an unknown vector. We consider m� N measurements

y
M

=
M

Measurement matrix
A ∈ Cm×N

x

Goal: Recover x from the underdetermined system of equations Az = y .
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Compressed sensing: the highlights

Under appropriate conditions on x and A we can recover x ∈ CN from
the measurements y = Ax ∈ Cm in a stable and robust manner.
Moreover, this can be done using efficient numerical algorithms.

• Condition on x : low-dimensionality s � N.

• Condition on A: E.g. Null Space Property, Restricted Isometry
Property, incoherence,...

• Condition on m: It is possible to find matrices A such that only
m ≈ C · s · log(N) measurements suffice.

• Algorithms: convex optimization (`1 minimization), greedy methods,
thresholding methods, message passing algorithms,...
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A little history

• Initial developments (≈ 2005): Candès, Romberg & Tao, Donoho

• Since then, the subject of thousands of papers, dozens of survey articles,

and one textbook (Foucart & Rauhut, Birkhauser, 2013).

• a.k.a. compressive sensing, compressed sampling, compressive sampling

Origins: geophysics (1970s/80s), statistics, signal processing (1980s/90s),

wavelets and nonlinear approximation (1980s/90s).
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Why do we care?

In many applications, a key limitation is the amount of data available.

Examples:

• MRI: more measurements ≈ longer scan time.

• X-Ray CT: more measurements ≈ higher radiation doses.

• Microscopy: more measurements deteriorate/destroy the object.

• Seismic/infrarad/etc imaging: more measurements ≈ higher costs.

• Sensor networks: more measurements ≈ more power.
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Why do we care?

But in many applications, the unknown x has a low-dimensional structure:

Examples: Radar, astronomical images, certain medical images,...

Radar Astronomical images
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Why do we care?

But in many applications, the unknown x has a low-dimensional structure:

Examples: Typical images are defined by edges ⇒ x has a sparse rep-
resentation in wavelets.

Image x Wavelet coefficients
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Compressed sensing for uncertainty quantification?

Big Picture:

1. In UQ one often faces the situation of limited measurements.

2. The solution/quantity of interest/etc typically lives in a high
(perhaps infinite) dimensional space.

3. But there is often low-dimensional structure.

So compressed sensing is a good fit...?
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Main example: solving parametric PDEs

Consider the parametrized PDE system

L(u; x , z) = 0,

where x ∈ Rp, p = 1, 2, 3, 4, is the physical variable and z ∈ Rd is a
variable of parameters.

Goal: Compute the map z 7→ u(·, z) or some functional f : z 7→ Qu(·, z).

Nonintrusive methods: Recover f from samples {f (zi )}mi=1.

Generalized polynomial chaos: Approximate f using a basis of
multivariate orthonormal polynomials f (z) ≈

∑
i∈I xiφi (z).
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Compressed sensing for parametric PDEs

Big Picture:

1. In UQ one often faces the situation of limited measurements.
• Each sample f (zi ) is expensive to acquire.

2. The solution/quantity of interest/etc etc typically lives in a high
(perhaps infinite) dimensional space.

• We want to include as many parameters as possible in the
model, i.e. d � 1, and as many polynomials, i.e. |I | � 1.

3. But there is often low-dimensional structure.
• The expansion coefficients {xi}i∈I are often sparse.
• Albert Cohen’s tutorial on Wednesday, for example.
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Questions for the remainder of the talk

1. Given a polynomial (or nonpolynomial) basis, how should we sample?

2. What is a good low-dimensional model for such problems, and how do
we properly exploit it?

3. What is the resulting sample complexity (= number of measurements
m), and how does it depend on dimension d and sparsity s?

4. To what extent can the curse of dimensionality be broken?

5. The standard CS setup is finite-dimensional. How do we handle
infinite-dimensionality of functions?
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Existing work

Theory and techniques:

• Rauhut & Ward (2011, 2012), Yan, Guo & Xiu (2012), Tang & Iaccarino

(2014), Hampton & Doostan (2014, 2015), Xu & Zhou (2014), Rauhut &

Ward (2014), Adcock (2015), Chkifa, Dexter, Tran & Webster (2016),

Guo, Narayan, Zhou & Chen (2016), Jakeman, Narayan & Zhou (2016)

and others.

Applications:

• Doostan & Owhadi (2011), Mathelin & Gallivan (2012), Yang &

Karniadakis (2013), Lei, Yang, Zheng, Lin & Baker (2014), Peng,

Hampton & Doostan (2014), Rauhut & Schwab (2015), Yang, Lei, Baker

& Lin (2015), Jakeman, Eldred & Sargsyan (2015), Karagiannis, Konomi

& Lin (2015), Guo, Narayan, Xiu & Zhou (2015) and many others.

Also, many talks this week.

12 / 62



Introduction Compressed sensing CS for UQ I CS for UQ II CS for UQ III CS for UQ IV Conclusions and outlook

Outline

Introduction

Overview of compressed sensing

Compressed sensing for UQ I: first steps

Compressed sensing for UQ II: towards higher dimensions

Compressed sensing for UQ III: overcoming the curse of dimensionality

Compressed sensing for UQ IV: dealing with functions

Conclusions and outlook

13 / 62



Introduction Compressed sensing CS for UQ I CS for UQ II CS for UQ III CS for UQ IV Conclusions and outlook

Sparsity

The standard low-dimensional model in CS:

Definition (Sparsity)

A vector x ∈ CN is s-sparse if it has
at most s nonzero entries.

Hi

200 400 600 800 1000

-2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Note: We may know s, but we do not know the locations on the nonzero
coefficients of x .
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`0 minimization

Let x ∈ CN be s-sparse, A ∈ Cm×N and y = Ax . To recover x from y ,
we can look for the sparsest solution:

min
z∈CN

‖z‖0 subject to Az = y , (?)

where ‖z‖0 = |{j : zj 6= 0}| is the `0 ‘norm’.

Note: x is the unique s-sparse solution of Az = y ⇐⇒ x is the unique
minimizer of (?).

Problem: (?) is NP-hard to solve in general.
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`1 minimization

To obtain a computationally tractable problem, we make a convex
relaxation. We replace

min
z∈CN

‖z‖0 subject to Az = y ,

by
min
z∈CN

‖z‖1 subject to Az = y , (?)

where ‖z‖1 =
∑N

i=1 |zi | is the l1-norm.

Many algorithms exist for solving the convex problem (?). E.g.

• homotopy methods, LARS, primal dual algorithms, pareto curve
methods, iteratively reweighted least squares, splitting methods (e.g.
split Bregman, ADMM),...

Note: Alternatives to `1: greedy methods, threshholding methods,...
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The Restricted Isometry Property

A popular tool for the analysis of CS:

Definition

The restricted isometry constant δs of a matrix A ∈ Cm×N is the smallest
number such that

(1− δs)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δs)‖z‖2
2, ∀ s-sparse z .

We say A satisfies the Restricted Isometry Property (RIP) of order s with
constant δs if δs ∈ (0, 1).

Candès & Tao (2005,2006), Cohen, Dahmen & DeVore (2009)
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Intuition

Suppose that the support

∆ = supp(x) = {j : xj 6= 0}, |∆| = s,

were known. Let A∆ = {aij : i = 1, . . . ,m, j ∈ ∆} ∈ Cm×s be formed by
the restriction of the columns of A to those with indices in ∆. If

‖A∗∆A∆ − I‖2→2 ∈ (0, 1),

then we can recover x stably and robustly via least-squares fitting:

x = argmin
supp(z)⊆∆

‖A∆z − y‖2 = A†∆y .

However, note that

δs = max {‖A∗∆A∆ − I‖2→2 : ∆ ⊆ {1, . . . ,N}, |∆| ≤ s} .

⇒ the RIP ensures stable and robust recovery of this oracle for any ∆.
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Stable and robust recovery with the RIP

Theorem

Suppose that the matrix A ∈ Cm×N satisfies the RIP of order 2s with
constant δ2s < 1/

√
2. Then for any x ∈ CN and y ∈ Cm with

‖Ax − y‖2 ≤ η, any solution x̂ of

min
z∈CN

‖z‖1 subject to ‖Az − y‖2 ≤ η,

satisfies

‖x − x̂‖2 . σs(x)/
√
s + η, ‖x − x̂‖1 . σs(x) +

√
sη,

where σs(x) = min{‖x − z‖1 : z is s-sparse}.

Stability: x is recovered exactly up to an error proportional to its best
s-term approximation σs(x).
Robustness: For noisy measurements y = Ax + e with noise bound
‖e‖2 ≤ η, x is recovered up to an error proportional to η.

Candès (2008), Cohen, Dahmen & DeVore (2009), Cai & Zhang (2013, 2014) and others
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Matrices that satisfy the RIP

Deterministic constructions of RIP matrices with m scaling linearly with s
have proved elusive.

Key idea: Use randomness
Candès, Romberg & Tao (2005), Donoho (2005)

Early examples:

• Gaussian random matrices (great to analyze, but impractical).

• Subsampled Fourier transforms (harder to analyze, but more practical).
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A general construction

Let F be a distribution of random vectors in CN .

Isometry condition: E(aa∗) = I , a ∼ F .

Construction of A: Draw a1, . . . , am independently from F and define

A =

 a∗1
...
a∗m

 ∈ Cm×N .

Coherence: Let µ(F ) be the smallest number such that

‖a‖2
∞ ≤ µ(F ),

almost surely for a ∼ F . Note that µ(F ) ≥ 1.

Candès & Plan (2012), Gross & Kueng (2013), Adcock & Hansen (2013), Chun & Adcock (2016)
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A general construction

Theorem
Let 0 < δ, ε < 1. If

m & δ−2 · µ(F ) · s ·
(
log3(2s) log(2N) + log(ε−1)

)
,

then the matrix 1√
m
A satisfies the RIP of order s with constant δs ≤ δ.

If F is incoherent, i.e. µ(F ) ≈ 1, then m & s × log factors.

• Similar to the bounded orthonormal systems approach, Rauhut (2010)

• Proof is based on arguments of Candès & Tao (2006), Rudelson &

Vershynin (2008), Rauhut (2010)

• Variations/enhancements: Andersson & Stromberg (2014), Haviv &

Regev (2016), Chkifa, Dexter, Tran & Webster (2016)
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Example: one-dimensional Chebyshev polynomials

Consider D = [−1, 1], ν(z) = 1
π
√

1−z2
and the orthonormal basis of

Chebyshev polynomials:

φ0(z) = 1, φi (z) =
√

2 cos
(
i cos−1(z)

)
, i = 1, 2, . . . .

Let

f (z) =
N−1∑
i=0

xiφi (z),

be a polynomial of degree N with coefficients x = {xi}N−1
i=0 ∈ CN .

Measurements: Draw z1, . . . , zm independently from ν and set

y = {f (zi )}mi=1 = Ax , A = {φj(zi )}m,N−1
i=1,j=0 .
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Recovery of one-dimensional Chebyshev polynomials

Theorem
Let 0 < ε < 1, 1 ≤ s ≤ N, η ≥ 0 and

m & s ·
(
log3(2s) log(2N) + log(ε−1)

)
.

Draw z1, . . . , zm independently from ν and form A ∈ Cm×N . Let
f (z) =

∑N
i=0 xiφi (z) ∈ PN−1 be arbitrary and set y = {f (zi )}mi=1 + e,

where ‖e‖2 ≤ η. Then for any minimizer x̂ of

min
v∈CN

‖v‖1 subject to ‖Av − y‖2 ≤ η,

we have

‖x − x̂‖2 . σs(x)/
√
s + η/

√
m, ‖x − x̂‖1 . σs(x) + η

√
s/m.

• Applies only to finite polynomials f (see later)

• Related to sparse recovery of trigonometric polynomials, Rauhut (2007)
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Proof

Let F be the family

a = a(z) = [φ0(z), φ1(z), . . . , φN−1(z)]> , z ∼ ν.

Then

• E (aa∗)ij = E
(
φiφj

)
= δi,j =⇒ F is isotropic.

• ‖a‖2
∞ ≤ 2 =⇒ µ(F ) ≤ 2.

Hence 1√
m
A satisfies the RIP with m & s × log factors.
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What about Legendre polynomials?

Let D = [−1, 1], ν(z) = 1
2 and φi (z), i = 0, 1, 2, . . ., be the orthonormal

Legendre polynomial basis.

-1.0 -0.5 0.5 1.0

-3

-2

-1

1

2

3

Problem: ‖φi‖L∞ = |φi (1)| =
√

2i + 1. Hence the coherence

µ(F ) = 2N + 1.

This gives the sample complexity m & N · s × log factors, which is useless.

Rauhut & Ward (2012)
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The preconditioning trick

Legendre polynomials possess an en-
veloping property:

|φi (z)|(1− z2)1/4 < 2/
√
π.

-1.0 -0.5 0.5 1.0

-4

-2

2

4

The preconditioned system

Φi (z) =
√
π/2(1− z2)1/4φi (z),

is orthonormal with respect to the measure ν(z) = 1
π
√

1−z2
and satisfies

‖Φi‖2
L∞ ≤ 2.

Hence, if we draw samples z1, . . . , zm from this measure, the resulting
sample complexity is m & s × log factors.

• Note: a similar approach can be used for any Jacobi polynomials.

Rauhut & Ward (2012)
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Notation

Let

• D ⊆ Rd be a domain,

• ρ(z) be a probability measure on D,

• {zi}mi=1 ⊆ D be drawn independently from ρ,

• {φi}i∈I be an orthonormal system in L2(D, dρ) ∩ L∞(D), where I is
a countable index set,

• IK ⊆ I be a finite index set and N = |IK |.

Suppose that f is a finite polynomial in the φi :

f =
∑
i∈IK

xiφi , xi =

∫
D

f (z)φi (z)dρ(z),

where x = {xi}i∈IK are the coefficients of f in the system {φi}i∈I .
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Main example: tensor products of polynomials

Let ν be a density function on (−1, 1) and {ψi}∞i=0 be orthonormal
polynomials with respect to ν. Set

• D = (−1, 1)d ,

• ρ(z) =
∏d

j=1 ν(zj)dz ,

• I = Nd
0 ,

• φi (z) =
∏d

j=1 ψij (zj) for i = (i1, . . . , id) ∈ I .

Note: unbounded domains – see later.
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Choices for the truncated index set IK
Various options, including:

1. Tensor product: ITPK = {i = (i1, . . . , id) : 0 ≤ ij ≤ K , j = 1, . . . , d} .

• |ITPK | = (K + 1)d – often too large in practice.

2. Total degree: ITDK =
{
i = (i1, . . . , id) :

∑d
j=1 ij ≤ K

}
.

• |ITDK | =

(
K + d

d

)
– more manageable.

3. Hyperbolic cross: IHC
K =

{
i = (i1, . . . , id) :

∏d
j=1(ij + 1) ≤ K + 1

}
.

• |IHCK | ≤ CK min
{

log(K)d−1, d log(K)
}

– even more manageable.

Considerations:

• Computational cost: |IK | = N is the number of matrix columns

• Smaller index sets IK may miss important features.
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Recovery of tensor Chebyshev polynomials

1D basis: ψ0(z) = 1, ψi (z) =
√

2 cos
(
i cos−1(z)

)
otherwise.

Observe that

‖φi‖2
∞ =

d∏
j=1

‖ψij‖2
L∞ = 2|i|0 ,

where |i |0 = |{j : ij 6= 0}|. Hence

µ(F ) = 2q, q = max{|i |0 : i ∈ IK}.

Recovery guarantees: Consider the total degree space ITDK .

Low to moderate dimensions d < K m & 2d · s · L
High dimensions d ≥ K m & 2K · s · L

Here L = log factors.
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Recovery of tensor Legendre polynomials

Case 1: We sample from the uniform measure. Since

‖φi‖2
∞ ≤

d∏
j=1

(2ij + 1),

we get

Low to moderate dimensions d < K m & (2K/d + 1)d · s · L
High dimensions d ≥ K m & 3K · s · L

Case 2: We sample from the Chebyshev measure and precondition. Since

‖φi‖2
∞ ≤ (π/2)d(4/π)|i|0 ,

we get

Low to moderate dimensions d < K m & 2d · s · L
High dimensions d ≥ K m & (π/2)d(4/π)K · s · L

Yan, Guo & Xiu (2012)
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High dimensions d ≥ K m & 3K · s · L

Case 2: We sample from the Chebyshev measure and precondition. Since

‖φi‖2
∞ ≤ (π/2)d(4/π)|i|0 ,

we get

Low to moderate dimensions d < K m & 2d · s · L
High dimensions d ≥ K m & (π/2)d(4/π)K · s · L

Yan, Guo & Xiu (2012)
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Problem

In all cases, there is exponential blow-up of the sample complexity with
either dimension d or degree K .
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Sparsity?

Sparsity permits the s non-zero coefficients to have arbitrary locations:

0 50 100 150 200 250 0 50 100 150 200 250

Bad news: recovering coefficients corresponding to high polynomial
degrees requires more samples, due to the growth of ‖φi‖L∞ with i .

Good news: For smooth functions, the nonzero polynomial coefficients
typically occur at lower indices.

• Sparsity alone is too crude to capture this behaviour.

Solution:
1. Penalize high-degree coefficients in the regularization term.

2. Seek recovery guarantees for a fixed support set, not all supports.
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Weighted `1 minimization

We solve
min
v∈CN

‖v‖1,w subject to ‖Av − y‖2 ≤ η,

where

• A = {φj(zi ) : i = 1, . . . ,m, j ∈ IK} ∈ Cm×N , N = |IK |,
• y = {f (zi )}mi=1 + e, ‖e‖2 ≤ η,

• w = {wi}i∈IK are positive weights,

• ‖·‖1,w is the weighted `1 norm: ‖v‖1,w =
∑

i∈IK wi |vi |.

It has been observed empirically that weights often give superior
performance over unweighted `1 minimization.

• See: Yang & Karniadakis (2013), Peng, Hampton & Doostan (2014),

Rauhut & Ward (2015), Adcock (2015).
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Weighting strategies

Example: error versus m for (unpreconditioned) Legendre polynomials.
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α = 0.5
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α = 1.5

α = 2.0
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d = 2, f (z) = exp(2z1) cos(3z2) d = 10, f (z) = e−
z1+···+z10

20

wi = (1 + i1 + . . . + id)α wi = (i1 · · · id)α

Questions
How does the recovery error depend on the weights? Is there an optimal
choice of weights? Does this overcome the curse of dimensionality?
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Towards a theorem

We now focus on recovering a fixed support set ∆ ⊆ IK .

• In particular, we must avoid the RIP.

• Follow ideas of nonuniform recovery in CS (e.g. RIPless CS).

Notation:

• Let P∆x be such that (P∆x)j = xj , j ∈ ∆ and 0 otherwise.

• Define the weighted cardinality of a set ∆ as |∆|w =
∑

i∈∆ w2
i .

Goal: Prove error estimates in terms of |||x − P∆x ||| with sample
complexities depending on ∆, not just s = |∆|.

Nonuniform recovery in CS: Candès & Plan (2012), Adcock & Hansen (2013), Boyer, Bigot &

Weiss (2015), Chun & Adcock (2016).
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Recovery guarantee

Theorem (BA, 2015)

Let w = {wi}i∈I be weights, x ∈ CN and ∆ ⊆ IK be such that
mini∈{1,...,K}\∆{wi} ≥ 1. Let

m &

(
|∆|u + max

i∈IK\∆
{u2

i /w
2
i }max{|∆|w , 1}

)
· L,

where ui = ‖φi‖L∞ and L = log(2ε−1) · log(2N
√

max{|∆|w , 1}). Draw
z1, . . . , zm independently from ν. Then with probability at least 1− ε,
any minimizer x̂ of

min
v∈CN

‖v‖1,w subject to ‖Av − y‖2 ≤ η,

satisfies
‖x − x̂‖2 . ‖x − P∆x‖1,w + η

√
|∆|w/m.

• The `2/`1
w error bound is worse than those implied by the RIP. For `1

w/`1
w

bounds (w = u only), see Chkifa, Dexter, Tran & Webster (2016).

• Earlier work (weighted RIP): Rauhut & Ward (2015).
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Optimal non-adapted weights

Consider the main estimate:

m &

(
|∆|u + max

i∈IK\∆
{u2

i /w
2
i }max{|∆|w , 1}

)
· L.

For generic choices of ∆, this is minimized by the choice

wi = ui = ‖φi‖L∞ .

Comparison of recovery guarantees:

`1 minimization m & maxi∈IK ‖φi‖2
L∞ · |∆| · L (1)

`1
u minimization m &

(∑
i∈∆ ‖φi‖2

L∞

)
· L (2)

For suitable ∆, we next show that (2) is substantially smaller than (1).
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Polynomial expansions and lower sets

Question: which types of support sets ∆ do we encounter in practice?

Answer: In high dimensions, polynomial coefficients tend to concentrate
on lower sets (see e.g. Chkifa, Cohen & Schwab, 2014).

d = 2, s = 16 d = 2, s = 32

Definition (Lower/Downwards closed set)

A set ∆ ⊆ Nd is lower if, for any i = (i1, . . . , id) ∈ ∆ and j = (j1, . . . , jd)
with jk ≤ ik , ∀k , it holds that j ∈ ∆.
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Optimal recovery of lower sets

The case d < K :

Basis Samples
Measurements m

wi = 1 wi = ui

Chebyshev Chebyshev 2d · s · L s
log(3)
log(2) · L

Legendre Uniform
(

2K
d + 1

)d · s · L s2 · L
Legendre Chebyshev 2d · s · L (π/2)d s

log(1+4/π)
log(2) · L

The case d ≥ K :

Basis Samples
Measurements m

wi = 1 wi = ui

Chebyshev Chebyshev 2K · s · L s
log(3)
log(2) · L

Legendre Uniform 3K · s · L s2 · L
Legendre Chebyshev (π/2)d(4/π)K · s · L (π/2)d s

log(1+4/π)
log(2) · L

Adcock (2015), Chkifa, Dexter, Tran & Webster (2016)
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Numerical examples

Example 1: polynomials = Chebyshev, sampling = Chebyshev measure

• intrinsic weights ui = 2|i|0/2

• optimization weights wi = (ui )
α

• IK is the total degree set of degree K

• f (z) = log(2 + d−1(z1 + . . .+ zd))
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(d ,K) = (3, 24) (d ,K) = (10, 5)
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Numerical examples

Example 2: polynomials = Legendre, sampling = uniform measure

• intrinsic weights ui =
∏d

j=1

√
2ij + 1

• optimization weights wi = (ui )
α

• IK is the total degree set of degree K

• f (z) = exp(−(z1 + . . .+ zd)/(2d))
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Comparison to least-squares fitting

Least-squares fitting: Preselect a support set ∆. Compute

x̌ = argmin
supp(v)⊆∆

‖A∆v − y‖2

• Theoretical guarantees: Cohen, Davenport & Leviatan (2013), Chkifa,

Cohen, Migliorati, Nobile & Tempone (2015), Migliorati (2015) and

others.

The sample complexity for the recovery of any set ∆ is identical (up to
possible log factors) to those of weighted `1 minimization with weights
w = u for Chebyshev/uniform sampling on bounded domains.

However, weighted `1 minimization requires no prior knowledge of ∆.
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Adapted weights

In some scenarios, we may have some a priori knowledge about which
coefficients in the expansion

f =
∑
i∈I

xiφi ,

are the largest. E.g. theoretical estimates, prior computations, etc.

Adapted weights: Use weights to penalize the expansion coefficients that
are expected to be small.

Peng, Hampton & Doostan (2014), Yang & Karniadakis (2013), and others
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Adapted weights

Corollary (BA, 2015)

Assume ui = 1 for simplicity and let x ∈ CN be s-sparse with support
∆ = {j : xj 6= 0}. Let Γ ⊆ IK and suppose that wi = σ < 1, i ∈ Γ, and
wi = 1, i /∈ Γ. Then we require

m & (2(1− ρα) + (1 + γ)ρ) · s · L, L = log(2ε−1) · log(2N
√
s),

measurements, where α = |∆ ∩ Γ|/|Γ| and |Γ|/|∆| = ρ.

• If wi = 1 then we require m & 2 · s · L measurements.

• Hence we see an improvement whenever α > 1
2 (1 + γ).

• That is, we estimate ≈ 50% of the support correctly, for small γ.

Similar results: Friedlander, Mansour, Saab & Yilmaz (2012), Yu & Baek (2013), Mansour & Saab

(2015) (random Gaussian measurements).
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Ideas behind the proof of the main result

The proof is based on constructing an approximate dual certificate:

Lemma (BA, 2015)

Let ∆ ⊆ {1, . . . ,N}, |∆| = s. Suppose that A is such that

(i) ‖P∆A∗AP∆ − P∆‖2→2 ≤ α – local isometry,

(ii) maxi /∈∆ {‖Aei‖2/wi} ≤ β – off-support incoherence,

and that there exists a vector ρ = W−1A∗ξ for some ξ ∈ Cm such that

(iii) ‖W (P∆ρ− sign(P∆x))‖2 ≤ γ – approximate sign matching on ∆,

(iv) ‖P⊥∆ρ‖∞ ≤ θ – strictly less than one off ∆,

(v) ‖ξ‖2 ≤ λ
√
|∆|w – bounded growth,

for 0 ≤ α, θ < 1 and β, γ, λ ≥ 0 satisfying
√

1+αβγ
(1−α)(1−θ) < 1. Then the

conclusions of the theorem hold with L = λ.

Note that (i) and (ii) follow from standard concentration estimates.
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Constructing the dual certificate

The construction of the dual certificate ρ uses an iterative approach
known as the golfing scheme and due to D. Gross.

• First, one divides the rows of A into L bins, of sizes m1, . . . ,mL.

• Set ρ(0) = 0.

• For l = 1, . . . , L perform the iterative update

ρ(l) = m−1
l W−1(A(l))∗A(l)

(
sign(P∆x)− P∆ρ

(l−1)
)

+ ρ(l−1),

provided
• ‖(P∆ −m−1

l P∆(A(l))∗A(l)P∆)v (l−1)‖2 ≤ al‖v (l−1)‖2,
• ‖m−1P⊥∆ W−1(A(l))∗A(l)P∆v

(l−1)‖∞ ≤ bl‖v (l−1)‖2,

where v (l) = W
(
sign(P∆x)− P∆ρ

(l)
)
.

• The parameters m1, . . . ,mL, L, al , bl are carefully tuned to get the
correct recovery guarantee.
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Off versus on-support terms

Main estimate:

m &

(
|∆|u + max

i∈IK\∆
{u2

i /w
2
i }max{|∆|w , 1}

)
· L = (T1 + T2) · L.

Roughly speaking:

• T1 comes from estimating the on-support terms.

• E.g. the local isometry property ‖P∆A∗AP∆ − P∆‖2→2.

• T2 comes from estimating the off-support terms.

• E.g. the off-support coherence maxi /∈∆ {‖Aei‖2/wi} ≤ β.
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Recovery of functions

Usually, a function f is not exactly a polynomial of finite degree. Instead
it has an infinite expansion:

f (z) =
∑
i∈I

xiφi (z).

Typical approach: Let η ≥ 0 be chosen so that the expansion tail
satisfies

∥∥f −∑i∈IK xiφi
∥∥
L∞
≤ η. Solve the problem

min
v∈CN

‖v‖1,w subject to ‖Av − y‖2 ≤ η. (?)

• Note that this condition ensures the vector v∗ = {xi}i∈IK of the first
N = |IK | exact coefficients is feasible for (?).

• The expansion tail is treated as noise on the samples.
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Problems

In practice, the tail error
∥∥f −∑i∈IK xiφi

∥∥
L∞

is unknown.

• Empirical solution: use cross validation.

• See, for example: Doostan & Owhadi (2011), Yang & Karniadakis
(2013), Peng, Hampton & Doostan (2014).

• However, time-consuming to compute (multiple `1 solves).

Moreover, even if η can be estimated, the majority of existing theoretical
results require η to satisfy

η ≥

∥∥∥∥∥f −∑
i∈IK

xiφi

∥∥∥∥∥
L∞

.
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Recover without tail bounds

Suppose that η ≥ 0 is arbitrary, and consider

min
v∈CN

‖v‖1,w subject to ‖Av − y‖2 ≤ η. (?)

Theorem (BA, 2015)

Let w = {wi}i∈N be weights, x ∈ `1
w (N) and ∆ ⊆ {1, . . . ,K} be such

that mini∈{1,...,K}\∆{wi} ≥ 1. Let

m &

(
|∆|u + max

i∈IK\∆
{u2

i /w
2
i }max{|∆|w , 1}

)
· L,

where L = log(ε−1) · log(2N
√

max{|∆|w , 1}) and draw z1, . . . , zm
independently from ν. Then, with probability at least 1− ε, any
minimizer of (?) satisfies

‖x − x̂‖2 . ‖x − P∆x‖1,w + η
√
|∆|w/m + TK (x),

where TK (x) = min
{
‖x − v‖1,w : v ∈ CN , ‖Av − y‖2 ≤ η

}
.
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Remarks

1. The measurement condition

m &

(
|∆|u + max

i∈IK\∆
{u2

i /w
2
i }max{|∆|w , 1}

)
· L,

is the same as before.

2. The effect of the unknown expansion tail is the additional term

TK (x) = min
{
‖x − v‖1,w : v ∈ CN , ‖Av − y‖2 ≤ η

}
,

i.e. the error of best approximation of x from the feasible set.

3. If η = 0, then the overall approximation f̃ =
∑

i∈IK x̂iφi interpolates f .
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Estimates for TK (x)

Case 1 (known tail): If η ≥
∥∥f −∑i∈IK xiφi

∥∥
L∞

then

TK (x) ≤
∑
i /∈IK

wi |xi |.

Case 2 (unknown tail): If 0 ≤ η <
∥∥f −∑i∈IK xiφi

∥∥
L∞

, then

TK (x) ≤
(
1 + σ−1‖PIKw‖2

)∑
i /∈IK

wi |xi |,

where σ = σmin(A).

Note that
∑

i /∈IK wi |xi | is the `1
w -norm of the coefficients not included in

the optimization problem.
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Conclusions

1. Sparsity and limited measurements often arise in UQ problems. In
particular, computing high-dimensional polynomial approximations to
solutions of parametric PDEs.

2. CS can be a useful tool in such problems.

3. The sample complexity for CS is comparable to that of an oracle least
squares and mitigates the curse of dimensionality to the same extent.

4. The standard formulation of CS is finite-dimensional. To incorporate
functions requires both additional theory and numerical tools to get good
tail estimates.
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Recent enhancements

Sampling: Sampling from the orthogonality measure may not be the best
in practice. Some alternatives:

• Randomized quadratures (Tang & Iaccarino (2014), Guo, Narayan, Zhou

& Chen (2016))

• Coherence-optimal sampling (Hampton & Doostan (2014))

• Christoffel/Equipotential sampling (Jakeman, Narayan & Zhou (2016))

Recovery algorithms: `1 minimization is a convex relaxation of `0

minimization. Nonconvex alternatives:

• Reweighted `1 (Yang & Karniadakis (2013))

• `1 − `2 (Guo, Narayan, Zhou (2016))

Also:

• Sparsity enhancement via rotations (Jakeman, Eldred & Sargsyan (2015),

Lei, Yang, Zheng, Lin & Baker (2014))

• Gradient enhancement (Hampton & Doostan (2016) and others)
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Sampling: Sampling from the orthogonality measure may not be the best
in practice. Some alternatives:

• Randomized quadratures (Tang & Iaccarino (2014), Guo, Narayan, Zhou

& Chen (2016))

• Coherence-optimal sampling (Hampton & Doostan (2014))

• Christoffel/Equipotential sampling (Jakeman, Narayan & Zhou (2016))

Recovery algorithms: `1 minimization is a convex relaxation of `0

minimization. Nonconvex alternatives:

• Reweighted `1 (Yang & Karniadakis (2013))

• `1 − `2 (Guo, Narayan, Zhou (2016))

Also:

• Sparsity enhancement via rotations (Jakeman, Eldred & Sargsyan (2015),

Lei, Yang, Zheng, Lin & Baker (2014))

• Gradient enhancement (Hampton & Doostan (2016) and others)

61 / 62



Introduction Compressed sensing CS for UQ I CS for UQ II CS for UQ III CS for UQ IV Conclusions and outlook

Outlook
Solvers: Solving an `1 problem is computationally more intensive than
solving a least squares problem. General purpose solvers may not be
optimal for these problems.

Adaptivity: It is not clear how to adaptively sample in the CS setting.

Sparsity enhancement: learning a better expansion basis from the data
(sparse learning). E.g. combining ideas from active subspaces.

Unbounded domains: less clear what are good sampling measures for
Hermite or Laguerre expansions.

Recovering the whole solution: Rather than some functional
f (z) = Qu(·, z), devise efficient techniques to approximate u(x , z).

Worst-case guarantees: Most existing results assume an ideal sampling.
Few theoretical results exist for fixed (e.g. legacy) data.

Dealing with infinity: Better estimates for unknown expansion tails.
Provable guarantees for estimation techniques, e.g. cross validation.

Robustness: Better estimates are need for robustness towards solver
errors, including failures, data corruption, etc.
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